Empreu aquest identificador per citar o enllaçar aquest document: http://hdl.handle.net/2072/1233

Clarke critical values of subanalytic Lipschitz continuous functions
Bolte, Jerôme; Daniilidis, Aris; Lewis, Adrian S.; Shiota, Masashiro
Centre de Recerca Matemàtica
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
06-2005
Funcions contínues
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
Edició preliminar
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;638
         

Text complet d'aquest document

Fitxers Mida Format
pr638.pdf 225.5 KB PDF

Mostra el registre complet del document