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Abstract
We define a subclass of separated graphs, the class of adaptable separated graphs, and
study their associated monoids. We show that these monoids are primely generated
conical refinement monoids, and we explicitly determine their associated I -systems.
We also show that any finitely generated conical refinementmonoid can be represented
as the monoid of an adaptable separated graph. These results provide the first step
toward an affirmative answer to the Realization Problem for von Neumann regular
rings, in the finitely generated case.
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Introduction

The structure of commutative refinement monoids is generally very intricate, and it is
difficult to rephrase their architecture in terms of combinatorial data. These monoids
appear naturally in different contexts, such as non-stable K-theory of exchange rings
and real rank zero C∗-algebras (see e.g. [9,19]), classification of Boolean algebras
(see e.g. [18,21]), the realization problem for von Neumann regular rings (see below),
and the theory of type semigroups (see e.g. [22,24]). In this paper, based on the work
developed in [11,12], we provide a concrete and useful description of a subclasss
of all primely generated conical refinement monoids, which contains all the finitely
generated ones, in terms of a specific type of separated graphs.

Recall that a separated graph [8] is a pair (E,C), where E is a directed graph and
C is a partition of the set of edges of E which is finer than the partition induced by the
source map s : E1 → E0. Visually one may think of a separated graph as a directed
graph where the edges have been given different colours. Several interesting algebras
and C∗-algebras have been attached to these combinatorial objects, some of them
having exotic behaviour (see for instance [7,8]). Given a separated graph (E,C), one
can naturally associate a monoid M(E,C) to it [8]. However, it is not always true that
M(E,C) is a refinement monoid [8, Section 5].

Generalizing earlier work by Dobbertin [15] and Pierce [21], the first and third-
named authors have completely determined in [11] the structure of primely generated
conical refinement monoids. The main ingredient of this characterization is the notion
of an I -system, which is a certain poset of semigroups generalizing the posets of
groups used by Dobbertin in [15] (see Definition 1.1 below). Using this description,
a characterization of the finitely generated conical refinement monoids which are
isomorphic to a graph monoid M(E) for a (non-separated) directed graph E has
been obtained in [12]. In particular, we stress the fact that not all such monoids are
isomorphic to graph monoids. It is the purpose of this paper to show that a large class
of primely generated conical refinement monoids, including all the finitely generated
ones, can be obtained as monoids of the form M(E,C) for (E,C) belonging to a
particularly well-behaved class of separated graphs, the adaptable separated graphs
(see Definition 1.4 below).

Concretely, the main result of this paper (Theorem 2.1) is the following:

Theorem The following two statements hold:

(1) If (E,C) is an adaptable separated graph, then M(E,C) is a primely generated
conical refinement monoid.

(2) For any finitely generated conical refinement monoid M, there exists an adaptable
separated graph (E,C) such that M ∼= M(E,C).

We now outline some of the applications of the results obtained in this note. Con-
cretely, we use the structure of an adaptable separated graph in order to get two
realization results. The first application is given in [5], where the authors, jointly with
A. Sims, attach to each adaptable separated graph (E,C) an E∗-unitary inverse semi-
group S(E,C). Moreover, using techniques developed by Paterson [20] and Exel [16],
they build from this inverse semigroup S(E,C) an ample Hausdorff étale topological
groupoid G(E,C) satisfying
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Typ(G(E,C)) ∼= M(E,C).

In particular, we see fromTheorem 2.1(2) that all finitely generated conical refinement
monoids arise as type semigroups of this well-behaved class of topological groupoids.
The second application concerns the Realization Problem for von Neumann regular
rings, posed by Goodearl in [17]. This wonders which refinement monoids appear as
a V(R) for a von Neumann regular ring R, where the latter stands for the monoid
of isomorphism classes of finitely generated projective (left, say) R-modules, with
the operation induced from direct sum (see [2] for a survey on this problem). For
an adaptable separated graph (E,C) and an arbitrary field K , we build in [4] a von
Neumann regular K -algebra QK (E,C), which is a certain universal localization of
the Steinberg algebra AK (G(E,C)) (see [23] for its definition) of the above groupoid
G(E,C), and which satisfies that

V(QK (E,C)) ∼= M(E,C).

Again, Theorem 2.1(2) gives that the realization problem for von Neumann regular K -
algebras has a positive answer for any finitely generated conical refinement monoid.
This construction extends at once the constructions given in [3,6].

The paper is organized as follows. In the first section we introduce background
material needed for our results. We have split this in three subsections, concerning
commutative monoids, primely generated refinement monoids, and separated graphs,
respectively. In Sect. 2, we prove our results. We have divided this section into two
subsections, in each of which we prove one of the statements of our Theorem.

1 Preliminaries

1.1 Basics on commutative monoids

All semigroups andmonoids considered in this paper are commutative.Wewill denote
by N the semigroup of positive integers, and by Z

+ the monoid of non-negative
integers.

Given a commutative monoid M , we set M∗ := M \ {0}. We say that M is conical
if M∗ is a semigroup, that is, if, for all x , y in M , x + y = 0 only when x = y = 0.

We say that a monoid M is separative provided 2x = 2y = x + y always implies
x = y; there are a number of equivalent formulations of this property, see e.g. [9,
Lemma 2.1]. We say that M is a refinement monoid if, for all a, b, c, d in M such that
a + b = c+ d, there exist w, x , y, z in M such that a = w + x , b = y + z, c = w + y
and d = x+ z. A basic example of refinement monoid is the monoid M(E) associated
to a countable row-finite graph E [10, Proposition 4.4].

If x, y ∈ M , we write x ≤ y if there exists z ∈ M such that x + z = y. Note that
≤ is a translation-invariant pre-order on M , called the algebraic pre-order of M . All
inequalities in commutative monoids will be with respect to this pre-order. An element
p in amonoidM is a prime element if p is not invertible inM , and, whenever p ≤ a+b
for a, b ∈ M , then either p ≤ a or p ≤ b. The monoid M is primely generated if
every non-invertible element of M can be written as a sum of prime elements.

