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Abstract: Sensor networks have become more popular in recent years, now featuring plenty of options
and capabilities. Notwithstanding this, remote locations present many difficulties for their study
and monitoring. High-frequency (HF) communications are presented as an alternative to satellite
communications, being a low-cost and easy-to-deploy solution. Near vertical incidence skywave
(NVIS) technology provides a coverage of approximately 250 km (depending on the frequency being
used and the ionospheric conditions) without a line of sight using the ionosphere as a communication
channel. This paper centers on the study of the ionosphere and its characteristic waves as two
independent channels in order to improve any NVIS link, increasing its robustness or decreasing
the size of the node antennas through the appliance of specific techniques. We studied the channel
sounding of both the ordinary and extraordinary waves and their respective channels, analyzing
parameters such as the delay spread and the channel’s availability for each wave. The frequency
instability of the hardware used was also measured. Furthermore, the correlation coefficient of the
impulse response between both signals was studied. Finally, we applied polarization diversity and
two different combining techniques. These measurements were performed on a single frequency
link, tuned to 5.4 MHz. An improvement on the mean bit energy-to-noise power spectral density
(Eb/N0) was received and the bit error rate (BER) was achieved. The results obtained showed
that the extraordinary mode had a higher availability throughout the day (15% more availability),
but a delayed spread (approximately 0.3 ms mean value), similar to those of the ordinary wave.
Furthermore, an improvement of up to 4 dB was achieved with the usage of polarization diversity,
thus reducing transmission errors.

Keywords: HF; NVIS; SIMO; diversity combining; sounding; communication channel; ionosphere;
STANAG; MIL-STD-188; polarization diversity; remote sensing

1. Introduction

The ionosphere has an essential function for our planet, which is the protection against
external radiations. It has been studied for a long time both in a physical way and also as a
communication channel [1,2], as the ionosphere behaves like a mirror for high frequency
(3–30 MHz) signals. Using the ionosphere as a channel, and taking advantage of the
benefits of signal reflection for HF, has wide use for emergency services and is also suitable
for ubiquitous sensors networks (USN). In addition, it avoids the use of satellites and high
infrastructure and operational costs.

The behavior of the ionosphere is under continuous research due to its difficult pre-
diction. Observatories, using an ionosonde, examine the quantity of ions and electrons
produced in the atmosphere to get information of the radio wave refraction, and the gen-
eration of different waves due to these reflections (the ordinary and the extraordinary
waves [1,2]). There are studies such as those by the respective authors of [3–5], where a
deterministic model of a narrowband and wideband HF channel was studied giving a pre-
diction of quality parameters of ionospheric communications, but there was no distinction
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between ordinary and extraordinary waves. Doppler and multipath measurements on
oblique and vertical ionospheric paths were performed in studies by the respective authors
of [6,7] and also in the Doppler And Multipath Sounding Network (DAMSON) project [8,9].
Moreover, another sounding of narrowband and wideband ionospheric communications,
was done with oblique transmissions [10]. It is known that the availability of the iono-
sphere as a communication channel is not remarkable, since it depends on its ionization. Its
behavior varies throughout the day, which implies that different transmission frequencies
must be used due to the change of the critical frequency. Due to its low bandwidth and
coherence time, the ionosphere is not a solution for high-speed data transmissions but, on
the other hand, its channel characteristics are suitable for sensor network deployment.

In this article, we analyze the behavior of the ionosphere as a communication chan-
nel, using near vertical incidence skywave (NVIS) propagation and the transmission of
different data frames. The transmit frequency used in our experiment was 5.4 MHz. NVIS
propagation is based on the transmission of a signal with an incidence angle between 70◦

and 90◦ to the ionosphere. The properties of the ionosphere cause that signal to be reflected,
obtaining a coverage of approximately a 250 km radius [11], which is a relevant fact for
remote sensors or emergency communications for places without infrastructure [12]. The
ionospheric reflection is frequency dependent, with typical frequencies ranging from 3 to
10 MHz. The coverage radius of 250 km corresponds with F2-layer propagation.

