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A proper description of ocean-atmosphere interactions is key for a correct understanding of cli-
mate evolution. The interplay among the different variables acting over the climate is complex,
often leading to correlations across long spatial distances (teleconnections). In some occasions, those
teleconnections occur with quite significant temporal shifts that are fundamental for the understand-
ing of the underlying phenomena but which are poorly captured by standard methods. Applying
orthogonal decomposition such as Maximum Covariance Analysis (MCA) to geophysical data sets
allows to filter out common dominant patterns between two different variables, but generally suffers
from (i) the nonphysical orthogonal constraint as well as (ii) the consideration of simple correlations,
whereby temporally offset signals are not detected. Here we propose an extension, complex rotated
MCA, to address both limitations. We transform our signals using the Hilbert transform and per-
form the orthogonal decomposition in complex space, allowing us to correctly correlate out-of-phase
signals. Subsequent Varimax rotation removes the orthogonal constraints, leading to more physically
meaningful modes of geophysical variability. As an example of application, we have employed this
method on sea surface temperature and continental precipitation; our method successfully captures
the temporally and spatially interactions between these two variables, namely for (i) the seasonal cy-
cle, (ii) canonical ENSO, (iii) the global warming trend, (iv) the Pacific Decadal Oscillation, (v) ENSO
Modoki and finally (vi) the Atlantic Meridional Modulation. The complex modes of MCA provide
information on the regional amplitude, and under certain conditions, the regional time lag between
changes on ocean temperature and land precipitation. This approach can be useful especially, but
not limited to, studies on the predictability of continental precipitation by other climate variables.
The method is freely available as an easy-to-use Python package.

1 introduction

The Earth’s climate system is extremely complicated and deciphering the web of interdependencies and influ-
ences of different climate subsystems is an involved challenge. With the increase of Earth observations thanks to
the progresses in remote sensing, the temporal and spatial resolutions of the observational data have increased
along with the amount of data to be processed. Data-driven dimensionality reduction methods are therefore
essential for climate studies, as they allow high-dimensional spatio-temporally resolved signals to be disaggre-
gated into the dominant patterns, while still capturing the subtle details of higher resolution data. As such,
Principal Component Analysis (PCA), or Empirical Orthogonal Functions (EOF) analysis as it is often referred
to in climate science, allows to identify the dominant internal structure of a climate variable, with a variety of
different available versions of PCA proving the popularity of such methods in climate science [1].

Climate phenomena with different expression in oceanic and atmospheric variables, such as the El Niño-
Southern Oscillation (ENSO), however, require the simultaneous analysis of several variables for a more compre-
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hensive description. In principle, multivariate PCA [2] makes possible to extract the patterns of co-variability of
more than one variable. However, multivariate PCA accumulates the variance and the covariance of variables
with very different variability in the same quantities. In consequence this may mask co-varying patterns as
low-variability patterns of one variable can be erroneously accumulated in very dominant structures of one of
the other, large-variability variables [3].

Maximum Covariance Analysis (MCA)1 avoids this masking by taking into account only the covariance between
two sets of variables. As such, it bears similarity to Canonical Correlation Analysis [4] which aims at maximising
the temporal correlation between both variables. When the number of grid points (i.e. number of time series)
is higher than the number of observations (i.e. number of time steps) and the data exhibits multicollinearity, as
it is often the case for climate data, CCA fails as it requires the individual variance matrices to be non-singular
unless regularised [5, 6]. In case the two fields of variables are identical, MCA reduces to PCA, the former thus
being a natural generalisation of PCA.

Yet the methods discussed above maximise instantaneous correlation and do not consider time-delayed signals.
To gain a deeper understanding of the dynamics of climate phenomena, however, it is necessary to systemati-
cally investigate time lags. A typical approach to tackle with this problem is to consider one variable set with a
time lag defined a priori followed by a MCA [7]. However, this requires knowledge of the time lag which may
vary from one location to another.

In this paper, we propose complex rotated MCA to systematically investigate the phase shift of two variables.
We generate complex time series where the real and imaginary parts are related to each other by the Hilbert
transform, known as the analytical signal, and decompose the covariance matrix in complex space, in analogy
to complex PCA [8, 9]. We also effectively reduce spectral leakage inherent in the Hilbert transform of non-
cyclic signals by a proper extrapolation of the signal beyond its boundaries. Finally, to relax the orthogonality
constraint of the obtained solutions, we apply Varimax rotation to the spatial patterns, which leads to more
localised solutions and thus facilitates their physical interpretation [10, 11].

To make the method readily accessible as a tool, we provide it as a Python package, called pymca, at https:

//github.com/nicrie/pycca. Due to the power and popularity of numpy and xarray, both classes form the
basis of pymca, so that their typical data format can be used directly as input for analysis. The package is
modularised in a way that provides the user free choice whether normal, complex, rotated or complex rotated
MCA is to be performed. The user can also choose between Varimax orthogonal rotation as well as Promax
oblique rotation. Further, if desired, standardisation of the input data is computed on the fly. The different
flavours work in the same way for PCA, if one instead of two fields is provided as input.

The remainder of the article is structured as follows. Section 2 introduces the methodology, where we briefly
discuss MCA (Sec. 2.1), complex MCA (Sec. 2.2) and rotated MCA (Sec. 2.3). Section 3 describes the data used
to test the method using first synthetic data (Sec. 3.1) and then climatic variables (Sec. 3.2). Section 4 presents
the results of both the synthetic (Sec. 4.1) and real-world experiments (Sec. 4.2). We conclude our study and
provide directions for future research in Section 5.