123



P. Ara et al.

An element x ∈ M is regular if 2x ≤ x . An element x ∈ M is an idempotent
if 2x = x . An element x ∈ M is free if nx ≤ mx implies n ≤ m. Any element
of a separative monoid is either free or regular. In particular, this is the case for
any primely generated refinement monoid, by [14, Theorem 4.5]. Furthermore, every
finitely generated refinement monoid is primely generated [14, Corollary 6.8].

A subset S of a monoid M is called an order-ideal if S is a subset of M containing
0, closed under taking sums and summands within M . An order-ideal can also be
described as a submonoid I of M , which is hereditary with respect to the canonical
pre-order ≤ on M : x ≤ y and y ∈ I imply x ∈ I . A non-trivial monoid is said to be
simple if it has no non-trivial order-ideals.

If (Sk)k∈� is a family of (commutative) semigroups,
⊕

k∈� Sk (resp.
∏

k∈� Sk)
stands for the coproduct (resp. the product) of the semigroups Sk , k ∈ �, in the category
of commutative semigroups. If the semigroups Sk are subsemigroups of a semigroup
S, we will denote by

∑
k∈� Sk the subsemigroup of S generated by

⋃
k∈� Sk . Note that∑

k∈� Sk is the image of the canonical map
⊕

k∈� Sk → S. We will use the notation
〈X〉 to denote the semigroup generated by a subset X of a semigroup S.

Given a semigroupM , wewill denote byG(M) theGrothendieck group ofM . There
exists a semigroup homomorphism ψM : M → G(M) such that for any semigroup
homomorphism η : M → H to a group H there is a unique group homomorphism
η̃ : G(M) → H such that η̃ ◦ ψM = η. G(M) is abelian and it is generated as a group
by ψ(M). If M is already a group then G(M) = M . If M is a semigroup of the form
N×G, where G is an abelian group, then G(M) = Z×G. In this case, we will view
G as a subgroup of Z × G by means of the identification g ↔ (0, g).

Let M be a conical commutative monoid, and let x ∈ M be any element. The
archimedean component of M generated by x is the subsemigroup

GM [x] := {a ∈ M : a ≤ nx and x ≤ ma for some n,m ∈ N}.

For any x ∈ M , GM [x] is a simple semigroup. If M is separative, then GM [x] is a
cancellative semigroup; if moreover x is a regular element, then GM [x] is an abelian
group.

1.2 Primely generated refinementmonoids

The structure of primely generated refinement monoids has been recently described
in [11]. We recall here some basic facts.

Given a poset (I ,≤), we say that a subset A of I is a lower set if x ≤ y in I and
y ∈ A implies x ∈ A. For any i ∈ I , we will denote by I ↓ i = {x ∈ I : x ≤ i} the
lower subset generated by i . We will write x < y if x ≤ y and x �= y.

The following definition is crucial for this work:

Definition 1.1 ([11, Definition 1.1]) Let I = (I ,≤) be a poset. An I -system

J = (
I ,≤, (Gi )i∈I , ϕ j i (i < j)

)

is given by the following data:
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(a) A partition I = I f ree  Ireg (we admit one of the two sets I f ree or Ireg to be
empty).

(b) A family {Gi }i∈I of abelian groups. We adopt the following notation:

(1) For i ∈ Ireg , set Mi = Gi , and Ĝi = Gi = Mi .
(2) For i ∈ I f ree, set Mi = N × Gi , and Ĝi = Z × Gi

Observe that, in any case, Ĝi is the Grothendieck group of Mi .
(c) A family of semigroup homomorphisms ϕ j i : Mi → G j for all i < j , to which

we associate, for all i < j , the unique extension ϕ̂ j i : Ĝi → G j of ϕ j i to a group
homomorphism from the Grothendieck group of Mi to G j (we look at these maps
as maps from Ĝi to Ĝ j ). We require that the family {ϕ j i } satisfies the following
conditions:

(1) The assignment

{
i �→ Ĝi

(i < j) �→ ϕ̂ j i

}

defines a functor from the category I to the category of abelian groups (where
we set ϕ̂i i = idĜi

for all i ∈ I ).
(2) For each i ∈ I f ree we have that the map

⊕

k<i

ϕik :
⊕

k<i

Mk → Gi

is surjective.

We say that an I -systemJ = (
I ,≤, (Gi )i∈I , ϕ j i (i < j)

)
is finitely generated in case

I is a finite poset and all the groups Gi are finitely generated.

To every I -system J one can associate a primely generated conical refinement
monoid M(J ), and conversely to any primely generated conical refinement monoid
M , we can associate an I -system J such that M ∼= M(J ), see Sects. 1 and 2 of [11]
respectively.

1.3 Separated graphs

Here, we recall definitions and properties about separated graphs that will be needed
in the sequel. In particular, we define the notion of adaptable separated graph, which
is crucial for this paper. We refer the reader to [1,8] for more information and general
notation about (separated) graphs.

Let E be a directed graph, and let ≤ be the preorder on E0 determined by w ≥ v

if there is a path in E from w to v. Let I be the antisymmetrization of E0, with the
partial order ≤ induced by the order on E0. Thus, denoting by [v] the class of v ∈ E0

in I , we have [v] ≤ [w] if and only if v ≤ w.
For v ∈ E0, we refer to the set [v] as the component of v, and we will denote by

E[v] the restriction of E to [v], that is, the graph with E[v]0 = [v] and E[v]1 = {e ∈
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E1 | s(e) ∈ [v] and r(e) ∈ [v]}. If J is a lower subset of I , we will denote by E |J the
restriction of the graph E to the set of vertices {v ∈ E0 | [v] ∈ J }.

We now describe our graphs.

Definition 1.2 ([8, Definition 2.1]) A separated graph is a pair (E,C) where E is a
directed graph, C = ⊔

v∈E0 Cv , and Cv is a partition of s−1(v) (into pairwise disjoint
nonempty subsets) for every vertex v. (In case v is a sink, we take Cv to be the empty
family of subsets of s−1(v)).