In what follows, characteristics of the ionosphere and NVIS communications and
polarization diversity are introduced in Section 2. The sounding system implemented is
described in Section 3, where, in Section 3.1, the overall infrastructure is explained, the data
frames designed and used are detailed in Section 3.2, and the test scenario is described in
Section 3.3. Results of this study are presented in Section 4, and finally, the conclusions of
this work are in Section 5.

2. The Ionosphere and Polarization Diversity

The ionosphere is one of the layers of the atmosphere that, thanks to its physical
characteristics, allows the refraction of radio signals between 3 and 30 MHz. Specifically,
the ionization of the ionosphere is the responsible of this signal refraction. The ionization
of the outer layers of the atmosphere depends on the degree of solar activity, which follows
cycles of approximately 11 years and presents sunspots as an indicator [1]. The condition
of the ionosphere not only changes annually, but also depends on the season and the time
of day. These variations make ionospheric communications very challenging, requiring a
system that adapts to the state of the ionosphere at all times.

Communications through the ionosphere are classified according to the angle of
incidence of the radio wave. NVIS communications are based on a 90◦ to 70◦ angle of
incidence, and generate a coverage area of up to 250 km (depending on frequency and
ionospheric conditions) from the point of transmission [11]. The focus of this article is to
define the physical properties of the NVIS channel (Figure 1).
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The ionosphere presents multiple layers (D layer, E layer, and F layer, which splits
into F1 and F2 layers during daytime), which depend on the sun’s ionization [1]. NVIS
communications can use both the E layer and the F2 layer. Taking into account the distance
between our nodes, and in order to maximize the received signal strength, we based our
study on the F2-layer propagation. Furthermore, the ionosphere is a birefringent medium.
Two modes or propagation (ordinary and extraordinary) are formed as soon as the radio
wave enters the ionized plasma in the presence of a magnetic field. The plane-polarized
wave is decomposed into two different waves, and the direction of energy is deviated from
the direction of propagation [1]. This partition creates two totally different propagation
paths, resulting in two independent communication channels.

Specifically, when a radio wave reaches the ionosphere, the electrons in the layer start
an elliptical movement [1]. As a result of this almost-circular spin, the radio wave has its
polarization changed by the ionosphere. This leads to the return to the Earth of two different
rays (the ordinary and extraordinary rays) with different properties, such as different critical
frequencies, phase, amplitude, and arrival time [2]. Specifically, both of these waves have
elliptical polarization and also have opposite rotation sense. For the Northern Hemisphere,
the ordinary wave has the greater delay and left-hand circular polarization (LHCP), and
the extraordinary wave presents the lesser delay and right-hand circular polarization
(RHCP) [13]. These different properties can be used to improve telecommunication links,
as polarization diversity techniques are an option in ionospheric channels.

The different polarizations and the usage of the ionospheric characteristic waves as
two different communication channels allow for the usage of polarization diversity tech-
niques to improve the robustness and throughput of the link. The concept of polarization
diversity was first introduced by the authors of [14] in the 1950s. The work presented in
Reference [15] was one of the first to use polarization diversity at the receiver achieving
9600 bps for a 1800 km skywave link. The authors of [16] highlighted the importance of us-
ing both ordinary and extraordinary waves for multiple-input multiple-output (MIMO) in
the case of NVIS propagation, and the cross-correlation of both channels was analyzed for
narrowband transmissions. A channel model for dual polarized MIMO communications
was proposed in [17] and some high throughput testbeds are presented in [18,19], where
the improved channel capacity was analyzed. Our team, after evaluating the polarization
diversity for long-haul HF links between the Antarctic and Spain [20], is now considering
the dual-polarized reception for a NVIS sensors network in order to decrease either the
transmission power or the size of the antennas.