2 methods

2.1 Maximum Covariance Analysis

Let us consider two spatio-temporal data fields XA ∈ Rm×nA and XB ∈ Rm×nB representing two different geo-
physical fields s = {A,B}, both having temporal dimension m and spatial dimensions nA and nB, respectively.
In the following, we will refer to the temporal dimensions as the number of observations while we denote the

1 Sometimes referred to as Singular Value Decomposition (SVD) analysis. This name is unfortunate and should not be confused with the
actual factorisation technique of a real/complex matrix.

https://github.com/nicrie/pycca
https://github.com/nicrie/pycca
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spatial dimensions by the number of grid points. Assuming each time series to have zero mean, MCA then
aims at maximising

vTACvB, s.t. vTAvA = vTBvB = 1 (1)

where C denotes the temporal covariance matrix and vA, vB the spatial patterns, of both fields, respectively.
Mathematically, this can be achieved by applying the singular value decomposition (SVD) to the covariance
matrix,

C ∝ XTAXB = VAΣV
T
B , (2)

with the columns of the obtained singular vector matrices {Vs}s=A,B representing pairs of spatial patterns
describing the maximum amount of temporal covariance between both sets of variables. The entries of Σ ∈
RnA×nB along the main diagonal, the singular values σk, represent the covariance of each spatial pattern pair
k, providing a mean of estimating the relative importance of each pair via the covariance fraction2 γk

γk = σk

min(nA,nB)∑
j=1

σj

−1

. (3)

By projecting the data fields on their respective singular vectors, we obtain the corresponding temporal evo-
lution for each spatial pattern given by the columns of XsVs. Since the singular vectors are orthogonal, i.e.
VTs Vs = 1, s = A,B, the corresponding projections are uncorrelated. In this paper, we will refer to the spatial
patterns and their corresponding projections as empirical orthogonal functions (EOFs) and principal components
(PCs), respectively, according to the usual convention in climate science. The EOFs and the PCs associated with
a specific singular value σk is denoted as mode k.

2.2 Complex MCA

Propagating features or lagged signals could be detected by using a complex representation of the input fields.
In analogy to complex PCA [12, 13, 8, 9], we complexify the real input fields via the Hilbert transform to
construct the analytical signal X̂s defined as

X̂s = Xs + iH(Xs), s = A,B (4)

where H(·) denotes the column-wise applied Hilbert transform. The analytical signal constructed in that way
is a unique complex representation of the real signal, but whether or not it also represents a physical reality
depends on the frequency spectrum of the analysed signal. By construction, the frequency components of the
Hilbert transform are phase shifted by −π/2 with respect to those of the original signal. Therefore, for narrow-
bandwidth signals, the Hilbert transform has a simple physical interpretation i.e., it represents a signal which
arrives with a lag of one fourth of the typical period. If the signal consists of multiple dominating frequencies,
however, the interpretation of the phase is more elusive, as it cannot be simply associated to a single frequency.
Thus, the more narrow is the signal bandwidth, the more directly we can relate the phase to specific timings of
its Hilbert transform [14].

A fundamental issue in the computation of the Hilbert transform arises when non-stationary or drifting signals
are processed. Such signals are non-cyclic, and therefore, when the Fourier coefficients are calculated, strong
boundary effects can occur due to spectral leakage [14] (Fig. 1). This problem can be circumvented by detrending
the time series and considering only integer cycles as well as by applying window functions to the time series

2 Typically the squared covariance fraction defined as γ∗k = σ2k

(∑min(nA,nB)
j=1 σ2j

)−1
is considered for the relative importance of each

mode for MCA. However, we opt for the non-squared covariance fraction since it is conserved under rotation. Furthermore, this
measure is comparable to the solutions obtained by PCA, and in fact it is equivalent when XA = XB, for which MCA reduces to PCA
and the singular values equal the eigenvalues in PCA.
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(e.g. Hanning, Hamming etc.). However, this comes at the cost of information loss. Besides, such mitigation
techniques are particularly ill suited to deal with intensification effects associated to climate change (that include
not only noticeable trends on the mean level, but also increases in the amplitude of some periodic phenomena).
Therefore, it seems important to introduce techniques capable to dealing with non-stationary dynamics.

To mitigate spectral leakage across the boundaries of the time series, we extrapolate the time series at both
boundaries, to the past and to the future, using the optimised Theta model [15, 16], a special case of an
autoregressive integrated moving average model with drift, ARIMA(0,1,1)[17]. The Theta model is a relatively
simple yet well performing extrapolation method. While the forecast in itself actually works with non-cyclic
signals, seasonal features are considered via multiplicative classical decomposition, thus allowing cyclic and
non-cyclic signals to be extrapolated. This approach of handling the seasonal structure of a time series requires
the user to specify the dominant period of the signal, Ts, beforehand. For discrete time series Ts represents
the number of time steps needed to complete one cycle, that is, e.g. 365 for daily data considering an annual
cycle, or 24 for hourly data with a daily cycle (for more details we refer the reader to [16]). We then apply the
Hilbert transform to the extended series, so the spectral leakage is only important on the backward and forward
extensions of it. Finally, we extract the central part (removing the parts corresponding to the extension), that
correctly corresponds to the Hilbert transform of the original series. Using this approach, we effectively reduce
the edge effects of the Hilbert transform compared to a non-processed time series (Fig. 1). Notice that it is not
necessary that the extrapolation faithfully reproduces the characteristics of the original series; it just suffices
for our purpose that the extrapolated time series approximately continues the cyclic structure at the original
time series boundaries in order to reduce spectral leakage. Apart from tracking trends, the exact extrapolation
beyond the boundaries is not essential since its effects on the central part of the Hilbert transform are very
marginal at most.

After the described complexification of the original time series, we follow the steps of standard MCA, with the
difference that the transpose T incorporates the complex conjugate ∗ and the obtained EOFs and projections
PCs are complex and unitary. This allows us to calculate the spatial amplitude As and phase function Θs for
both fields, s = A,B,

As =(Vs � V∗
s )

�− 1
2 , (5)

Θs = arctan2 (Im(Vs)�Re(Vs)) , (6)

where � and � denote the element-wise multiplication/exponentiation and division, and arctan2 refers to the
two-argument arctangent (Appendix 6). Although this matrix notation seems somewhat cumbersome compared
to the more direct expression through scalar fields, it allows us to be coherent with the rest of the paper. The
phase function can be interpreted directly as a time lag if the corresponding (real) PC has a narrow-band
spectrum with just one dominant frequency. If the spectrum is rather broad-band or has several dominant
frequencies, an interpretation of the phase function is usually not straightforward. We note that the EOFs
derived from the SVD are only defined up to the sign. Therefore, the phase given by Equation (6) is also only
defined up to a factor of π. However, a change in sign will always be reflected in the projected PCs, so that
taking into account both, PC and phase function, the results are unambiguous.

