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ABSTRACT: A catalytic deaminative alkylation of unac-
tivated olefins is described. The protocol is characterized 
by its mild conditions, wide scope – including the use of 
ethylene as substrate –, and exquisite site-selectivity pat-
tern for both a-olefins and internal olefins, thus unlocking 
a new catalytic platform to forge sp3–sp3 linkages, even 
in the context of late-stage functionalization. 

The recent years have witnessed an emerging demand for 
forging C–C bonds via functionalization of unactivated 
olefin feedstocks.1 Among various scenarios, the catalytic 
addition of metal hydride species across an unactivated 
olefin constitutes an active frontier of contemporary ca-
talysis research, as it formally generates a latent carbo-
genic nucleophile that can further be elaborated in the 
presence of an appropriate electrophilic partner.2 

Scheme 1. Catalytic Deaminative sp3–Alkylation of Olefins.	

	

Driven by the prevalence of alkyl amines in pharmaceu-
ticals and preclinical candidates,3 chemists have recently 
been challenged to design catalytic sp3 C–N cleavage 
techniques as a new tactic for lead generation in drug dis-
covery.4 Despite the elegant advances realized, C–C 

bond-forming scenarios remain currently confined to the 
use of well-defined organometallic reagents,5 organic hal-
ide counterparts6 or biased electron-deficient olefins.7 
Therefore, at the outset of our investigations it was un-
clear whether a site-selective catalytic deaminative alkyl-
ation could ever be implemented with unactivated a-ole-
fins or even internal olefins, chemical feedstocks derived 
from the petroleum processing. If successful, such un-
charted territory might not only provide an unrecognized 
opportunity to explore currently inaccessible chemical 
spaces in both olefin functionalization and deamination 
events, but also offer a new strategic approach for rapidly 
and reliably generate structural diversity via unconven-
tional sp3–sp3 bond-disconnections.8 In our continuing in-
terest in Ni-catalyzed reactions,9 we report herein the suc-
cessful realization of this goal (Scheme 1). The salient 
features of this process are the mild conditions, high 
chemoselectivity profile, and exquisite site-selectivity for 
both a-olefins and internal olefins, even at late-stages. 
While anti-Markovnikov selectivity was found in the for-
mer,10 the use of the latter results in bond-formation at re-
mote sp3 C–H sites enabled by chain-walking scenarios.11 

Table 1. Optimization of the Reaction Conditions.a 
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a 1a (0.20 mmol), 2a (0.60 mmol), NiBr2·glyme (10 mol%), 
L4 (15 mol%), (EtO)2MeSiH (0.60 mmol), Na2HPO4 (0.40 
mmol), NMP/dioxane (4:1) at 40 ºC for 14 h. b GC yields 
using 1-decane as internal standard. c Isolated yield. 	

We began our work by evaluating the deaminative alkyl-
ation of pyridinium salt 1a – readily prepared from the 
corresponding alkyl amine congener on a large scale – 
with unactivated olefin 2a (Table 1).12 After careful eval-
uation of all reaction parameters,13 we found that a com-
bination of NiBr2·glyme (10 mol%), L4 (15 mol%), 
(EtO)2MeSiH, Na2HPO4 in NMP/dioxane at 40 ºC pro-
vided the best results, affording 3a in 80% isolated yield 
with an exquisite anti-Markovnikov selectivity. Among 
all of the ligands analyzed, 2,2’-bipyridine motifs turned 
out to be particularly suited for the targeted transfor-
mation (entries 2-6); unlike related reductive coupling re-
actions, an intimate interplay of electronic effects on the 
ligand backbone and the presence of substituents adjacent 
to the nitrogen atom were not critical for the reaction to 
occur.14 Subtle changes on the nickel precatalyst, hydride 
source, inorganic base or solvent, however, had a delete-
rious effect on reactivity, invariably obtaining lower 
yields of 3a, if any (entries 7-11). As anticipated, control 
experiments revealed that all of the parameters were es-
sential for forging the sp3–sp3 linkage (entry 12).15 

Table 2. Deaminative Alkylation with a-Olefins.a,b 

 
a As Table 1 (entry 1). b Isolated yields, average of two inde-
pendent runs. c dr = 1.5:1. d 2.0 mmol scale. e NiI2 (10 mol%), 
L6 (20 mol%) in DMSO/dioxane (3:1) at 35 oC.  

As evident from the results compiled in Table 2, our cat-
alytic deaminative alkylation of a-olefins showed an ex-
cellent chemoselectivity profile, and nitriles (3d), esters 
(3h, 3w), carbamates (3n, 3s), silyl ethers (3c) or ketones 
(3j, 3k, 3v) were perfectly tolerated. Notably, organo-
borons (3g), alkyl halides (3e, 3f, 3k) or aryl halides (3h, 
3l, 3w) could all be well-accommodated,  thus providing 
ample opportunities for further derivatization via conven-
tional cross-coupling reactions.16 Even free alcohols do 
not interfere with productive sp3–sp3 bond-formation (3i, 
3w). As expected, the deaminative alkylation of sub-
strates possessing multiple unsaturation motifs occurred 
exclusively at the less-substituted olefin (3q, 3r). As 
shown for 3q, the reaction could be executed on a 2 mmol 
scale without significant erosion in yield. Importantly, 
1,1-disubstituted alkenes as substrates posed no problems 
(3s-3u). Likewise, the targeted sp3–sp3 bond-formation 
could be extended to cyclic analogues other than 1a (3j-
k, 3n-o and 3p) and to aliphatic congeners (3v, 3w). 

