

www.truefood.eu

Demonstration session on Salt reduced dry-cured ham

24th February 2010 IRTA - Monells, Girona, Spain

European Integrated Project within the Sixth RTD Framework Program (FOOD-CT-2006-016264):

Traditional United Europe Food - TRUEFOOD

European Integrated Project Sixth RTD Framework Program (FOOD-CT-2006-016264):

Traditional United Europe Food - TRUEFOOD

TRUEFOOD aims to improve quality and safety and introduce innovation into Traditional European Food production systems through research, technology transfer, demonstration, dissemination and training activities.

Specific aim: to reduce salt content in dry-cured hams

TRUEFOOD structure

WP0 - OVERALL PROJECT CO-ORDINATION

SPES -Dr. D. Rossi

SCIENTIFIC PILLAR

INRA - Prof. G. Corrieu / Dr. J. Culioli

INDUSTRIAL PILLAR

ENEA - Dr. M. Leonardi

WP1

MATFORSK

Determination of consumer perception expectation and attitudes

WP2B

ENFA

Control of biologically derived and process induced chemical hazards

WP4

IRTA

Improving nutritional quality in line with consumer demand

WP5

UGENT

Improved mktg and supply chain organisation methods for TFPs

WP7

INRAN

Environmental, societal, human and economic impacts of innovation

WP2A

INRA

Innovation for improving microbial safety of TFPs of animal origin

WP3

AUA

Predictive modelling and risk assessment of TFPs

WP6

ACTIA

Pilot scale evaluation and demonstration of innovations to industry

WP8

SPES

Dissemination training and Technology transfer

AGENDA

- 09:00 General presentation of new technologies (P. Gou)
- 10:30 Coffee break
- 11:00 Demonstration of new technologies for the selection of raw hams (X. Serra, E. Lemoine)
- 11:45 Demonstration of new technologies for design of optimal process (E. Fulladosa, N. Garcia)
- 12:30 Demonstration of Boning-salting-binding methodology (X. Sala, E. Fulladosa)
- 13:30 Lunch
- 14:30 Demonstration of treatments on the final product (N. Garcia, X. Serra)
- 16:00-17:00 Round table

HOW to reduce salt content in dry-cured ham?

30 % salt reduction:

Fresh (14 d → 5 d)

Frozen (8 d → 3 d)

Fatty (15 d → 6 d)

EFFECTS OF SALT REDUCTION

SALTING TIME

Semimem	branosus
а	

Water content (%)

NaCl (dm %)

Proteolysis (%)

Biceps femoris

 $a_{\rm w}$

Water content (%)

NaCl (dm %)

Proteolysis (%)

6 d	10 d	14 d
	The latest	
0.908a	0.901a	0.884 ^b
52.63	51.66	49.88
6.87 ^b	9.62 ^a	11.24 ^a
19.51a	17.50^{b}	17.34 ^b
0.933a	0.912 ^b	0.890 ^c
63.46a	60.72^{ab}	58.74 ^b
11.38 ^c	14.10^{b}	16.02a
28.32a	24.62 ^b	22.43 ^b

Gou et al. (2008) Meat Science, 80: 1333-1339

MAIN PROBLEMS RELATED TO SALT REDUCTION

Microbiological stability:

Salt affects a_w. It is necessary to combine different hurdles

Flavour:

Salt affects the perceived flavour

Excessive proteolytic activity:

Salt affects proteolysis activity

Increase of proteolytic activity → soft texture, white film

TRUEFOOD APPROACHES

Selection of best raw material:

To select fresh hams less prone to be microbiologically contaminated and to have lower proteolysis activity → To identify the right parameters and develop technologies for innovative on-line selection of raw hams.

Adapting the process:

To apply longer periods at low temperature (post-salting) to stabilize the product from a microbiological point of view → To develop an innovative non-destructive technology for monitoring the stability of the product and define the post-salting time according this information.

Treatments on the final product:

To identify and develop treatments which increase the microbiological stability and/or reduce problems related with an excessive proteolysis (soft texture and white film).