If all the sets in C are finite, we shall say that (E,C) is a finitely separated graph.

From now on, we will assume that all our separated graphs are finitely separated
graphs without any further comment.

Following [8], we associate the following monoid to any finitely separated graph.

Definition 1.3 ([8, Definition 4.1]) Given a finitely separated graph (E,C), we define
the monoid of the separated graph (E,C), to be

M(E,C) =
〈

av (v ∈ E0) : av =
∑

{e∈X}
ar(e) for every X ∈ Cv, v ∈ E0

〉

. (1.1)

Remind that a directed graph is said to be transitive if any two vertices can be
connected by a finite directed path.

The following definition is the milestone of the current paper. We arrived at it via
a distillation of the methods used in [11,12], with the help of the insight provided by
[8,13]. Recall that it was shown in [13] (see also [12]) that not all finitely generated
refinement monoids arise as graph monoids, and it was shown in [8] that not all
monoids M(E,C), for a separated graph (E,C), are refinement monoids. Hence, in
order to accomplish our aim of obtaining a combinatorial description of all finitely
generated conical refinementmonoids,we are forced to downsize the class of separated
graphs under consideration. The main idea is to find a class of separated graphs which,
on one hand, is big enough to represent all the finitely generated conical refinement
monoids, and, on the other hand, is well behaved in the sense that all the graph
monoids of separated graphs in the class are primely generated refinement monoids.
This is achieved by the subsequent notion of adaptable separated graph.

Definition 1.4 Let (E,C) be a finitely separated graph and let (I ,≤) be the antisym-
metrization of (E0,≤). We say that (E,C) is adaptable if I is finite, and there exist
a partition I = Ifree  Ireg, and a family of subgraphs {Ep}p∈I of E such that the
following conditions are satisfied:

(1) E0 = ⊔
p∈I E0

p, where Ep is a transitive row-finite graph if p ∈ Ireg and E0
p =

{v p} is a single vertex if p ∈ Ifree.
(2) For p ∈ Ireg and w ∈ E0

p, we have that |Cw| = 1 and |s−1
Ep

(w)| ≥ 2. Moreover,
all edges departing from w either belong to the graph Ep or connect w to a vertex
u ∈ E0

q , with q < p in I .
(3) For p ∈ Ifree, we have that s−1(v p) = ∅ if and only if p is minimal in I . If p is not

minimal, then there is a positive integer k(p) such that Cv p = {X (p)
1 , . . . , X (p)

k(p)}.
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Moreover, each X (p)
i is of the form

X (p)
i = {α(p, i), β(p, i, 1), β(p, i, 2), . . . , β(p, i, g(p, i))},

for some g(p, i) ≥ 1, where α(p, i) is a loop, i.e., s(α(p, i)) = r(α(p, i)) =
v p, and r(β(p, i, t)) ∈ E0

q for q < p in I . Finally, we have E1
p =

{α(p, 1), . . . , α(p, k(p))}.
The edges connecting a vertex v ∈ E0

p to a vertex w ∈ E0
q with q < p in I will be

called connectors. �

2 Adaptable separated graphs and their associatedmonoids

In this section we show the main result of the paper:

Theorem 2.1 The following two statements hold:

(1) If (E,C) is an adaptable separated graph, then M(E,C) is a primely generated
conical refinement monoid.

(2) For any finitely generated conical refinement monoid M, there exists an adaptable
separated graph (E,C) such that M ∼= M(E,C).

We have divided the proof in two parts. First we show statement (1) (Proposi-
tion 2.6), and, subsequently,we show the realization result stated in (2) (Theorem2.11).

2.1 Themonoid of an adaptable separated graph

We show below that the monoid M(E,C) associated to an adaptable separated graph
(E,C) is a primely generated conical refinementmonoid. As a consequence, we obtain
from [11, Theorem 2.7] that there is a poset P, with a partition P = Pfree Preg, and a
P-system J such that M(E,C) ∼= M(J ). We will explicitly determine this system.

To show our results, we will need the “confluence” property of the congruence
associated to our separated graphs (E,C). This was established for all graph monoids
M(E) of ordinary row-finite graphs in [10, Lemma 4.3]. Amongst other things, this
enables us to show the refinement property of the monoids M(E,C), when (E,C) is
an adaptable separated graph.

Let (E,C) be an adaptable separated graph, and F be the free commutative monoid
on the set E0. The nonzero elements of F can be written in a unique form up to
permutation as

∑n
i=1 vi , where vi ∈ E0 (repetition of elements is allowed). Now we

will give a description of the congruence on F generated by the relations (1.1) (see
Definition 1.3) on F .

It will be convenient to introduce the following notation. For X ∈ Cv (v ∈ E0),
write

r(X) :=
∑

e∈X
r(e) ∈ F .
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With this new notation, the relations in (1.1) become v = r(X) for every v ∈ E0 and
every X ∈ Cv .

Definition 2.2 Define a binary relation→1 on F\{0} as follows. Let∑n
i=1 vi ∈ F\{0},

and let X ∈ Cv j for some j ∈ {1, 2, . . . , n}. Then ∑n
i=1 vi →1

∑
i �= j vi + r(X). Let

→ be the transitive and reflexive closure of →1 on F \ {0}, that is, α → β if and only
if there is a finite string α = α0 →1 α1 →1 · · · →1 αt = β.

Let ∼ be the congruence on F generated by the relation →1 (or, equivalently, by
the relation →). Namely α ∼ α for all α ∈ F and, for α, β �= 0, we have α ∼ β

if and only if there is a finite string α = α0, α1, . . . , αn = β, such that, for each
i = 0, . . . , n − 1, either αi →1 αi+1 or αi+1 →1 αi . The number n above will be
called the length of the string. �

It is clear that ∼ is the congruence on F generated by relations (1.1), and so
M(E,C) = F/∼.

The support of an element γ in F , denoted supp(γ ) ⊆ E0, is the set of basis
elements appearing in the canonical expression of γ .

The proof of the following easy lemma is similar to the one of [10, Lemma 4.2].