2.3 Rotated MCA

While orthogonality is often a mathematically desirable property, it does not make a lot of sense from a purely
geophysical standpoint. Therefore, standard EOFs are difficult to interpret in the case of geophysical data. The
two major drawbacks of EOFs due to orthogonality are (i) they are dependent on the selected domain shape
and (ii) they tend to split certain geophysically meaningful patterns across several consecutive modes [10]. To
relax the orthogonality constraint to better accommodate the geophysical reality, the EOFs can be rotated, which
implies a linear transformation of the first r loaded3 EOFs Ls,r. This concept, which was originally developed

3 Loaded EOFs are weighted by the square root of the corresponding singular value.
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Figure 1: Example illustrating the Hilbert transform using the Theta extension. (a) Input signal s(t) = sin(t) + ct +

ε using an arbitrary constant c and Gaussian white noise ε (blue) as well as the extended time series via
forecasting/backcasting using the optimised Theta model [16]. (b) Hilbert transform H(·) of the original and
extended signal, respectively. (c) Comparison of both Hilbert transforms over the domain of the original series.
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in the context of PCA, can also be applied to MCA [11]. For this, we apply the rotation matrix R ∈ Cr×r to the
loading matrix Lr ∈ Cn×r, n = nA +nB,

Lr =

(
LA,r

LB,r

)
=

(
VA,r

VB,r

)
Σ
1/2
r , (7)

where r reflects the respective submatrices containing only the first r columns.

There are a number of different criteria for defining the rotation matrix R (see e.g. [10]), including the Varimax
orthogonal rotation [18] and the Promax oblique rotation [19], whose general aim is to regroup the obtained
patterns by approximating simple structures [20, 10]. Mathematically, Varimax rotation seeks to maximise the
summed variances of squared loadings which is achieved by (i) restricting rotated EOFs to be composed by only
a few numbers of grid points with high loadings while the remaining grid points exhibit near-zero loadings
and by (ii) limiting each grid point to contribute to only one rotated EOF while having near-zero loadings for
the other EOFs. This basically transforms the usually dense subspace obtained from MCA into a more sparse
solution leading to spatially compact structures which allow a clearer interpretation. Promax oblique rotation
builds upon the Varimax solution by raising the rotated, normalised EOFs to the power p > 1 while retaining
the original sign, thus further reducing low loading compared to high loading of the EOFs. Promax can be
understood as an oblique generalisation, with p = 1 yielding a Varimax orthogonal solution. Reference [19]
provides a value for p, which the authors consider appropriate for most applications (p = 4). In the extensive
review in Ref. [10] points out, however, that the Promax rotation using p = 2 consistently performs better,
which is what we will use in this paper. In order to keep the paper self-contained, we provide a brief summary
of both rotation criteria in Appendix 7.

The main difference between both rotation types is, that Promax allows rotated PCs to be correlated with each
other, with higher values of p typically leading to stronger correlations. In contrast, Varimax solutions yield
always uncorrelated PCs. For both, Varimax orthogonal and Promax oblique rotation, the obtained EOFs are
no longer orthogonal. The question which rotation method is the most suitable for a given analysis remains
unsettled in the literature. In reality, we do not expect geophysical signals to be perfectly uncorrelated, which
generally argues for applying an oblique rotation. Nevertheless, Ref. [21] has shown that Varimax orthogonal
and Promax oblique solutions perform similarly, in particular when the PCs obtained by the oblique solution
exhibit low linear Pearson correlations (e.g. < 0.15). In the presence of simple structures, however, Promax
oblique rotation performs better by effectively reducing the number of grid points that contribute to each mode,
hence further simplifying the EOFs and increasing correlations among the PCs [21]. Therefore, the decision on
how many EOFs to rotate and which rotation type to perform is a choice to be taken case-by-case and which
we will explore in Sec. 4.2.

3 data

To test our method, we apply it to artificial and real climate data. For the artificial data sets, we consider
complex MCA without rotation, as studies already exist that demonstrate the better interpretability and lower
sensitivity to sampling errors of the Varimax-rotated solutions compared to the unrotated EOFs. [22, 10, 23]. By
means of two synthetic experiments we seek to illustrate the advantages and caveats of complex MCA. In a first
experiment (Experiment I), we test the performance of complex MCA compared to standard MCA considering
time-lagged signals. In a second experiment (Experiment II), we investigate how the Theta extension can
improve the response of complex MCA to non-stationary processes. Finally, we apply complex MCA with
rotation to climatic data that we expect to have intrinsic geophysical cycles but are also affected by the non-
stationarity of climate change.
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Table 1: Models for data generation of Xs for experiment I and II. In order to obtain a 3D data cube for time t, longitude
λ and latitude ϕ, we stack 10 of the obtained (t, λ)-fields. For our final model, we consider the coordinate ranges
t = [0, 6π] and λ = [0, 2π] with λmax = 2π. Gaussian white noise is denoted by ε(t, λ) = N(0, 1).

Experiment I Experiment II

Field s Xs(t, λ) cs(λ) as ζs(t, λ) τs(λ) ζs(t, λ)

A cA(λ)ζA(t, λ) + ε(t, λ) sin2 aAλ 3.8 ∗ (2π)/λmax − cos (t+ τA) 2πλ/λmax (−2λ/λmax + 1) t

B cB(λ)ζB(t, λ) + ε(t, λ) sin2 aBλ 2.4 ∗ (2π)/λmax − cos (t+ τB) τA + π/2 (+2λ/λmax − 1) t

3.1 Synthetic Data

We create two 3D spatio-temporal data fields XA,XB with dimensions representing longitude λ and time t
adding the third spatial dimension by stacking multiple (λ, t) layers. The data generation model follows

Xs(t, λ) =cs(λ)ζs(t, λ) + ε(t, λ), s = A,B (8)

with a "zonal" modulation factor cs(λ) = sin2 asλ, where as can be interpreted as a spatial decorrelation factor
of field s, a temporal signal propagating in the −λ ("zonal") direction ζs(t, λ), and Gaussian white noise ε(t, λ)
with zero mean and variance of 1.
The idea of our first experiment is to highlight the advantage of using complexified fields compared to normal
MCA in the presence of moving patterns and phase-shifted, stationary fields. Therefore, we define both signals
as travelling waves ζs(t, λ) = − cos (t+ τs(λ)) assigning a different phase shift τA = 2πλ/λmax and τB =

τA + π/2 to the first and second field, where λmax = max λ (Fig.2a).
In our second experiment, we investigate the response of complex MCA to non-cyclical, non-stationary signals.
Since MCA seeks to maximise covariance through a new set of linear combinations, we restrict ourselves here
to linear trends given by ζ1/2(t, λ) = ± (−2λ/λmax + 1) t. For field A, the signal basically represents a positive
trend for low values of λ, gradually decreasing towards a negative trend for high values of λ. For field B, the
trend structure is reversed with a negative trend for low λ and a positive trend for high λ (Fig. 3a). For a better
overview, the signals of both experiments are summarised in Tab. 1.

