
 1 

“This document is the Accepted Manuscript version of a Published Work that appeared in final form in 
Acc. Chem. Res., copyright © American Chemical Society after peer review and technical editing by the 
publisher. To access the final edited and published work see 
https://pubs.acs.org/doi/10.1021/acs.accounts.1c00480.” 

Nickel-catalyzed Reductive Carboxylation and 

Amidation Reactions  

Andreu Tortajada1,3,‡, Marino Börjesson1,3,‡ and Ruben Martin1,2,*. 

1Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and 

Technology, Av. Països Catalans 16, 43007 Tarragona, Spain 

2ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain 

3Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí 

Domingo, 1, 43007 Tarragona, Spain  

 

CONSPECTUS  

The ubiquity and importance of carboxylic acids and amides in peptides, pharmaceuticals, 

agrochemicals and synthetical materials has challenged chemists to design de novo catalytic 

carboxylation and amidation protocols. They represent a powerful alternative to canonical 

oxidation of alcohols and aldehydes, hydrolysis of nitriles, transamidation reactions or 

condensation techniques for the synthesis of these functional groups. Among various scenarios, 
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the recent years have witnessed considerable advances in Ni-catalyzed reductive carboxylation 

and amidation reactions utilizing carbon dioxide and isocyanate counterparts. This account aims 

to highlight the progress made in this arena with a historical perspective, with a particular emphasis 

of the methodologies that have emanated from our laboratories without losing sight of the 

underlying principles by which these reactions operate, with the ultimate goal of allowing the 

transition from comprehension to prediction in this exciting field.  

Unlike the utilization of conventional polar, yet highly reactive, organometallic reagents in 

carboxylation or amidation reactions, the utilization of nickel catalysts has allowed the use of 

carbon dioxide and isocyanates with less reactive and less-polarized counterparts for the 

formations of carboxylic acids and amides. These less reactive groups include organic halides and 

pseudohalides (i.e. alkyl bromides and chlorides, esters, alcohols and ammonium salts),  

unsaturated hydrocarbons (i.e. alkynes, styrenes, unactivated alkenes and dienes) or even C–H 

bonds, where forging the targeted C–C bond at previously unfunctionalized C–H linkages was 

possible, thus giving access to densely functionalized compounds that would be difficult to access 

otherwise. The C–H functionalization include chain-walking scenarios, where subtle changes in 

the ligand and reaction conditions marked the selectivity of the transformations, and reactions via 

a [1,4]-Ni shift, where selective carboxylation in aromatic rings could be achieved. Conceptuality 

and practicality aside, these transformations have even offered the possibility of modulating and 

dictating the site-selectivity pattern, thus not only providing new vistas when controlling the 

selectivity of bond-forming reactions at specific sites within the sidechain, but also new knowledge 

in retrosynthetic analysis when accessing carboxylic acids and amide backbones. Importantly, 

these techniques have shown to be particularly suited for the preparation of isotopically labelled 

molecules when using 13CO2 or even 14CO2, thus becoming a useful endeavor in the drug discovery 
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pipeline. Although mechanistic understanding at the molecular level still constitutes the “Achiles 

heel” of these transformations, the recent empirical discoveries and the rapid adoption of these 

protocols by the Community augurs well for the widespread utilization of reductive carboxylation 

and amidation reactions in both academic and industrial laboratories. 
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INTRODUCTION 

Carboxylic acids and amides rank among the most prevalent functional groups in natural 

products, biologically-relevant compounds and pharmaceuticals.5,6 Conventional protocols for the 

preparation of amides include transamidation reactions7 or dehydrative condensation of carboxylic 

acids and amines either thermally or in the presence of coupling reagents,8–10 whereas carboxylic 

acids are typically prepared from the oxidation of alcohols/aldehydes or the hydrolysis of nitriles.11 

However, the recent years have witnessed the development of alternative catalytic methods for the 

synthesis of carboxylic acids and amides. Among these, particular attention has been devoted to 

reductive coupling reactions with carbon dioxide or isocyanates, as these techniques offer a 

complementary new approach to the synthesis of high-value added carboxylic acids and amides 

from simple and readily available precursors.  