Lemma 2.3 (cf. [10, Lemma 4.2]) Let (E,C) be any finitely separated graph. Let →
be the binary relation on F defined above and α, β ∈ F \{0}. Assume that α = α1+α2
and α → β. Then β can be written as β = β1 + β2, with α1 → β1 and α2 → β2.

We are now ready to obtain the crucial lemma that gives the important “confluence”
property of the congruence ∼ on the free commutative monoid F .

Lemma 2.4 Let (E,C) be an adaptable separated graph. Let α and β be nonzero
elements in F. Then α ∼ β if and only if there is γ ∈ F such that α → γ and β → γ .

Proof The proof is similar to the proof of [10, Lemma 4.3]; however, we provide the
majority of details by completeness.

Assume that α ∼ β. Then there exists a finite string α = α0, α1, . . . , αn = β such
that, for each i = 0, . . . , n − 1, either αi →1 αi+1 or αi+1 →1 αi . We proceed by
induction on n. If n = 0, then α = β and there is nothing to prove. Assume the result
is true for strings of length n−1, and let α = α0, α1, . . . , αn = β be a string of length
n. By induction hypothesis, there is λ ∈ F such that α → λ and αn−1 → λ. Now there
are two cases to consider. If β →1 αn−1, then β → λ and we are done. Assume that
αn−1 →1 β. By definition of →1, there is a basis element v ∈ E0 in the support of
αn−1 and X ∈ Cv such that αn−1 = v + α′

n−1 and β = r(X) + α′
n−1. By Lemma 2.3,

we have λ = λ(v) + λ′, where v → λ(v) and α′
n−1 → λ′. If the length of the string

from v to λ(v) is positive, then we have r(Y ) → λ(v) for some Y ∈ Cv . If [v] ∈ Ireg,
then X = Y and the proof is the same as in [10, Lemma 4.3]. If [v] ∈ Ifree, then X
may be distinct from Y , but in this case we play with the special form of the sets in
Cv . Indeed, assume that [v] ∈ Ifree. In this case, write λ′′ := λ + (r(X) − v). Then
we have

β = r(X) + α′
n−1 = v + (r(X) − v) + α′

n−1

→1 r(Y ) + (r(X) − v) + α′
n−1
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→ λ(v) + α′
n−1 + (r(X) − v)

→ λ(v) + λ′ + (r(X) − v)

= λ + (r(X) − v) = λ′′.

On the other hand, since v + α′
n−1 → λ and since [v] ∈ Ifree, it follows easily by

induction on the length of this string that v ∈ supp(λ) and thus λ →1 λ+(r(X)−v) =
λ′′. Hence α → λ → λ′′ and β → λ′′, as desired.

In the remaining case that v = λ(v), set γ = r(X) + λ′. Then we have λ →1 γ

and so α → γ , and also β = r(X) + α′
n−1 → r(X) + λ′ = γ . This concludes the

proof. �
Now, exactly the same proof as in [10, Proposition 4.4] (using Lemmas 2.3 and

2.4) gives the following result.

Proposition 2.5 Let (E,C) be an adaptable separated graph. Then the monoid
M(E,C) is a refinement monoid.

We now show that, for any adaptable separated graph, the monoid M(E,C) is a
primely generated monoid.

Proposition 2.6 Let (E,C) be an adaptable separated graph and let (I ,≤) be the
antisymmetrization of E0 with respect to the path-way pre-order. Then M(E,C) is a
primely generated conical refinement monoid.

Proof By [8, Lemma 4.2], M(E,C) is a nonzero, conical monoid whenever (E,C)

is an arbitrary finitely separated graph such that E0 is non-empty.
Suppose now that (E,C) is an adaptable separated graph. By Proposition 2.5,

M(E,C) is a refinement monoid. We now show that M(E,C) is primely generated.
For this, it is enough to observe that each generator av , with v ∈ E0, is prime in
M(E,C). For this purpose, we work in the free monoid F generated by E0 and we
use the notation introduced above. We denote by α the class of an element α ∈ F in
M(E,C) = F/∼. Note that av = v for v ∈ E0. We have to show that if we have a
relation v+δ = α1+α2 in F/∼ = M(E,C), then there is i ∈ {1, 2} such that v ≤ αi .
Now since v + δ ∼ α1 + α2 in F , we have by Lemma 2.4 that there is γ ∈ F such
that v + δ → γ and α1 + α2 → γ . We claim that there is γ ′ ∈ F such that γ → γ ′
and v belongs to the support of γ ′. If [v] ∈ Ifree, this is clear already for γ ′ = γ ,
because each X ∈ Cv contains a loop. If p := [v] ∈ Ireg, then since |s−1

Ep
(w)| ≥ 1 for

all w ∈ E0
p, it follows that the support of γ contains a vertex w ∈ E0

p. Now using that
Ep is transitive, we see that there is a finite path in Ep joining w to v, and using this
path, we find γ ′ ∈ F with γ → γ ′ and v ∈ Supp(γ ′).

Hence, replacing γ with γ ′ if necessary, we may assume that v belongs to the
support of γ . By Lemma 2.3, we can write γ = γ1 + γ2 with αi → γi for i = 1, 2.
Therefore, we get that v belongs to the support of γi for some i ∈ {1, 2}. We can thus
write γi = v + γ ′

i for some γ ′
i ∈ F and so

αi = γi = v + γ ′
i ,

showing that v ≤ αi for some i ∈ {1, 2}, as desired. �

123



P. Ara et al.

It follows from Proposition 2.6 and [11, Theorem 2.7] that for any adaptable sepa-
rated graph (E,C) there exists a poset P, a partition P = Pfree  Preg, and a P-system
J such that M(E,C) ∼= M(J ). We close this subsection by explicitly computing
this system. Together with our main result in the next subsection (Theorem 2.11), this
allows us to express all the structure of a finitely generated conical refinement monoid
in terms of the information contained in a representing adaptable separated graph.

Let (E,C) be an adaptable separated graph and let (I ,≤) be the antisymmetrization
of E0 with respect to the path-way pre-order. In order to neatly express our result, we
first define a certain I -system and then we will show it is isomorphic to the system
corresponding to M(E,C).