3.2 Climate Data

We analyse monthly global sea surface temperature (SST) and continental precipitation using the extended
ERA5 data set from 1950-2019 [24] provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF) as a state-of-the-art replacement of the ERA-Interim reanalysis [25]. In general, trends and low
frequency variability of surface temperature and humidity perform well for 1979-2019 [24, 26]. In contrast, the
period from 1950 to 1978 suffers from less abundant observational data potentially reducing data quality. From
data inspection, we found an unusual increase in precipitation over East Africa for the early 50s, which was
found to be related to issues in the model initialisation process of soil moisture in some deep layers in that
time period [26]. Since the start and end point of the time series are of essential significance, in that they form
the starting point for the Theta extensions, we remove the first 10 years, providing us data from 1960 to 2019.
Furthermore, the SVD of the covariance matrix is a rather memory intensive numerical operation, which is why
we limit the domain of interest from 40◦ S to 60◦ N with a 1◦x1◦ spatial resolution, guaranteeing most of the
continents to be included into the analysis. In total, the fields of SST (excl. continents) and precipitation (excl.
sea) cover nA = 23 500 and nB = 12 860 time series, respectively. To align the different temporal scales of highly
variable precipitation and slow-varying SST and to filter out the high frequency signals, we smooth both data
sets with a 6-month moving average, for each month taking into account the 3 preceding and the 2 following
months. We choose this particular time window in favour to an typical odd-numbered smoothing window to
effectively filter out the biannual cycles present in the geophysical observations without .We normalise both
sets by dividing each grid point by its temporal standard deviation to give equal spatial importance. In a non-
standardised MCA analysis, regions of high rainfall, like the tropics, would dominate the covariance patterns,
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since annual rainfall in the mid-latitudes and subtropics is typically much lower. After normalisation, we
weight the data points located on the regular 1◦x1◦ grid according to their associated area on a sphere [27] by

multiplying each grid point with
√

cos
(
ϕj
)
, ϕj being the latitude at grid point j.

Monthly climate indices, used in this study for the sake of comparison, are downloaded from the websites of
the National Oceanic and Atmospheric Administration (NOAA; https://psl.noaa.gov/data/climateindices/
list/) and of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC; http://www.jamstec.
go.jp/virtualearth/general/en/index.html). All indices are smoothed using a 6-month moving average in
alignment with our data pre-processing. We further center and max-normalise all indices for better comparison
with our obtained PCs.

4 results

In the following, we discuss the results from the synthetic experiments before investigating the results of the
analysis of SST and continental precipitation.

4.1 Synthetic Data

experiment 1: lagged signals The first mode of standard MCA (denoted by subscript std) describes
14.7% of the shared covariance, followed by the second mode with 14.4% (Fig. 2b). We recognise that the
spatial patterns described by EOF 1 represent only part of the travelling waves of field A and B, with another
part of it given by EOF 2 (Fig. 2a,b). However, this is not surprising: (i) Standard MCA seeks to maximise
temporal correlation between field A and B. Considering that a phase shift of ±π/2 relates the trigonometric
functions via4 cos

(
α± π2

)
= ∓ sinα, the two functions cosα and cos

(
α± π2

)
are uncorrelated over full cycles

since both form two orthogonal base vectors. In such a situation, standard MCA will be unable to extract the
physically meaningful signals because the sine and cosine modes are uncorrelated. (ii) In our experiment, both
fields contain phase shifts covering one entire period of 2π. Consequently, for each time-lagged signal in field
A, there is a correlating signal in field B, such that the entire range of signals can be detected by standard
MCA. Orthogonality of the singular vectors and respective uncorrelation of the PCs forces the patterns to be
separated into two distinct modes following a sine and a cosine, which are perfectly uncorrelated for a full
number of cycles and thus orthogonal. The remaining modes do not show any more distinct patterns, basically
representing noise.

In comparison, complex MCA (denoted by subscript com) reliably shows the underlying (lagged) cosine for
both amplitude fields of A and B (Fig. 2c). We have not used the Theta model extension here, since the signals in
this experiment consist of integer periodic time series. The respective phase functions both indicate decreasing
phase shifts with increasing longitude, clearly indicating a moving pattern. The regions which correlate with
the real part of the PC (Fig. 2c; center) are depicted in blue while regions exhibiting an anti-correlating signal
(phase shifted by ±π) are shown as red. In that sense, the "colours" white and black represent signals with a
phase shift of ±π/2. The described correlation of mode 1 is 22.8%. It makes more sense though, to compare the
actual singular values against each other, since they provide an absolute measure of the described covariance.
We note that σcom,1 > σstd,1+σstd,2 (Tab. 2) indicating that the complex mode 1 accounts for more correlation
than the combined mode 1 and 2 of the standard solution. This makes sense, since EOFs 1 and EOFs 2 are
reduced in regions which are phase shifted with respect to the associated PCs 1 and PCs 2. Although in general
the singular values of complex MCA tend to be larger than their non-complex counterparts even for purely
Gaussian white noise signals, we stress that the difference between σcom,1 and σstd,1 + σstd,2 is much larger
than the observed increase for white noise (Tab. 2). As a pitfall of complex MCA, however, it should be noted
that regions whose spatial amplitude function is very low, tend to have noisy phase function values. In our
experiment, this is obvious for the different interspaces of both fields where cs(λ) ≈ 0 and the associated phase

4 This is a special case of cos(α+β) = cosα cosβ− sinα sinβ.

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
http://www.jamstec.go.jp/virtualearth/general/en/index.html
http://www.jamstec.go.jp/virtualearth/general/en/index.html
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Table 2: Singular values of MCA (Standard), complex MCA (Complex) and Theta extended complex MCA (Complex +
Theta) obtained for purely white noise random fields (Noise) and the synthetic experiments described in Sec-
tion 4.1 (Experiment I and II). Covariance fraction γk for mode k (in % shown within parenthesis) is calculated
according to Eq. (3). Some exemplary modes (bold) are depicted in Fig. 2 and 3. Total cumulated covariance is
shown in the last row.