While carbon dioxide is an abundant, inexpensive and renewable C1 synthon,12 its zero dipolar 

moment, high thermodynamic stability and kinetic inertness makes its utilization particularly 

problematic in catalytic endeavors.13 In contrast, isocyanates are considerably more reactive 

entities due to the polarization induced by the nitrogen atom on the heterocumulene backbone, 

making the central carbon amenable for functionalization events with metal complexes.14 Although 

this can offer a broader synthetic scope, more frequently the susceptibility of isocyanates for 

binding transition metals makes them particularly vulnerable for decomposition pathways such as 

dimerization or trimerization pathways.15 Despite all these drawbacks, the recent advances in 

nickel catalysis have alleviated most of the challenges associated with these endeavors,16 

culminating in a series of conceptually novel Ni-catalyzed protocols en route to aliphatic or 

aromatic carboxylic acids and amides.17,18 Although significant progress has also been made 

through the utilization of other transition metals, this account highlights the work that our group 



 6 

has carried out during the last years in Ni-catalyzed reductive carboxylation and amidation 

reactions, including mechanistic considerations when appropriate. We expect that the underlying 

principles by which these reactions operate will set the basis for designing even more powerful 

catalytic processes with CO2 and isocyanates as coupling counterparts as a means to synthesize 

scaffolds of interest for both pharmaceutical and academic laboratories. 

Reductive carboxylation and amidation of organic halides and pseudo-halides 

In 1994, a seminal disclosure by Osakada and Yamamoto demonstrated that a well-defined Ni(II) 

oxidative addition complex Ni(II)Br(Ph)(bpy) reacted with CO2 at atmospheric pressure in DMF, 

providing non-negligible amounts of benzoic acid (Scheme 1).19 This finding can hardly be 

underestimated, as it tacitly showed that a priori unreactive CO2 could be inserted into 

organometallic sp2 C–Ni linkages, thus establishing the basis for designing de novo catalytic 

carboxylation reactions.  

Scheme 1. Pioneering stoichiometric carboxylation of a Ni(II) complex. 
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when our group reported the first catalytic carboxylation of aryl bromides with CO2 by using a Pd 
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D2O ruled out the intermediacy of organozinc species, suggesting an analogous pathway to that 

showed by Osakada consisting of a direct CO2 insertion into the corresponding sp2 C–Ni bond. 

Recently, a collaboration between Iwasawa and our group described that the combination of Pd 

catalysts and photoredox endeavors might represent a fertile ground in the catalytic carboxylation 

of aryl halides, avoiding the utilization of organometallic species as reducing agents (Scheme 2, 

middle).21 As expected, bulky and electron-rich phosphine ligands were found to be particularly 

suited for this reaction. Experimental and theoretical studies showed ArPd(II)X as the active 

species that generate ArPd(I) intermediates via SET prior to reaction with CO2 (Scheme 2, 

bottom).22  

Scheme 2. Palladium catalyzed carboxylation of aryl bromides 
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In 2012, Tsuji and Fujihara extended the scope of catalytic carboxylation reactions to more 

challenging aryl and vinyl chlorides with Mn as reductant and Et4NI as additive (Scheme 3).23 
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reaction. While Mn was initially considered merely as an electron donor, recent investigations by 

Hazari showed that the MnX2 obtained in every turnover played a non-negligible role in the rate 

of CO2 insertion into the Ni(I) aryl intermediates. The inclusion of ammonium salts likely 

undergoes ligand-exchange processes, thus facilitating reduction of in situ generated Ni(I) 

carboxylates while recovering back the propagating Ni(0) species. As it will become evident in the 

following sections, certain additives play a non-negligible role, yet not fully understood, in both 

reactivity and site-selectivity. 