Meat Quality Scanner

Meat Quality Scanner

 $pH_{24} > 6,20$

. More prone to spoilage

. Bright, phosphate crystals

. Soft texture at high water content and hard texture at low water content. Adhesiveness

 $pH_{24} < 5,6$

. Red ring

. White film

. Worst slicing

. Pastiness

PSE

. Higher salt content

ph effect as a function of salting level

	Calting times	Group of pH _{SM24}		
	Salting time	Low	Medium	High
Pastiness	6 d	2.9 ^{ax}	1.2 ^b	0.6 ^b
	10 d	0.1 ^y	0.4	0.5
	14 d	0.3^{y}	0.1	0.5
Slicing difficulty	6 d	(77.8)	(62.5)	(37.5)
(% adherent slices)	10 d	(28.6)	(0)	(0)
	14 d	(16.7)	(0)	(0)

CHARACTERISTICS OF RAW MATERIAL AFFECTING THE SALTING PROCESS OF HAMS

- trimming
- surface shape
- fat content

water content at the surface

SELECTION OF BEST RAW MATERIAL FATNESS

CATEGORIZATOR EXPERT SYSTEM FOR HAMS (JMP INGENIEROS)

ADAPTING THE PROCESS

Post-salting time → microbiological stability

ETG 'Jamón Serrano'

T: 0-6 °C

RH: 70-95 %

time: min. 40 days

DO 'Jamón de Teruel'

T: 3-6 °C

RH: 80-90 %

time: 45-90 days

min. 1% of salt in the muscle

Control parameters

Dying chambers: T, RH, time

Product: weight loss, NaCl, water

contents and a_w distributions

NON-DESTRUCTIVE METHODOLOGY TO ESTIMATE THE SALT

CONTENT

Salt and water contents can be estimated non-destructively by Computed Tomography (CT), which permits the monitoring of the same product during all the processing.

CT can be used as a tool for taking decisions in the critical points during the processing, and to design the correct process for new products, i.e., hams with reduced salt content.

EXAMPLE OF USE OF CT FOR DEFINING THE POST SALTING TIME

NaCl contents were monitored along the process by CT

Hams were kept in resting at 5 °C and 75-80 % RH for different periods of time:

Control:

Traditional resting: 45 days → 1.6% NaCl

Reduced NaCl content:

Traditional resting: 45 days → 1.08 % NaCl

Adapted resting 1: to achieve a NaCl content of 1.4 % Adapted resting 2: to achieve a NaCl content of 1.6 %

Kept at 10°C until reaching 3.7% NaCl in BF

drying period at 15°C to 22°C to reach ≈ 35% weight loss

TREATMENTS ON THE FINAL PRODUCT

TEMPERATURES > 30 °C

Values of Y_{90} (related with **soft texture**) of *biceps femoris* muscles from dry-cured hams (LpH: pH_{SM24} < 5.7; MpH: 5.7 \leq pH_{SM24} \leq 5.9; HpH: pH_{SM24} > 5.9).

Temperature (last 10 days of processing)	2502	Group of pH _S	SM24
	LpH	МрН	НрН
18 °C	0.70	0.71	0.71
30 °C	0.69	0.67	$0.71 \downarrow \downarrow 0.65 \downarrow \downarrow$

		Salting Time		
	_ 6 d	10 d	14 d	
18 °C	0.74	0.72	0.66	
30 °C	0.68 <mark>↓↓</mark>	$0.67 \checkmark \checkmark$	0.67	

TREATMENTS ON THE FINAL PRODUCT

HPP TREATMENT

- The HPP treatment:
 - a. Reduces the risk of Lysteria monocytogenes
 - b. Increases the shelf-life
 - c. Reduces pastiness and adhesiveness and increases hardness, fibrousness and gumminess
 - d. Increases lightness, iridiscenses
 - e. Increases the salty perception

The lower the water content of the slices, the lower are the HPP effects on sensory characteristics.

HPP TREATMENT

Sensory parameters of dry-cured ham significantly affected by HPP treatment at 600 Mpa

A 4v:1-v-4 o a	Control	600 MPa
Atributos	(n=10)	(n=10)
Whole slice	- wasting	THE RESERVE AND A STATE OF THE PARTY OF THE
Colour homogeity	5.3	4.9
Brightness	4.2	4.9
Iridescences	1.1	3.4
Biceps femoris		
Hardness	3.4	5.6
Gumminess	1.8	4.4
Fibrousness	2.6	4.7
Adhesiveness	2.3	0.1
Pastiness *(incidence)	1.4 (10)	0.2 (4)
Saltiness	1.5	2.7
Umami	0.9	2.0
Sweetness	0.5	1.3

^{*} Average of those samples that showed pastiness.

TREATMENTS ON THE FINAL PRODUCT

NEGATIVE TEMPERATURES

Thank you for your attention