Noise Experiment I Experiment II

Mode Standard Complex Standard Complex Standard Complex Complex + Theta

σ1 13.7 (3.6) 41.6 (4.1) 73.0 (14.7) 288.4 (22.8) 2852.8 (88.7) 5712.6 (85.4) 2925.8 (74.9)
σ2 12.4 (3.3) 37.9 (3.7) 71.2 (14.4) 38.6 (3.1) 13.4 (0.4) 39.7 (0.6) 39.8 (1.0)
σ3 12.4 (3.3) 36.6 (3.6) 13.2 (2.7) 37.6 (3.0) 12.7 (0.4) 38.9 (0.6) 38.9 (1.0)
...

...
...

...
...

...
...∑

j σj 376.1 1015.1 495.4 1265.0 3215.9 6692.7 3905.4

function does no longer correspond to the global, migrating tendency. In general, it is therefore advisable not
to consider regions with low amplitudes.

experiment 2: trends and non-cyclic signals As discussed in Sec. 2.2, non-periodic behaviour usually
leads to spectral leakage at the boundaries. In our experiment, this effect is clearly evident for both PCs of the
complex MCA (denoted by subscript com) (Fig. 3b). The Theta extended complex MCA (denoted by subscript
thc), on the other hand, successfully mitigates the boundary effects of the PCs (Fig. 3c), where we have set
the Theta period Ts = 1 as the time series have no seasonality. Nevertheless, the spatial patterns are similar
for both methods and can hardly be distinguished visually. The amplitudes in the left and right edges of the
EOFs show the strongest signal, which weakens and disappears towards the centre, where the signal can not be
distinguished from the noise ε(t, λ) since ζs(t, λ ≈ λmax/2) ≈ 0 for all t ∈ [0, 6π] (Fig. 3a). In our example, the
phase functions clearly show correlating (phase shifted by 0; blueish) and anti-correlating (phase shifted by ±π;
redish) regions represented by PCs(θ = 0) and PCs(θ = π) (Fig. 3a) where θ denotes the phase shift applied
to the complex PC. Although the Examining the singular values, we notice that σcom,1 >> σthc,1 ≈ σstd,1

(Tab. 2), indicating the increased covariance due to the boundary effects of the non-treated Hilbert transform .
Notice that this implies that the boundary effect created by the Hilbert transforms have a strong influence on
the existing correlations and, depending on their magnitude, can be reflected in one of the first modes, thus
completely distorting the obtained modes and misleading the interpretation of the results.

More generally, any trend has a broadband frequency spectrum and thus the analytical signal constructed by
the Hilbert transform has not a physical interpretation in terms of characteristic frequencies. Therefore, the
phase function cannot be interpreted in terms of a physical phase shift. The only exception is for θ = 0;±π
(corresponding to a phase function depicted as blue/red) since relative phase shifts of that order basically repre-
sent correlating and anti-correlating signals disregarding the mathematical nature of the phase. A fundamental
consequence of this is that for modes whose PC is broadband (e.g. a trend), only correlating (θ ≈ 0) as well
as anti-correlating (θ ≈ ±π) patterns should be considered. Furthermore, this aspect can also lead to an (non-
meaningful) increase of the singular value and thus of the relative importance of the mode if the proportion of
non-integer phase-shifted signals of this mode is high.

4.2 Climate Data: SST & Continental Precipitation

We apply Theta extended, complex MCA to SST and continental precipitation using a Theta period Ts = 12

to account for the seasonal cycle. The dimensionality of the problem can be greatly reduced with the first 72
modes describing 99% of the existent (lagged) covariance (Fig. 41). In order to simplify the obtained patterns
and to increase the physical meaning of the results (Sec. 2.1), we rotate the first 150 modes representing 99.82%
of the existing lagged cross-covariance. Our decision to rotate 150 modes is motivated by the idea of retaining



4 results 10

Figure 2: Results of Experiment I. (a) Illustration of synthetic data fields A (left) and B (right) showing the temporal
evolution Xi(t, λ) for some selected longitudes λ (grey) and the smoothed 10-step moving average (greenish,
yellowish), respectively, (top) and the associated damping patterns ci(λ) (bottom) for both fields, respectively.
(b) Mode 1 and 2 of the standard MCA solution showing the EOFs of field A (left) and field B (right) as well
as their respective PCs (center). (c) Mode 1 of the complex MCA solution showing the spatial amplitude (top)
and phase functions (bottom) for field A (left) and B (right) as well as the real part of the corresponding PCs
(center). The phase function indicates the phase shift that has to be applied to the time series of a specific grid
point in order to obtain the non-shifted PC (shown in center bottom). Percentages in parenthesis represent the
covariance fraction γk. All EOFs and spatial amplitude functions are max-normalised for the sake of readability.
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Figure 3: Results of Experiment II. (a) Illustration of synthetic data fields A (left) and B (right) showing the temporal
evolution Xs(t, λ) for some selected longitudes λ (grey) and the smoothed 10-step moving average (greenish,
yellowish), respectively, (top) and the associated damping patterns cs(λ) (bottom) for both fields, respectively.
(b) Mode 1 of the complex MCA solution showing the spatial amplitude (top) and phase functions (bottom) for
field A (left) and B (right) as well as the real part of the corresponding PCs (center). (c) As in (b) but for Theta
extended complex MCA. Percentages in parenthesis represent the covariance fraction γk. All spatial amplitude
functions are max-normalised for the sake of readability. Phase functions show regions correlating with PCs
1(θ = 0) (blueish) and PCs 1 (θ = π) (redish).