Scheme 3. Nickel catalyzed carboxylation of aryl and vinyl chlorides 
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electron-rich phosphines as PCp3 and PCy3 in combination with Zn as reducing agent was found 

to be critical for success. In line with Hazari’s recent mechanistic studies, the utilization of MgCl2 

as additive was highly beneficial for the carboxylation of primary benzyl halides – likely 

facilitating SET-type processes, an observation that could be indirectly corroborated by DFT 

calculations25 and that agrees with the role of salts observed in other cross electrophile couplings 

with metallic reductants26 –, while the presence of TBAI improved significatively the 

carboxylation of secondary and tertiary benzyl halides.  Stoichiometric experiments with an 

isolated η3-benzylnickel(II) complex indicated that carboxylation does not occur unless Zn is 

employed, suggesting a CO2 insertion event at Ni(I) intermediates that are generated upon single 

electron transfer or comproportionation events.27  
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Scheme 4. Nickel catalyzed carboxylation of benzyl bromides and chlorides 
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in the presence of two competing C–O bonds and the proclivity of the acyl C–O bonds towards 

competitive hydrolysis.29 Despite these drawbacks, our group succeeded in developing a Ni-

catalyzed carboxylation of aryl and benzyl ester derivatives (Scheme 5, top).30 It was found that 

the ligand had a profound effect on the reactivity, with dppf being particularly suited for the 

carboxylation of aryl pivalates whereas the utilization of monodentate PMe3 was critical for 

promoting the carboxylation of benzyl ester derivatives. Although non-extended p-systems 

remained unreactive under these conditions – an observation typically found in a myriad of C–O 

functionalization reactions –, this limitation could be alleviated by employing hemilabile directing 

groups that likely increase the rate of oxidative addition while enabling a rapid CO2 insertion by 

opening up coordination sites at the nickel center. Driven by the inherent similar electronic 

structure of CO2 and isocyanates, an otherwise related Ni-catalyzed reductive amidation of aryl 

and benzyl ester derivatives could be developed with similar ease (Scheme 5, bottom).31 As for the 

previous carboxylation event, dppf was critical to allow the coupling of a wide variety of alkyl 

isocyanates with benzyl or aryl esters whereas the inclusion of K2HPO4 minimized undesired 

trimerization of the isocyanate. Notably, non-extended arenes could be employed as substrates by 

using slightly more activated aryl tosylates or aryl chlorides in combination with NaI as additive.  
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Scheme 5. Nickel catalyzed carboxylation and amidation of esters. 
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Scheme 6. Nickel catalyzed carboxylation of ammonium salts. 
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The development of regiodivergent protocols that control and predict the site-selectivity pattern 

of cross-coupling reactions still constitutes a formidable challenge in catalytic endeavors.34  

Aiming at unraveling the potential of catalytic reductive carboxylation events, our group found 

that a-branched or linear carboxylic acids could be within reach from simple allyl esters by 

discriminating both ends of the initially generated p-allyl metal complex, with site-selectivity 

dictated by the denticity of the ligand employed. Specifically, while bidentate 1,10-phenanthroline 

ligands resulted in linear carboxylic acids, the utilization of tetradentate backbones gave rise to the 

corresponding a-branched compounds exclusively, thus suggesting the formation of two 

distinctive Ni intermediates which promote CO2 insertion at different reaction sites (Scheme 8).35 

Given that allylic esters are ultimately prepared from the corresponding allyl alcohols, the ability 

to promote an otherwise similar site-selective carboxylation event by employing the latter as 

substrates would represent a bonus from a practical standpoint. However, the high activation 

energy required for effecting C-OH bond cleavage and the high polarizability of the hydroxyl 

group left some doubts whether such a technology could ever be implemented. We hypothesized 

that CO2 might play a dual role by lowering down the activation energy of the targeted sp3 C–O 

bond upon reversible formation of carbonic acids and as C1 source for the carboxylation event. As 

for the previous carboxylation of allylic esters, a careful choice of the ligands dictated the site-

selectivity pattern, with 1,10-phenanthrolines affording linear carboxylic acids whereas the 

inclusion of terpyridine ligands resulted in an exclusive a-branched selectivity pattern (Scheme 

8).36  

 