Definition 2.7 Let (E,C) be an adaptable separated graph, let (I ,≤) be the antisym-
metrization of E0, and let I = Ifree  Ireg be the canonical partition of I = E0/∼ (see
Definition 1.4). Define an I -system J ′′ = (I ,≤, (G ′′

p)p∈I , ϕ′′
p,q (q < p)) as follows:

(1) For each p ∈ Ifree minimal, define G ′′
p := {0} (i .e. Mp = N). Now for each

non-minimal p ∈ Ifree , consider the abelian group G ′′
p generated by elements x p

w,
where w is a vertex in E such that [w] < p = [v p], subject to the relations

x p
w =

∑

e∈s−1
E (w)

x p
r(e), [w] ∈ Ireg, (2.1)

and

g(q,i)∑

j=1

x p
r(β(q,i, j)) = 0, (i = 1, . . . , k(q)) for q ∈ Ifree, q ≤ p. (2.2)

(2) For p ∈ Ireg, we let G ′′
p be the abelian group with generators x p

w, where w is a
vertex in E such that [w] ≤ p, and with relations (2.1) for every w ∈ E0 such that
[w] ∈ Ireg and [w] ≤ p, and (2.2) for every q ∈ Ifree with q < p.

Recalling that M ′′
p = G ′′

p if p ∈ Ireg and M ′′
p = N×G ′′

p is p ∈ Ifree, we now define
the connecting homomorphisms ϕ′′

p,q : M ′′
q → G ′′

p, for q < p, as follows:

ϕ′′
p,q(x

q
w) = x p

w, if q ∈ Ireg,

and

ϕ′′
p,q

(

n,
∑

w<vq

cwx
q
w

)

= nx p
vq +

∑

w<vq

cwx
p
w, if q ∈ Ifree

where n ∈ N, and cw ∈ Z are almost all 0. It is straightforward to show that J ′′ is an
I -system.

Remark 2.8 Note that, in case p ∈ Ireg, the relations in G ′′
p can be expressed in the

form x p
w = ∑

e∈X x p
r(e), for each X ∈ Cw and each w ∈ E0 such that [w] ≤ p.

The resulting group is therefore the Grothendieck group of the monoid M(EH ,CH ),
where (EH ,CH ) is the restriction of the separated graph (E,C) to the hereditary set
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H := {w ∈ E0 : [w] ≤ p}. However, this is not the case when p ∈ Ifree, due to the
fact that, in that case, we are only considering generators x p

w for w ∈ E0 such that
[w] < p.

We now recall the crucial steps in the construction of the canonical P-system asso-
ciated to a primely generated conical refinement monoid M , see [11] for details. The
set of primes of M is denoted by P(M). Let M be the antisymmetrization of M , i.e.
the quotient monoid of M by the congruence given by x ≡ y if and only if x ≤ y and
y ≤ x . We will denote the class of an element x of M in M by x . The monoid M is an
antisymmetric primely generated refinement monoid and an element p in M is prime
(resp. free, resp. regular) in M if and only if p is prime (resp. free, resp. regular) in M
([11, Lemma 2.1]).

For x, y ∈ M , we will write x <∗ y when x < y in M . We write x ≤∗ y if either
x <∗ y or x = y.

We are ready to define the P-system associated to a primely generated conical
refinement monoid M :

(1) We choose, for each prime p of M , a representative p of p in M , and we consider
the set P formed by the set of all the elements p obtained in this way. The chosen
poset is P endowed with the partial order ≤∗. Note that (P,≤∗) is order-isomorphic
with (P,≤) = (P(M),≤). We have a partition P = Pfree  Preg into free and regular
primes.
(2) For each p ∈ P, let Mp be the archimedian component of p. We separate two
cases:

(i) If p is regular then Mp is an abelian group (see e.g. [14, Lemma 2.7]), denoted
by Gp. In this case, we choose as the canonical representative of p the only
idempotent element lifting p, i.e. the unit of the group Mp.

(ii) If p is free, we define

G ′
p = {p + α : α ∈ M and p + α ≤ p}.

Then G ′
p is a group with respect to the operation ◦ given by:

(p + α) ◦ (p + β) = p + (α + β)

(see [14, Definition 2.8 & Lemma 2.9]). We have that Mp ∼= N × (G ′
p, ◦) ([11,

Lemma 2.4]). Moreover we can identify the group (G ′
p, ◦) with the subgroup

Gp := {(p + α) − p : p + α ∈ G ′
p} of the Grothendieck group G(Mp) and thus

we get Mp ∼= N × Gp ( [11, Remark 2.5]).

This gives the description of the family of abelian groups {Gp}p∈P for ourP-system.
Finally the maps ϕpq : Mq → Gp for q <∗ p ∈ P are defined by

ϕpq(x) = (p + x) − p ∈ Gp,

for x ∈ Mq . This completes the definition of the P-system JM = (P,≤∗,
(Gp)p∈P, ϕpq (q <∗ p)) canonically associated to M .
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Proposition 2.9 Let (E,C) be an adaptable separated graph, let I = Ifree Ireg be the
canonical partition of I = E0/∼, and letJ ′′ be the I -system ofDefinition 2.7. LetP =
Pfree Preg be the poset associated to M(E,C), and J = (P,≤, (Gp)p∈P, ϕp,q (q <

p)) be the corresponding P-system. Then there is an isomorphism of systemsJ ′′ ∼= J .
In particular

M(E,C) ∼= M(J ) ∼= M(J ′′).

Proof Since M(E,C) is a primely generated conical refinement monoid, there is a
P-system J such that M(E,C) ∼= M(J ). We follow the description of this P-system
given above.