4 results 12

Figure 4: Described covariance of the first 300 modes of complex MCA applied to SST and continental precipitation
showing the (a) individual and (b) accumulated share. Dashed line estimates the boundary of suspected "noisy"
modes.

as much information as possible without including the noise which dominates the higher modes. Since we
observe a slight drop in singular values at about the mode number 100 followed by an exponential decrease in
singular values (Fig. 4b), we guess that there is a negligible information content in higher modes. Moreover, the
quality of the reconstructed signal is rather independent of the exact number of rotated modes, with 150± 50
yielding basically identical results for the first 6 modes for both Varimax orthogonal and Promax p = 2 oblique
rotation. Therefore, we will restrict our discussion in the following to the first 6 modes. In order to address the
question of the rotation method to be chosen, we note that Promax oblique rotation performs better when simple
structures are present and correlations among PCs are high [21]. We expect our first mode to be dominated
by the shared dynamics of the seasonal cycle of both SST and continental precipitation, which is indeed what
we find for both Promax (not shown here) and Varimax solution (Fig. 5a). This mode, however, is fairly global
and as such does not represent a simple structure. Furthermore, we observe that the correlations among the
first six Promax-rotated PCs range from -0.15 to 0.13 only, underlining that the Promax oblique solution is close
to orthogonal and differences to the Varimax solutions only marginal, at least for the first six modes. Since
the Promax oblique solution seemingly does not provide a better results, we opt for the somewhat simpler
Varimax orthogonal rotation. In the following, we will discuss the Varimax-rotated modes by investigating the
real part of the PCs, the spatial amplitude and phase functions for both fields, SST and continental precipitation,
respectively.

derived complex patterns In our representations of the modes, we remove non-significant, "noisy" phase
values (see Sec. 4.1) by masking out regions in the spatial amplitude and phase function exhibiting a max-
normalised amplitude of < 0.25.

Mode 1 describes 62.7% of the covariance between SST and continental precipitation clearly showing the annual
cycle (Figs. 5a and 9a). As expected, the annual cycle shows itself in both variables on a global scale, with
the exception of the equatorial ocean, where the seasonal SST variations are only weak. The phase function
correctly identifies the anti-correlation between the northern and southern oceans. It also suggests that the
eastern equatorial Pacific and the equatorial Indian Ocean nevertheless show a weak seasonal signal, which is,
however, positively phase shifted relative to the rest of the southern ocean. On the continents, precipitation
dominates mainly in monsoon areas and the tropics. The phase function illustrates the division into boreal and
austral summer rainfall dominated regions and identifies corresponding transition zones, as e.g. over the South
American rain forest and central North America. It also highlights some interesting dynamical regions which
stand out of their respective environment, namely, the West and East coast of North America, the Mediterranean
region, as well as the East Asian monsoon region in China.

The obtained mode provides an instructive example to highlight the benefits of the complexified approach due
to the mode’s corresponding narrow-band frequency spectrum (Fig. 9a). Using the dominant periodicity of
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mode 1, T1 = 12mon, the interpretation of a phase shift θ, given by the spatial phase function, as time lag τ
is straightforward and can be computed via τ = T1

2πθ. Doing this for some exemplary locations (denoted by
# in Fig. 5a), we observe that the seasonal SST maximum of the North Pacific follows the one in the South
Pacific by 196 days, that is, being almost perfectly anti-correlated (Fig. 6). The relative time shift of 81 days of
the SST maximum in the Indian Ocean and 86 days at Poyang lake, China, is close to 3 months and as such
translates to a phase shift of about −π/2, something that can not be picked up as feature within one mode when
using standard MCA. It should also be noted that although the sampling frequency of SST and precipitation is
monthly, the phase function is continuous and thus allows to infer time lags on shorter time scales. This is, for
instance, the case for the seasonal precipitation maximum in Darwin, Australia, which precedes the seasonal
SST maximum of the South Pacific by 27 days.

Mode 2 (7.0%) can be clearly associated to the ocean-atmosphere phenomenon of El Niño - Southern Oscillation
(ENSO) (Fig. 5b and 9b). During El Niño, higher SST in the central and eastern Pacific and lower SST in the
western Pacific positively correlate with heavier rainfall within a narrow band along the west coast and the
southeastern coast of South America [28], the east and west coasts of North America [29], the East Asian
monsoon region [30] and the Horn of Africa [31]. At the same time, precipitation decreases in northern South
America [28], Oceania [32], South Africa [33] and in the Indian monsoon region [34]. During La Niña (the
counterphase of El Niño), these correlations are reversed.

Our result also shows the interrelationship of Pacific ENSO with the Indian Ocean [35], the South China Sea [36]
and the Tropical North Atlantic [37, 38, 39, 40] in accordance with previous studies. Interestingly, it was found
that the ENSO related SST teleconnections in the remote oceans often occur with some delays, with the Indian
Ocean typically peaking ∼ 3 months and the South China Sea and tropical North Atlantic ∼ 5 months after the
ENSO SST [37, 36, 38]. The mechanism behind these lagged responses, known as the atmospheric bridge, is
based on the characteristic atmospheric circulation during El Niño which causes changes in cloud cover and
evaporation over the remote oceans, leading to increased net heat flux and SSTs [41, 36]. However, due to the
broadband frequency spectrum of the SST PC (Fig. 9b), with most of the energy contained at four different
peaks around 2.5, 3.5, 5 and 11 years, the phase cannot simply be translated into a time shift. Nevertheless,
the tropical North Atlantic clearly exhibits more positive phase values compared to the Pacific El Niño region,
therefore indicating to be positively time shifted relative to the Pacific.

Mode 3 (6.9%) represents global warming and the associated changes in precipitation patterns (Fig. 7a). The
warming SST patterns clearly emerge in all major ocean basins, although more pronounced in the northern
hemisphere due to the asymmetric response of the northern and southern trade winds to global warming [42].
We also note a pronounced warming of the western part of both, the Pacific and the Atlantic basins, both
regions of enhanced ocean heat transport [42]. Similar to these oceanic trends, we also observe global trends
in the precipitation patterns, with decreasing rainfall over the Mediterranean, South Africa, Australia, South
America and parts of western North America. There seems to be also a decrease of rainfall over the west Asian
monsoon region. In contrast to that, the results suggest increased precipitation over the Indian monsoon region
as well as some localised regions in Europe, South and North America. These results are largely in agreement
with studies based on observational data [43] and, more recently, on CMIP5 climate simulations [44]. Finally,
it should be stressed, that both PCs, SST and precipitation, do only provide a meaningful interpretation for
phases θ ≈ 0;±π (correlation, anti-correlation), due to their broadband frequency spectra (Fig. 9c). For phase
shifts different from that, no clear conclusions can be drawn, as it is the case e.g. for equatorial Africa where
the phase shift is approximately +π/2.