Scheme 8. Nickel catalyzed carboxylation of allyl acetates and alcohols. 
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implementation of these processes, our group found that 1,10-phenanthroline ligands bearing 

substituents adjacent to the nitrogen atom efficiently promoted a Ni-catalyzed reductive 

carboxylation of unactivated primary alkyl bromides (Scheme 9, top).1 However, secondary, 

tertiary alkyl bromides or even more accessible alkyl chlorides failed to react under these 

conditions. These challenges were finally met by utilizing an appropriately substituted 1,10-

phenanthroline with either nBu4NBr (TBAB) or LiCl as additives (Scheme 9, middle).37 

Stoichiometric experiments with well-defined Ni(0) complexes and Ni(I) species confirmed the 

intermediacy of the latter as key species prior to CO2 insertion into the C–Ni bond.38 Careful ligand 

optimization demonstrated that the utilization of substituted 2,2’-bipyridine ligands enabled a Ni-

catalyzed reductive amidation of unactivated primary, secondary or even tertiary alkyl bromides 

with a wide range of aliphatic and aromatic isocyanates (Scheme 9, bottom).2 As expected, the 

utilization of enantioenriched alkyl electrophiles or a,b-bisdeuterated substrates in both reductive 

amidation or carboxylation events resulted in the loss of the stereochemical integrity, thus 

suggesting that single-electron transfer (SET) processes come into play.  
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Scheme 9. Nickel catalyzed carboxylation and amidation of unactivated alkyl (pseudo)halides. 
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As expected, 2,9-substitution at a 1,10-phenanthroline ligand backbone was critical for success, 

with LiCl being essential for avoiding competitive ring-opening processes.  

Scheme 10. Nickel catalyzed carboxylation of cycloporpyl bromides. 
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halides can be rationalized by a selective recombination of a vinyl radical that avoids the steric 

clash with the proximal alkyl substituents within the carbocyclic skeleton. 

Scheme 11. Nickel catalyzed cyclization-carboxylation of alkyl bromides and chlorides.  
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resulting in a de novo technique to obtain biologically-relevant molecules such as 13C-Sitagliptin 

precursors. 

Scheme 12. Ni-Catalyzed Carboxylation of Aziridines. 
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nickelacycles by oxidative cyclization of simple alkynes, alkenes or heteroallenes with nickel (0) 

and CO2 or isocyanates, thus setting up the basis for preparing useful carbocyclic skeletons and/or 

aliphatic carboxylic acid derivatives (Scheme 13).  

Scheme 13. Synthesis and reactivity of nickelacycles. 
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regioselectivity was found to be independent of the substitution pattern of the substrate, with CO2 

insertion taking place exclusively at the distal position to the aromatic site. These results are in 

sharp contrast with the site-selectivity pattern observed by Ma when using Ni(0) precatalysts and 

Et2Zn as reducing agents (Scheme 14, middle).50 The observed regioselectivity suggested a 

protonation of the oxanickelacyclopentene intermediate with a bulky alcohol, giving rise to the 

targeted hydrocarboxylation product as a single isomer. Following a similar mechanistic rationale, 

aliphatic terminal alkynes underwent hydrocarboxylation under similar Ni-catalyzed conditions 

using water as formal hydride source (Scheme 14, bottom).51 In this case, a-substituted acrylic 

acids are obtained selectively, an observation that goes in line with the formation of an 

oxanickelacyclopentene that locates the metal center distal to the aliphatic substituent prior to 

protonation with water. Subsequently, the corresponding acrylic acid can be reduced by exposure 

to H2 over Pd/C to deliver the corresponding saturated branched carboxylic acids. 
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Scheme 14. Nickel catalyzed hydrocarboxylation of alkynes. 
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isocyanates to obtain ureas, carbamates or oligomerization products. To such end, we envisioned 

that nickel hydrides could be generated in situ via b-hydride elimination of a sacrificial alkyl 

halide, thus allowing to promote a chemo- and regioselective migratory insertion of a nickel 

hydride to the alkyne while leaving the isocyanate entity intact.52 As shown in Scheme 15, this 

protocol could be put into practice by using isopropyl bromide as hydride precursor, thus giving 

rise to the targeted acrylamides with propene as byproduct. Deuterium-labelling experiments with 

either (CD3)2CHBr or (CH3)2DBr unambiguously showed that the hydride source derived from a 

b-hydride elimination pathway from in situ generated alkyl nickel intermediates. 

