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N-Containing Heterocycles
on Demand by Merging Ni
Catalysis and Photoredox PCET
Marino Börjesson,1,2,4 Andreu Tortajada,1,2,4 and Ruben Martin1,3,*
Nitrogen-containing heterocycles are among the most ubiquitous motifs in

pharmaceuticals. Therefore, the design of mild, practical, and modular proto-

cols for their synthesis is still in high demand. In this issue of Chem, Molander

and co-workers report the merger of visible-light photoredox proton-coupled

electron transfer (PCET) with nickel catalysis as a vehicle for rapidly accessing

privileged five-membered heterocyclic cores from simple precursors.
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Avançats, Passeig Lluı́s Companys, 23, 08010
Barcelona, Spain

4These authors contributed equally

*Correspondence: rmartinromo@iciq.es

https://doi.org/10.1016/j.chempr.2019.01.010
The presence of nitrogen-containing

heterocycles in more than half of the

small-molecule drugs approved by the

US FDA is so pervasive that the inclusion

of these structures is often visualized

as a necessary requisite in industrial

endeavors.1 Among these, particularly

prevalent are five-membered nitrogen-

containing heterocycles, such as pyrroli-

dones, oxazolidinones, or imidazolidi-

nones, among many others.2 Although

significant progress has been made for

preparing these rather appealing struc-

tures by a myriad of synthetic methods,

it is a worthwhile endeavor to contem-

plate possible alternative ways to syn-

thesize them with improved flexibility,

generality, and practicality.

Driven by the favorable attributes

of visible-light-mediated photoredox

catalysis—an emerging new synthetic

tool that enables challenging bond-

forming reactions that are oftentimes

not accessible under standard ap-

proaches3—chemists have been chal-

lenged to forge C(sp3)–N bonds

via light-induced processes. Among

various conceivable scenarios, the ability

to harness the inherent reactivity of

amidyl radicals might open a gateway

to nitrogen-containing heterocycles.

Any synthetic approach aimed at access-

ing well-defined amidyl radicals from
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ubiquitous N–H bonds under mild condi-

tions, however, might face notorious

chemical constraints: (1) the N–H bond-

dissociation free energy is exceptionally

high (�100 kcal/mol), so homolytic cleav-

age is thermodynamically uphill; and (2)

conventional methods for generating

amidyl radicals via N–H scission typically

require strong stoichiometric oxidants

(DMP, IBX, or peroxides), whereas harsh

conditions such as UV light irradiation

and/or reducing agents are needed

when pre-functionalized N–X motifs

(X = Cl, SPh, OAr or SO2Ar) are em-

ployed. This limits the synthetic utility of

these protocols, particularly when these

technologies are applied within the

context of late-stage functionalization of

advanced synthetic intermediates.

Therefore, one could conclude that a

milder method capable of accessing

amidyl radicals in a practical and

reliable manner might provide a new

fertile ground for applications on

industrial venues while offering new reac-

tivity principles for the total synthesis of

structurally complex natural products.

In 2015, Knowles and co-workers

demonstrated that amidyl radicals

could be generated under exception-

ally mild conditions from unfunctional-

ized amides via concerted proton-

coupled electron transfer (PCET) in
lsevier Inc.
combination with photoredox catal-

ysis,4 thus opening new chemical space

for the synthesis of amides and related

compounds via C–N bond-forming re-

actions.5 Although recent disclosures

have shown that photochemically

driven hydrogen-atom-transfer path-

ways can successfully be interfaced

with nickel-catalyzed cross-coupling re-

actions,6-9 the ability to synergistically

combine the modularity of PCET with

the flexibility in synthetic design offered

by transition-metal catalysts has still re-

mained an unexplored cartography. In

this issue of Chem, Molander and co-

workers report the successful realiza-

tion of this goal by taming the reactivity

of amidyl radical intermediates as

a gateway to enabling the visible-

light-mediated photochemical difunc-

tionalization of unactivated olefins

en route to a variety of medicinally

relevant five-membered nitrogen-con-

taining heterocycles via sequential

C(sp3)–N and C(sp2)–C(sp3) bond for-

mations (Figure 1).10

Preliminary mechanistic experiments

suggest the initial PCET-mediated

formation of an amidyl radical that sub-

sequently triggers a rapid 5-exo-trig

cyclization with a pending olefin, lead-

ing to a transient alkyl radical interme-

diate. Although there exists a reason-

able ambiguity on whether the alkyl

radical is intercepted by either LnNi(0)