Mode 4 (1.6%) shows a slow-oscillating pattern of SST in the northeastern Pacific correlating with localized
precipitation patterns distributed over all continents (Fig. 7b). The typical spatial SST pattern is known as
the Pacific Decadal Oscillation (PDO) [46] and a well-established climate index. A combination of various
processes originating in the tropics and extra-tropics has been proposed as the physical source of the PDO [47],
with ENSO and PDO likely responding to the same forcing function [48]. Our analysis, however, provides
a mean to disentangles ENSO and PDO related precipitation patterns, which are often similar, though reveal
important differences e.g. for Australia, the Indian subcontinent or the African Sahel region. Yet, care must be
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(a) Mode 1 representing the seasonal cycle. Red circles (#) mark North Pacific (170◦ E, 15◦ N), Indian Ocean (70◦ W, 0◦ N) and South
Pacific (160◦ E, 20◦ S) for SST and Poyang lake, China (116.3◦ W, 29.1◦ N), Phnom Penh, Cambodia (104.9◦ W, 11.6◦ N) and Darwin,
Australia (130.8◦ W, 12.5◦ S) for precipitation. The phase shifted PCs of these locations are examined in Fig. 6.

(b) Mode 2 compared to the Oceanic Niño Index (ONI; · · ·) provided by NOAA Climate Prediction Center as described in Section 3.2.

Figure 5: Complex Varimax-rotated MCA of SST (left) and continental precipitation (right) showing (a) Mode 1 and
(b) Mode 2 with their relative importance indicated by the covariance fraction, respectively. The amplitude
functions (top) show the regions predominantly contributing to the mode of the respective variable. The phase
functions (centre) depict the relative phase shifts with respect to the corresponding PC (bottom), where 0 (blue)
means correlation and ±π (red) shows anti-correlation. For each grid point, the corresponding PC can be
computed from the given phase value by applying the negative phase shift to the PC of phase 0 (bottom). The
amplitude functions, PCs and indices shown are all max-normalised for the sake of comparability. In both
amplitude and phase function regions with a max-normalised amplitude below 0.25 are masked out.
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Figure 6: Comparison between 6-month moving average of ERA5 SST and continental precipitation (dotted lines) and
the reconstructed time series based on mode 1 only (thick lines) for the exemplary locations defined in Fig. 5a
covering the years 1980 to 1985. Days in legend refer to the time shift τ of the individual locations with respect
to the SST of the South Pacific derived from the spatial phase functions (Fig. 5a.)

taken when interpreting regions which have a phase shift different from 0,±π. Although the PDO exhibits a
strong spectral energy at about 35 yr, the mode contains also important features at about 1 yr to 4 yr (Fig. 9d)
making the phase interpretation physically less clear.

Mode 5 (1.6%) describes an oscillating SST anomaly mainly limited to the central Pacific (Fig. 8a and 9e)
describing El Niño Modoki [49] and represented by the El Niño Modoki Index (EMI). Higher SST in the central
Pacific and lower SST in the east Pacific correlate with reduced precipitation in the East Asian monsoon region
[50], Australia [51], parts of South America [28] and South Africa [52] and vice versa. Our result suggests that
continental rainfall in certain regions of Africa, Arabia and the Americas are time-delayed El Niño Modoki
expressions, albeit with weak amplitude.

Mode 6 (1.1%) is characterised by a SST pattern concentrated to the tropical and subarctic North Atlantic (Fig. 8b
and 9f). The SST pattern, representing the Atlantic Meridional Mode (AMM), is the dominant coupled ocean-
atmospheric phenomenon in the tropical Atlantic [54] and its impact on precipitation of the African Sahel zone,
Central America and the northern South American continent are well known [55, 56]. Only very recently, [57]
found a link between the AMM and Indian summer monsoon rainfall, which they used to improve precipitation
forecast. In addition, our result suggests more tele-connections between the AMM and precipitation variability
over the Mediterranean, East Africa, the Congo basin, North America and the East Asian monsoon region,
providing much potential of advancing local rainfall predictions in those areas. Due to the missing intrinsic
time scale with no clear periodicity (Fig. 9f), only correlating and anti-correlating patterns should be interpreted.
However, most of the regions identified by this mode satisfy being correlated or anti-correlated.

5 conclusion

Understanding the entangled and dynamical climate system is a challenging task, often requiring advanced sta-
tistical methods. Finding correlations among a set of different climate variables is complicated by the frequently
present lagged responses of different variables to the same forcing. Assuming the processes of interest possess
a cyclical nature, we show that complex rotated MCA provides a practical tool to single out such modes from
a high-dimensional data space.

By taking into account the spatial amplitude and phase function of the obtained complex modes, we obtain a
simple approach to examine otherwise complicated spatial and temporal structures. Our synthetic experiments
highlight that, in the case of phase-shifted signals, complex MCA can capture a more comprehensive and
complete picture of the correlations present. However, they also show the sensitivity of the Hilbert transform
to the boundary conditions of the given time series, e.g. when the time series clearly consists of a non-integer
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(a) Mode 3 compared to the mean SST field (SST; · · ·) based on latitude weighted SST smoothed with a 6-month moving average as
described in Section 3.2.

(b) Mode 4 compared to the Pacific Decadal Oscillation (PDO; · · ·) [45] as described in Section 3.2.

Figure 7: As in Fig. 5 but showing (a) Mode 3 and (b) Mode 4.
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(a) Mode 5 compared to the ENSO Modoki Index (EMI; · · ·) [49] as described in Section 3.2.

(b) Mode 6 compared to the Atlantic Meridional Modulation (AMM; · · ·) [53] as described in Section 3.2.

Figure 8: As in Fig. 5 but showing (a) Mode 5 and (b) Mode 6.
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Figure 9: Magnitude spectrum of the first 6 PCs considering only the real part and using a Hanning window.

number of cycles and/or in the presence of trends. Since the stationary assumption does often not hold anymore
for many processes because of climate change, time series should generally be pre-processed when applying
complex MCA.