Scheme 15. Nickel catalyzed hydroamidation of alkynes. 
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reagents.56 In line with other catalytic carboxylation reactions, 1,10-phenanthroline ligands bearing 

substituents adjacent to the nitrogen atom were perfectly suited for the reaction to occur, 

exclusively affording adipic acids upon hydrogenolysis of the pending olefin (Scheme 16).57 

Importantly, the technology could be applied for 1,3-butadiene, piperylene or isoprene, chemical 

feedstocks that are produced on a large scale from the steam cracking in the production of ethylene. 

Recent DFT studies supported our mechanistic hypothesis based on an initial oxidative cyclization 

of Ni(0) with the terminal olefin and CO2 followed by SET to generate a Ni(I) intermediate prior 

to insertion of a second molecule of CO2.58  
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Scheme 16. Nickel catalyzed double carboxylation of 1,3-dienes. 
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selective migratory insertion into styrenes delivered benzyl nickel intermediates on 

thermodynamic grounds whereas the utilization of a-olefins results in anti-Markovnikov insertion 

that locates the Ni center at the less-sterically encumbered site of the olefin. 

Scheme 17. Nickel catalyzed hydrocarboxylation of alkenes. 
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reduction of an in situ generated 1,1-diphenyl 3,3,3-trifluoro- propane radical (Ered = -1.34V vs 

SCE in MeCN)60 by the reduced form of the Ir(II) photocatalyst (Ered = -1.51V vs SCE in MeCN)61 

that trigger a subsequent nucleophilic attack to CO2. It is worth noting that these conceptions have 

been taken by others, showing the viability of generating benzyl anion intermediates for forging 

C–C bonds under photochemical reactions with or without CO2.62 

Scheme 18. Dicarbofunctionalization of styrenes with CO2 and radical precursors. 
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Reductive carboxylation at remote sp2 and sp3 C–H sites  

As shown in Scheme 15, the propensity of alkyl halides to undergo b-hydride elimination turned 

out to be a worthwhile endeavor for chemical invention, as the corresponding nickel hydrides could 

easily be intercepted by alkyne congeners. In the absence of unsaturated moieties, such nickel 

hydrides might trigger a chain-walking throughout the alkyl side chain via iterative migratory 

insertion/b-hydride elimination, thus allowing to formally translocate the metal center at a distal, 

yet previously unfunctionalized, sp3 C–H site prior to CO2 insertion. In 2017, we demonstrated the 

successful realization of this concept by triggering a catalytic carboxylation of unactivated alkyl 

halides at distal sp3 C–H sites by means of a tunable and controllable Ni-catalyzed chain-walking 

event. Importantly, CO2 insertion took place exclusively at primary sp3 C–H sites – the strongest 

linkages in the alkyl C–H series –, thus reinforcing the notion that our protocol is dictated by 

kinetic grounds and therefore complementary to radical type scenarios that would otherwise result 

in the functionalization at weaker benzylic sp3 C–H sites (Scheme 19, top).3 It is worth noting that 

site-selectivity could be modulated by a subtle change in the reaction temperature with alkyl 

halides possessing carbonyl-type compounds on the side-chain, with linear carboxylic acids 

obtained at low temperatures whereas high temperatures resulted in a-branched carboxylic acids 

selectively, suggesting that site-selectivity arises from a subtle thermodynamic vs kinetic control 

that could be modulated by the temperature of the reaction. Furthermore, chain-walking 

carboxylation was not limited to alkyl halide counterparts, as a similar endeavor could be 

implemented with unactivated internal olefins with water as the formal reducing agent (Scheme 