or aryl-Ni(II)Ln oxidative addition spe-

cies, a final reductive elimination would

ultimately deliver the targeted
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Figure 1. PCET/Ni-Catalyzed Synthesis of Pyrrolidones, Oxazolidinones, or Imidazolidinones
products. The resulting LnNi(I) is then

interfaced with the photochemical

regime by a final single-electron trans-

fer event, thus recovering back the

propagating catalytic species. The

transformation is distinguished by a

broad scope, including particularly

challenging substrate combinations,

and an excellent chemoselectivity pro-

file, allowing access to a variety of

five-membered nitrogen-containing
heterocycles in a cascade-type fashion

from simple precursors. These virtues

allow pyrrolidinone, oxazolidinone,

and imidazolidinone formation to take

place at late stages of syntheses, as

illustrated by the successful prepara-

tion of aryl glycosides or zolmitriptan

analogs, among others. In light of the

data provided, it is fairly apparent that

the approach reported by Molander

and co-workers opens an orthogonal
gateway that complements existing

methodologies for accessing N-hetero-

cyclic products. In addition, this

method provides a glimpse at the

inherent potential that PCET and nickel

catalysis offer for innovative heterocy-

clic chemistry. In view of the growing in-

terest in nickel-catalyzed reactions and

visible-light-mediated photoredox en-

deavors, it is inevitable to predict that

this new technique will serve as the
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blueprint to even more demanding tar-

gets, including the always-elusive

densely functionalized heterocyclic

cores possessing quaternary carbon

centers, the means to switch the site-

selectivity pattern for accessing a

different set of nitrogen-containing het-

erocycles, and the development of

enantioselective variants of this or

related processes.
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Illuminating Fermi Resonances
that Trigger Reaction
in a Complex Molecule
David M. Leitner1,*
Transferring energy to specific molecular vibrations remains a challenge in

the quest to control chemical reactions with light. In this issue of Chem,

Rafiq et al. show that a quantum-mechanical Fermi resonance between a light-

absorbing terpyridine-molybdenum complex and dinitrogen bridge directs

energy to vibrations associated with bond activation.
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One strategy for controlling chemical

reactions with light aims to identify

pathways by which energy from a

photon absorbed by a molecule can

be transferred to bond-activating vibra-

tions. However, directing energy to

such vibrations when they are spatially

separated from a light absorber re-

mains a daunting challenge. Molecular

vibrations are in essence a quantum-

mechanical system of coupled oscilla-

tors, in which Fermi resonances

mediate energy flow.1 A simple clas-

sical analog to energy transfer via Fermi

resonance in a molecule is a child on a
swing. When the frequency of the

child’s kicking motion matches the fre-

quency of the swing, energy is trans-

ferred from the child to the swing,

and the child swings higher. Unlike

the two degrees of freedom of the child

and swing, there can be myriad combi-

nations of coupled vibrations that allow

energy to flow in a large molecule,

greatly complicating selective energy

transfer. However, under certain condi-

tions and with proper tuning, Fermi

resonances can direct energy from a

chromophore to vibrations that activate

a reaction before that energy is redis-
tributed to other degrees of freedom.

In this issue of Chem, Rafiq et al.2

report that Mo2N2, a terpyridine-

molybdenum complex containing a

dinitrogen bridge, exhibits a Fermi

resonance switched on by the absorp-

tion of light, transferring energy to the

spatially separated dinitrogen, which

could facilitate reactions involving N2.

To appreciate the significance of this

development, it is helpful to first

consider a generic quantum-mechani-

cal system of many coupled oscillators,

which can represent the vibrations of a

large molecule. Random models for

ensembles of molecules, each member

a reasonable description of a molecule

of interest, point both to the impor-

tance of Fermi resonances in energy

flow through the vibrational state

space (VSS) of a molecule and to the

role of quantum-mechanical interfer-

ence effects in energy transfer.1,3

Selection rules impose restrictions on

the extent to which each state of the
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