The first thingwe do is to identifyPwith I . Let us define a relation� on I as follows.
For p, q ∈ I , set p � q if p < q or p = q ∈ Ireg. Observe that � is an antisymmetric
and transitive relation on I . Now define the monoid M(I ,�) as the commutative
monoidwith family of generators I andwith relations q = q+ p if p � q. Themonoid
M(I ,�) is an antisymmetric finitely generated refinement monoid, and its set of
primes is precisely I . Moreover, the regular (resp. free) primes of M(I ,�) are exactly
the elements in Ireg (resp. Ifree). Now, it is straightforward, using the defining properties
of an adaptable separated graph, to show that the antisymmetrization M(E,C) of
M(E,C) is isomorphic to M(I ,�), sending av ∈ M(E,C) to [v] ∈ M(I ,�). It
follows from the description of the poset P associated to M(E,C) and the above
observations that P, with its canonical partition P = Pfree  Preg, can be identified
with I , and its partition I = Ifree  Ireg. Hence, the construction in [11, Section 2]
gives rise to an I -system J = (I ,≤, {Gp}p∈I , ϕpq (q < p)).

It remains to identify the groups Gp, for p ∈ I , and the maps ϕpq : Mq → Gp for
q < p. First, we observe that every hereditary subset of E0 is C-saturated, because
|s−1
Ep

(v)| ≥ 1 for each non-sink v ∈ E0, and all subgraphs Ep of E are transitive.
Therefore it follows from [8, Corollary 6.10] that the order-ideal ofM(E,C) generated
by a hereditary subset H of E0 is generated as a monoid by {av : v ∈ H}.

The group G ′
p is defined for each p ∈ Ifree to be the set

{av p + α : α ∈ M(E,C) and av p + α ≤ av p },
endowed with the product (av p + α) ◦ (av p + β) = av p + (α + β). We want to show
thatG ′′

p
∼= G ′

p. To this end we define a map λp : G ′′
p → G ′

p by λp(x
p
w) = av p +aw for

w ∈ E0 with [w] < p. Clearly, the defining relations ofG ′′
p are preserved byλp , so this

assignment defines a group homomorphism. Now if α ∈ M(E,C) and av p +α ≤ av p ,
then α belongs to the order-ideal of M(E,C) generated by av p , and by the previous
remark, it follows that α must be a sum of elements of the form aw with w ≤ v p.
Now, it follows from the fact that av p is free that α is a sum of elements of the form aw

withw < v p. This shows that λp is surjective. In order to show that λp is injective, let∑
w∈A nwx

p
w − ∑

w′∈B mw′x p
w′ be an element in the kernel of λp, where A ∩ B = ∅,

and nw,mw′ > 0. It then follows that av p + ∑
w∈A nwaw = avp + ∑

w′∈B mw′aw′

in M(E,C). Let F be the free commutative monoid generated by E0. It follows
from Lemma 2.4 that there is γ ∈ F such that v p + ∑

w∈A nww → γ and
v p + ∑

w′∈B mw′w′ → γ in F . Note that γ = v p + γ ′, where γ ′ = ∑
w<v p lww

123



Refinement monoids and adaptable separated graphs

for some lw ≥ 0. Now we transform
∑

w∈A nwx
p
w using corresponding steps to the

ones used in the transformation v p + ∑
w∈A nww → γ , replacing each occurrence

of a step vq →1 vq + ∑g(q,i)
j=1 r(β(q, i, j)) for some i = 1, . . . , k(q) by the iden-

tity 0 = ∑g(q,i)
j=1 x p

r(β(q,i, j)) in G ′′
p, for each i = 1, . . . , k(q), if [w] = q ∈ Ifree

and q ≤ p, and each occurrence of a step w →1
∑

e∈s−1(w) r(e) by the identity
x p
w = ∑

e∈s−1
E (w)

x p
r(e) if [w] ∈ Ireg and [w] < p. By using this process, we arrive at

the identity
∑

w∈A nwx
p
w = ∑

w<v p lwx
p
w in G ′′

p. With the same reasoning, we obtain
∑

w′∈B mw′x p
w′ = ∑

w<v p lwx
p
w. So we get that

∑
w∈A nwx

p
w − ∑

w′∈B mw′x p
w′ = 0,

as desired. Finally the group Gp is naturally isomorphic to G ′
p through the map

G ′
p → Gp, av p +α �→ (av p +α)−av p , so we get the isomorphism G ′′

p
∼= Gp, which

sends x p
w to (av p + aw) − av p .

If p = [v] ∈ Ireg, then the archimedian component of av in M(E,C) is a group,
and Gp is defined to be this group. Let ep be the neutral element of Gp. Then one may
check as before that the map λp : G ′′

p → Gp given by x p
w �→ ep + aw for [w] ≤ p, is

a group isomorphism.
Finally it is straightforward to show that ϕp,q ◦ λ̃q = λp ◦ ϕ′′

p,q whenever q < p

in I , where λ̃q : M ′′
q → Mq is the map induced by λq . Hence we get an isomorphism

of I -systems J ′′ ∼= J . Since M(J ) ∼= M(E,C) ([11, Theorem 2.7]), we get the last
assertion in the statement. �

2.2 Representing finitely generated refinementmonoids

In this subsection, given any finitely generated conical refinement monoidM , we build
an adaptable separated graph (E,C) such that its associated monoid is isomorphic to
M .

To this end recall from Sect. 1 and [11, Sections 1 and 2] that, given any finitely
generated conical refinement monoid M , one canonically associates to it an I -system

J = (
I ,≤, (Gi )i∈I , ϕ j i (i < j)

)

such that M ∼= M(J ) ([11, Theorem 2.7]). Moreover, the I -system J is finitely
generated (meaning that I is finite and all the abelian groups Gi are finitely generated,
[11, Proposition 2.9]).