19, bottom). 51 
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Scheme 19. Nickel catalyzed carboxylation of remote C-H bonds. 
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the amidation event could be modified by subtle changes in the backbone of the bipyridine ligand, 

allowing the functionalization of the initial sp3 C–Br bond or the remote terminal position via 

chain-walking scenarios to achieve the corresponding amides with good selectivity (Scheme 20).63 

Scheme 20. Regiodivergent nickel catalyzed amidation of secondary alkyl bromides. 
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Scheme 21. Nickel catalyzed carboxylation of remote C–H bonds. 
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Scheme 22. Remote C(sp2)–H Carboxylation via 1,4-Nickel Migration with CO2. 
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route, thus raising the costs and requested time for research and development. Undoubtedly, the 

abundance of 13CO2 and 14CO2 makes carbon dioxide particularly attractive in isotope-labelling 

techniques. Taking into consideration that carboxylic acids rank amongst the most prevalent 

structural units in pharmaceuticals,5 an efficient, robust and inexpensive technique for 

incorporating both 13CO2 and 14CO2 into organic matter without changing the already established 

synthetic sequence for preparing the non-labelled drug would represent a highly rewarding 

scenario for industrial laboratories. To such end, an independent disclosure by Baran69 and our 

group4 demonstrated the viability of promoting a formal decarboxylation/carboxylation event by 

means of Ni-catalyzed reductive coupling of redox-active N-hydroxyphthalimide (NHP) esters 

with labelled CO2  (Scheme 23, top). Given the inherent limitation of the protocol to alkyl 

carboxylic acids and the modest isotope exchanges observed due to unavoidable hydrolysis of the 

parent NHP ester or carboxylation with in situ generated 12CO2, an alternative procedure consisting 

of a decarboxylative halogenation/carboxylation was designed. Importantly, this method allows to 

extend the scope of this labelling event to aliphatic, benzylic or even aromatic carboxylic acids in 

good yields and quantitative 13C-transfer (Scheme 23, bottom). 4 
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Scheme 23. Isotopic labeling carboxylation reactions. 
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reactions might have in synthetic endeavors, both in terms of the broad application profile and the 

ability to dictate the site-selectivity of the overall reaction. Taking into consideration the recent 

advances realized, including the implementation of photoredox catalysis as an alternative to the 

conventional utilization of stoichiometric metal reductants, it is reasonable to predict that these 

rather appealing scenarios will gain further importance in the next years to come. Indeed, the 

ability to utilize these techniques for accessing isotopically-labelled drug candidates is particularly 

noteworthy, thus holding promise for the rapid adoption of these methodologies in industry.  

Despite the advances realized, there exists substantial challenges that still need to be addressed 

in reductive carboxylation and amidation reactions. The following aspects are particularly 

important: (a) the utilization of aryl methyl ethers – the simplest derivatives of the phenol series –

, phenols or unactivated aliphatic alcohols is still beyond reach in catalytic reductive amidation or 

carboxylation reactions. If successful, these reactions would offer a significant step-forward 

towards the broad adoption of these processes in industrial endeavors by using non-toxic and 

available precursors; (b) unlike the utilization of prefunctionalized C–X (X = halide, pseudohalide) 

linkages, the catalytic reductive carboxylation and amidation reactions within the context of sp3 

C–H functionalization has found little echo; (c) the means to enable enantioselective carboxylation 

or amidation reactions still represents terra incognita; (d) the potential of catalytic reductive 

carboxylation or amidation reactions of unsaturated hydrocarbon feedstocks still represent a 

considerable challenge, particularly when promoting difunctionalization of unactivated olefins 

with a tunable, controllable and switchable site-selectivity pattern. Although there exists a certain 

consensus on how these reactions operate at the molecular level, these reactions are poorly 

understood in mechanistic terms and progress in this field is mainly based on empirical discoveries. 

Although tentative, we predict that the prospective potential of these reactions would be realized 
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if the mechanistic intricacies of these reactions are unraveled by combining experimental and 

computational studies. Beyond any reasonable doubt, efforts towards this goal will not only bring 

comprehension, but also predictive tools for the new generation of chemists willing to improve 

upon existing reductive amidation and carboxylation reactions.  
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