Table 3. Deaminative Alkylation with Internal Olefins.a,b 
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a As Table 1 (entry 1). b Isolated yields, average of two inde-
pendent runs. c dr = 1.5:1. 

The lower binding affinity of unactivated internal olefins 
to metal centers17 and the inherent difficulty in discrimi-
nating both ends of the double bond left a reasonable 
doubt to whether our deaminative alkylation could be ex-
tended to internal olefins. Indeed, no sp3–sp3 formation 
was observed upon exposure of 2-heptene to 1a under the 
Ni/L4 regime shown in Table 2. Interestingly, however, 
the inclusion of substituents adjacent to the nitrogen atom 
on the ligand backbone enabled a deaminative sp3–alkyl-
ation at remote sp3 C–H sites.11,18 After judicious evalua-
tion of the reaction parameters, a combination of NiI2 (10 
mol%), L6 (20 mol%), (EtO)3SiH (0.40 mmol), Na2HPO4 
(0.80 mmol) in DMSO/1,4-dioxane afforded 4c in 57% 
yield with > 36:1 selectivity (Table 3).19,20 As shown, the 
reaction could also accommodate silyl ethers (3c), 
phthalimides (4e), aldehydes (4f), alkyl halides (3e), car-
bamates (4i, 4j) or nitrogen-containing heterocycles 
(4g).15 Importantly, excellent site-selectivity for sp3–sp3 
bond-formation at distal primary sp3 C–H sites was found 
regardless of the position of the double bond, even at 
long-range (4f). Even branched substituents or trisubsti-
tuted olefins (4d) do not compete with the efficacy of the 
reaction,21 with deaminative alkylation invariably occur-
ring at the less-sterically hindered primary sp3 C–H site.   

Scheme 2. Advanced Synthetic Intermediates.a,b 

 
a a-Olefin: as Table 1 (entry 1); internal olefins: as Table 3. 
b Isolated yields, average of two runs.  c 8 (dr = 97:3); 9 (dr = 
46:40:7:7); 11 (dr = 9:1).  d 80 oC. e NiBr2·glyme (15 mol%). 

With a reliable set of conditions in hand for both a-olefins 
and internal olefins, we wondered whether our protocol 
could be applied within the context of late-stage function-
alization.22 As shown in Scheme 2, this turned out to be 
the case. Although modest yields were obtained in certain 
cases, these results should be interpreted against the chal-
lenge that is addressed, particularly with substrates pos-
sessing multiple functional groups derived from linalool 
(5), paclonbutrazol (7), galactose (10) or valencene (11), 
with C–C bond-formation taking place exclusively at the 
least substituted olefin site. Similarly, b-pinene (8), cam-
phene (9) or estrone derivatives (6) posed no problems. 
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The reaction could also be extended to amino acid deriv-
atives (12-15), either using primary alkyl amines (12-13) 
or their secondary congeners (14, 15).23 The ability to ob-
tain 15 as a single regioisomer is particularly noteworthy, 
thus indicating that late-stage deaminative alkylation is 
not limited to a-olefins. As shown for 14-19, our tech-
nique could be used to derivatize mexiletine, isoxepac or 
indomethacin via sp3 C–N bond-cleavage with simple 
olefin counterparts. Even drug-type molecules such as 20-
21 could be employed for forging sp3–sp3 linkages.  

Scheme 3. Synthetic Application.a 

 

The results shown in Scheme 3 further illustrates the syn-
thetic value of our deaminative alkylation. Interestingly,  
3a was within reach from N-Boc 4-aminopiperidine (22) 
without the need for isolating pyridinium 1a (top).13 Alt-
hough in an unoptimized 52% yield, this result shows that 
telescoping the formation of the latter might be a viable 
alternative for forging sp3–sp3 linkages. In addition, re-
gioconvergent scenarios could be implemented from sta-
tistical mixtures of olefins, invariably leading to 4a as sin-
gle regioisomer (middle). Even ethylene – the largest-vol-
ume chemical produced in industry–24 could be employed 
as substrate under atmospheric pressure en route to 23 
(bottom). Taken together, the data shown in Tables 2-3 
and Schemes 2-3 serve as a testament to the prospective 
impact of our deaminative alkylation of unactivated ole-
fins, offering a counterintuitive new approach to forge 
sp3–sp3 bonds while expanding our ever-growing arsenal 
of olefin functionalization and deaminative events. 

In summary, we have developed a catalytic deaminative 
alkylation of unactivated olefins that operates under mild 
conditions and is characterized by its wide substrate scope 
and exquisite site-selectivity profile, even in the context 
of ethylene valorization or late-stage functionalization. 
This new platform offers new vistas in both olefin func-
tionalization and deamination events and a complemen-

tary activation mode to existing sp3–sp3 bond-forming re-
actions. Further studies into the mechanism and the ex-
tension to related transformations are currently ongoing.  
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