We now recall the definition ofM(J ) for a finitely generated I -systemJ , and some
terminology and facts concerning our monoids. For more details and background the
reader is referred to [11,12,14,15]. Let A(I ) be the lattice of lower subsets of the finite
poset I . Then we have M(J ) = ⊔

a∈A(I ) Ma , where Ma are the semigroups defined
as follows (adopting the notation from 1.1). For a ∈ A(I ), we define Ĥa = ⊕

i∈a Ĝi .
Let Ha be the subsemigroup of Ĥa defined by

Ha =
{

(zi )i∈a ∈ Ĥa : zi ∈
{

N × Gi for i ∈ Max(a)free
{(0, 0i )} ∪ (N × Gi ) for i ∈ afree \ Max(a)free

}

.
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We now define Ma := Ha/≡, where ≡ is the congruence on Ha generated by the
pairs (x +χ(a, i, α), x +χ(a, j, ϕ j i (α))), for x ∈ Ha , i < j ∈ Max(a) and α ∈ Mi .
(Here for k ∈ a and β ∈ Ĝk , we denote by χ(a, k, β) the element of Ĥa which has β

in the component Ĝk and the neutral element el ∈ Ĝl in all the other components Ĝl ,
l �= k.)

For i ∈ I , we define the lower cover L(I , i) of i in I as

L(I , i) := { j ∈ I | j < i and [ j, i] = { j, i}}.

Let p ∈ Ifree and let L(I , p) = {q1, . . . , qn} be its lower cover. The archimedian
component Mp of p has the form Mp = N × Gp for the finitely generated abelian
group Gp. Note that Mp = MI↓p by [12, Lemma 2.8].

Using the notation established in [12, Section 2], we denote by Jp the lower subset
of I generated by q1, . . . , qn , and let MJp be the associated semigroup, as described
above (see also [12, Corollary 2.4]). Then, by [12, Lemma 5.1], there is a surjective
semigroup homomorphism

ϕp : MJp → Gp

which is induced by the various maps ϕpq for q < p. Consequently, we obtain a
surjective group homomorphismG(ϕp) : G(MJp ) → Gp.We say that an element x in
G(MJp ) is strictly positive if it belongs to the image of the canonical map ιJp : MJp →
G(MJp ). We write G(MJp )

++ = ιJp (MJp ) for the set of strictly positive elements.
With the notation above, we provide the last proposition needed for Theorem 2.11.

Proposition 2.10 With the above notation and caveats, we have that the kernel of
G(ϕp) is generated by a finite number x1, . . . , xk of strictly positive elements.

Proof Since G(MJp ) is a finitely generated abelian group, we have that the kernel of
G(ϕp) is generated by a finite number of elements y1, . . . , ym . So, it is enough to
show that the subgroup generated by an element y in the kernel of G(ϕp) is contained
in the subgroup generated by two strictly positive elements in the kernel of G(ϕp).

Recall that L(I , p) = {q1, . . . , qn} is the lower cover of p. We assume that
q1, . . . , qr are free and that qr+1, . . . , qn are regular. Now, let y ∈ ker(G(ϕp)). Using
that the element y can be expressed as a difference of two elements from G(MJp )

++
and [12, Lemma 5.3], we see that there exist positive integers ni ,mi , i = 1, . . . , r ,
and elements gi ∈ Gqi , i = 1, . . . , n, h j ∈ Gqj , j = 1, . . . , r , such that

y = ιJp

( r∑

i=1

χqi (ni , gi ) +
n∑

i=r+1

χqi (gi )
)

− ιJp

( r∑

j=1

χq j (m j , h j )
)

Since ϕp is surjective and G(ϕp)(y) = 0, there exists z ∈ MJp such that

−ϕp

( r∑

i=1

χqi (ni , gi ) +
n∑

i=r+1

χqi (gi )
)

= −ϕp

( r∑

j=1

χq j (m j , h j )
)

= ϕp(z).
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Therefore, if we define the elements x1 = (
∑r

i=1 χqi (ni , gi )+
∑n

i=r+1 χqi (gi ))+ z ∈
MJp and x2 = (

∑r
j=1 χq j (m j , h j )) + z ∈ MJp , then we have ιJp (x1), ιJp (x2) ∈

ker(ϕp) ∩ G(MJp )
++, and y = ιJp (x1) − ιJp (x2). This shows the result. �

Theorem 2.11 Let M be a finitely generated refinement monoid, and let J be the
associated I -system, so that M ∼= M(J ). Then there is an adaptable separated graph
(E,C) such that

M(E,C) ∼= M(J ) ∼= M .

Proof The proof follows the lines of the proof of [12, Proposition 5.13]. This result
says that, if the natural map G(ϕp) : G(MJp ) → Gp is an almost isomorphism for
every free prime p, then there is a row-finite directed graph E such that M ∼= M(E).
(In particular, this holds if every prime in M is regular). We will only outline the point
in which the proof has to be adapted, recalling some of the relevant notation.

The proof works by induction. Assume that J is a lower subset of I and that an
adaptable separated graph (EJ ,C J ) of the desired form has been constructed so that
there is a monoid isomorphism

γJ : M(J ) → M(EJ ,C
J ),

where M(J ) is the order-ideal of M generated by J , sending the canonical semigroup
generators to the corresponding sets of vertices, as specified in [12, p. 113]. In case
J �= I , let p be a minimal element of I \ J , and write J ′ = J ∪ {p}. If p is a regular
prime or p is minimal, proceed as in the proof of [12, Proposition 5.13].

Assume that p is a non-minimal free prime. By Proposition 2.10, there are a finite
number of strictly positive elements x1, . . . , xk which generate the kernel of the map
G(ϕp). Now, using the same arguments as in the proof of [12, Proposition 5.13], we
may find elements x̂i ∈ M(EJ ,C J ), i = 1, . . . , k, which are non-negative integer
combinations of the vertices of EJ such that γJ (xi ) = x̂i for i = 1, . . . , k. Observe
that x̂i ∈ MγJ (Jp). Now, we introduce the adaptable separated graph (EJ ′ ,C J ′

). We

define E0
J ′ = E0

J {v p}, andC J ′ \C J ′
v p = C J , that is, the structure of (EJ ′,C J ′

) is the
same as the structure of (EJ ,C J ) when restricted to the vertices of EJ . For the new
vertex v p we defineC J ′

v p = {X (p)
1 , . . . , X (p)

k }, where each X (p)
i has the form described

in Definition 1.4(3), and the edges α(p, i), β(p, i, t), t = 1, . . . , g(p, i) are chosen
in such a way that the relations

v p = v p + x̂i (2.3)

are satisfied in the graph monoid M(EJ ′,C J ′
), for i = 1, . . . , k. (Here we set k(p) =

k).
By Proposition 2.6,M(EJ ′ ,C J ′

) is a primely generated conical refinementmonoid.
Its corresponding system has been determined in Proposition 2.9. In particular, we
know that the set of primes of M(EJ ′,C J ′