Extending the time series via the optimised Theta model mitigates the effect of spectral leakage and produces
physically reasonable PCs. This procedure allows us to resolve trends and non-cyclic signals, although for
trends the obtained spatial phase function have a simple physical interpretation only for correlating and anti-
correlating patterns. Nevertheless, this approach provides a mean of applying complex MCA without the need
to detrend the time series of interest. Moreover, excluding the first mode, the original fields can be reconstructed
without the seasonal cycle, providing an advanced tool to preprocess time series containing non-stationary
seasonal features.

A general caveat in complex MCA is the fact, that the phase function loses its interpretation for PCs with
a broadband frequency spectrum. But although the spatial phase function has not always a simple physical
interpretation for most of the modes due to their broadband frequency spectrum, complex MCA nevertheless
can always be interpreted for the correlating and anti-correlating patterns.

Applying complex rotated MCA to SST and continental precipitation, we clearly identify the main shared
dynamics in both variables, namely (i) the seasonal cycle, (ii) the canonical ENSO, (iii) the trends associated
to global warming (iv) the PDO, (v) ENSO Modoki and (vi) the AMM. We also retrieve phase shifted signals
between the two climate variables. While for the seasonal cycle these phase shifts can directly be translated
into a time shift, the remaining modes generally do not lend itself to such a simple interpretation due to their
broadband frequency spectra. However, even without a precise equivalent as time lag, the phase function
provides a mean to identify regions of lagged correlations, for instance, between the SST of the Pacific and
the tropical North Atlantic during El Niño events. Many of the obtained correlation patterns in SST and
continental precipitation had already been evidenced by a multiplicity of different, partly regional studies. The
great advantage of complex rotated MCA is that it allows to obtain all those patterns by a single analysis of
the correlation of two geophysical variables, in a more compact and easy-to-interpret way. Besides, our results
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also point out to new ocean-atmospheric teleconnections, that, to our knowledge, have not been reported, most
notably for the PDO and the AMM.

Regarding future applications of complex rotated MCA, this method has the potential for shedding light in
the investigation of seasonal and sub-seasonal phenomena, as well as for spatially propagating patterns. As
future work, we plan to analyse the Madden-Julian oscillation. Besides, complex rotated MCA could be used to
evidence other connections between less studied variables, as for instance sea surface salinity, sea surface height,
soil moisture, winds, etc, what has the potential of evidence new phenomena and novel aspects of existing or
new teleconnections.
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Appendix

6 definition of arctan2

Every non-zero complex number in Cartesian coordinates, z = x+ iy, can be transformed into Polar complex
coordinates, z = aeiθ, where a = (x2 + y2)1/2 is the amplitude, and θ the phase of z. For each z 6= 0, the phase
is only defined up to an integer multiple of 2π, resulting in an infinite number of possible values. In order to
construct a well-defined function θ(x,y), one typically limits the phase θ to (−π,π]. Then, the two-argument
arctangent function arctan2(y, x) converts the slope y/x to the Polar phase via:

θ = arctan2(y, x) =



arctan
(
y
x

)
if x > 0

arctan
(
y
x

)
+ π if x < 0 and y > 0

arctan
(
y
x

)
− π if x < 0 and y < 0

+π2 if x = 0 and y > 0

−π2 if x = 0 and y < 0

undefined if x = 0 and y = 0

7 finding the rotation matrix R

Let us assume a complex loading matrix Lr ∈ Cn×r containing only the first r columns (modes) which are to
be rotated and n denoting the number of grid points. The number of grid points may be the sum of the grid
points of two different fields n = nA+nB as it is the case for MCA and described by Equation (7) or simply the
total number of grid points if only one field is considered as it is for PCA. In the following, we will drop the
subscript r in order to keep the notation simple. For this section, ∗ refers to the conjugate transpose of a matrix
and |∆| denotes the absolute value of a complex number.

7.1 Orthogonal Varimax rotation

The goal of Varimax rotation is to approximate simple structures [20] of the EOFs which is achieved by simpli-
fying the columns of L via an orthogonal rotation R. For this purpose, [18] defines the simplicity Sk,

Sk =
1

n

n∑
j=1

(
|̃ljk|

2
)2

−
1

n2

 n∑
j=1

|̃ljk|
2

2 , k = 1, . . . , r (9)

which measures the variance of the squared amplitude of the rotated loadings l̃jk. With increasing variance,
the squared amplitudes |̃ljk|

2 either become low or large, thus increasing simplicity. The normalised Varimax
criterion S then reads

S =

r∑
k=1

 1
n

n∑
j=1

(
|̃ljk|

2

h2j

)2
−
1

n2

 n∑
j=1

|̃ljk|
2

h2j

2
 , (10)

where hj =
(∑r

k=1 |ljk|
2
)1/2 represents the communality of grid point j, which is the amount of variance of the

jth variable accounted for by the r retained modes. Subsequently, the normalised Varimax-rotated EOFs L̃n are
the solution to

L̃n = H−1LR s.t. argmax
l

(S), (11)
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with the communality matrix H ∈ Rn×n whose elements are given by diag(h1, . . . ,hn). Equation (11) can
be solved by an iterative process, in which the EOFs are rotated in pairs in order to maximise S. Finally, the
de-normalised Varimax-rotated EOFs can be computed via L̃ = HL̃n.

7.2 Oblique Promax rotation

Achieving simple structures with Promax is done via an oblique Procrustes transformation [58]. Any target
matrix of rotated EOFs T , can always be approximated from a base matrix B via a linear transformation R,

T = BR+ E, (12)

where E is an error matrix. Minimising trace(E∗E) yields the complex Procrustes equation,

R = (B∗B)−1 B∗T . (13)

The basic assumption of Promax is that an Varimax orthogonal rotation is a reasonable approximation to an
optimal oblique solution. Therefore, the base matrix is chosen to be B = H̃−1L̃ whose entries are normalised
by the Varimax communalities h̃j =

∑r
k=1 |̃ljk|

2. Then, the Promax equation defines the elements of the target
matrix T ,

tjk = |b+jk|
p+1/b+jk, (14)

where + denotes the max-normalised entries given by b+jk = bjk/maxj |bjk|. The power parameter p thus
defines the strength of the Promax operation, while the sign remains unchanged. Using Equation (13), the
normalised Promax-rotated EOFs are given by

L̃P =H̃−1L̃RD

=H̃−1L̃

[(
L̃∗H̃−2L̃

)−1
L̃∗H̃−1T

]
D, (15)

where the normalisation matrix is given by D2 = diag
(
RTR

)−1.
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