) is P(M(EJ ,C J )) ∪ {v p} and that v p is
a free prime in M(EJ ′,C J ′

). Consequently, we have that the archimedian component
M(EJ ′,C J ′

)[v p] of M(EJ ′,C J ′
) at v p satisfies
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M(EJ ′,C J ′
)[v p] = N × G ′

v p

for some abelian groupG ′
v p , and that themapφp : M(EJ ′,C J ′

)γJ (Jp) → G ′
v p induced

by the various semigroup homomorphisms

φ
p
q : M(EJ ′,C J ′

)γJ (q) → G ′
v p

y �→ (v p + y) − v p

for q < p is surjective. So, we obtain a surjective group homomorphism

G(φp) : G(M(EJ ′,C J ′
)γJ (Jp)) → G ′

v p .

In order to simplify the notation, we will write M(EJ ′,C J ′
)Jp instead of

M(EJ ′,C J ′
)γJ (Jp).

It is readily seen that the naturalmapM(EJ ,C J ) → M(EJ ′,C J ′
) defines amonoid

isomorphism from M(EJ ,C J ) onto an order-ideal of M(EJ ′,C J ′
); hence, we will

identify M(EJ ,C J ) with its image without further comment. Moreover, the compo-
nent M(EJ ′,C J ′

)Jp clearly coincides with the component M(EJ ,C J )Jp .
Now, the monoid isomorphism γJ : M(J ) → M(EJ ,C J ) restricts to a semigroup

isomorphism MJp → M(EJ ,C J )Jp , which induces a group isomorphism

γ̃Jp : G(MJp ) → G(M(EJ ,C
J )Jp )

of the Grothendieck groups. Set K := ker(G(φp)), and notice that the relation (2.3)
implies that γ̃Jp (xi ) = x̂i ∈ K for i = 1, . . . , k.

Hence, there is a commutative diagram with exact rows

0 −−−−→ 〈x1, . . . , xk〉 −−−−→ G(MJp )
G(ϕp)−−−−→ Gp −−−−→ 0

⏐
⏐
�

⏐
⏐
�γ̃Jp

⏐
⏐
�γp

0 −−−−→ K −−−−→ G(M(EJ ,C J )Jp )
G(φp)−−−−→ G ′

v p −−−−→ 0 ,

(2.4)

where γp : Gp → G ′
vp

is the map induced from the cokernel of the inclusion

〈x1, . . . , xk〉 ↪→ G(MJ ) to the cokernel of the inclusion K ↪→ G(M(EJ ,C J )Jp ).
Notice that γp is an onto map.

We now define the map

γJ ′ : M(J ′) → M(EJ ′,C J ′
)

extending the monoid isomorphism γJ : M(J ) → M(EJ ,C J ), and defining γJ ′ on
the component Mp ∼= N × Gp of M(J ′) by the formula

γJ ′(mp + g) = mv p + γp(g)

123



Refinement monoids and adaptable separated graphs

for m ∈ N and g ∈ Gp. By [11, Corollary 1.8], to show that γJ ′ is a well-defined
monoid homomorphism, it suffices to show that if q < p and y ∈ GM [q] = Mq then
γJ ′(y) + γJ ′(p) = γJ ′(ϕp,q(y) + p), that is, γJ (y) + v p = γp(ϕp,q(y)) + v p. For
x ∈ MJp , we may define a map

τq : Mq → G(MJp )

by τq(y) = (x+y)−x ∈ G(MJp ). Themap τq is a semigrouphomomorphismanddoes
not depend on the particular choice of x ∈ MJp .Moreover, we haveϕp,q = G(ϕp)◦τq .
Analogously, we have a map

τγJ (q) : M(EJ ′,C J ′
)γJ (q) → G(M(EJ ′,C J ′

)Jp ) = G(M(EJ ,C
J )Jp )

such that φv p

γJ (q) = G(φp) ◦ τγJ (q), and clearly γ̃Jp ◦ τq = τγJ (q) ◦ γJ |Mq .
Using this fact, and the commutativity of (2.4), we have that

γp(ϕp,q(y)) + v p = γp(G(ϕp)(τq(y))) + v p

= G(φp)(γ̃Jp (τq(y))) + v p

= G(φp)(τγJ (q)(γJ (y))) + v p

= φv p

γJ (q)(γJ (y)) + v p

= ((v p + γJ (y)) − v p) + v p

= v p + γJ (y) ,

as desired.
This shows that there is a well-defined monoid homomorphism

γJ ′ : M(J ′) → M(EJ ′,C J ′
)

sending the canonical semigroup generators of M(J ′) to the corresponding canonical
sets of vertices seen in M(EJ ′,C J ′

). In particular, γJ ′ is an onto map.
In order to prove the injectivity of γJ ′ , we can build an inverse map δJ ′ :

M(EJ ′,C J ′
) → M(J ′), as follows: on M(EJ ,C J ) we define δJ ′ to be γ −1

J , while

δJ ′(v p) := p. Notice that the only relations on M(EJ ′,C J ′
) not occurring already in

M(EJ ,C J ) are v p = v p + x̂i , i = 1, . . . , k, where γJ (xi ) = x̂i . Thus, δJ ′ (̂xi ) = xi .
But x1, . . . , xk generate the kernel of the map

G(ϕp) : G(MJp ) → Gp ↪→ Ĝ p = Z × Gp,

so that (p + xi ) − p equals 0 in Ĝ p. Hence, the relations p = p + xi hold in M(J ′),
for i = 1, . . . , k. Thus, δJ ′ is a well-defined monoid homomorphism, and it is the
inverse of γJ ′ . This completes the proof of the inductive step. �
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