In order to improve the robustness of the NVIS link and apply polarization diversity
techniques, a combination of the different signals that arrive at the receiver is needed. There
are multiple methods of diversity combining, each one presenting different characteristics
and gains. We studied two different techniques: equal-gain combining, a method that sums
all the received signals coherently, and selection combining, a technique that selects the
strongest signal received (a higher signal-to-noise ratio (SNR)) and ignores the other.

3. Sounding System

All the hardware used in order to carry out this work is presented in this section.
Firstly, a description of the overall system is presented, explaining all the infrastructure
and peripherals used. Secondly, the transmitted data frames are listed and detailed. Finally,
the implemented link and the realized tests are described.

3.1. System Description

The system to perform this study relies on a software defined radio (SDR), which
can be seen in Figure 2. The versatility of the SDR offers the possibility to adjust pa-
rameters for the adaptation of different scenarios. Our SDR was implemented with a
field-programmable gate array (FPGA) combined with the Zynq-7010-SOC [21], which
were placed in a Red Pitaya STEMlab 125-14 board [22]. This board makes all the computing
operations possible, since it features analog-to-digital converters (ADC) and digital-to-
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analog converters (DAC) with a resolution of 14 bits, all driven by a system clock of
125 MSPS. The Red Pitaya board was connected via Ethernet to a Raspberry Pi 3 [23], which
saved the received files onto a hard disk and managed the different peripherals [24]. These
connections are presented below:
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• Antennas: At the transmitter site, an inverted vee (V-) antenna was used, which was
placed in La Salle URL in Barcelona. At the receiver side in Cambrils, two orthogonal
inverted-V antennas were located. Figure 3 displays a graphical representation of the
orthogonal antennas located in Cambrils. The frequency is currently set to 5.4 MHz, a
value based on ionogram studies [25]. The height of the antennas is 14.5 m and the
length of their legs is 14 m.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 17 

 

possible, since it features analog-to-digital converters (ADC) and digital-to-analog con-
verters (DAC) with a resolution of 14 bits, all driven by a system clock of 125 MSPS. The 
Red Pitaya board was connected via Ethernet to a Raspberry Pi 3 [23], which saved the 
received files onto a hard disk and managed the different peripherals [24]. These connec-
tions are presented below: 

 
Figure 2. System block diagram. 

• Antennas: At the transmitter site, an inverted vee (V-) antenna was used, which was 
placed in La Salle URL in Barcelona. At the receiver side in Cambrils, two orthogonal 
inverted-V antennas were located. Figure 3 displays a graphical representation of the 
orthogonal antennas located in Cambrils. The frequency is currently set to 5.4 MHz, 
a value based on ionogram studies [25]. The height of the antennas is 14.5 m and the 
length of their legs is 14 m. 

 
Figure 3. Diagram of the orthogonal inverted vee antennas in the receiver. 

• Phasing Network: The two perpendicular inverted vee antennas worked together 
with a phasing network (PN; in Figure 2), which was in charge of shifting the phase 
of one of the two receiver antennas to make it possible to receive different and or-
thogonal polarizations [26]. The phasing network got a total of four wires, two from 
each antenna, as we duplicated the received signals using a radio frequency splitter 
(PDML-20A-100 from Merrimac Industries, Inc.). The route that both antennas fol-
lowed was the same: one cable was lengthened with a quarter-wave phasing line to 
provide a 90° shift and connected to a radio frequency (RF) combiner (PDML-20A-
100 from Merrimac Industries, Inc.), and the other feed line was directly connected 

Figure 3. Diagram of the orthogonal inverted vee antennas in the receiver.

• Phasing Network: The two perpendicular inverted vee antennas worked together with
a phasing network (PN; in Figure 2), which was in charge of shifting the phase of one
of the two receiver antennas to make it possible to receive different and orthogonal
polarizations [26]. The phasing network got a total of four wires, two from each
antenna, as we duplicated the received signals using a radio frequency splitter (PDML-
20A-100 from Merrimac Industries, Inc.). The route that both antennas followed was
the same: one cable was lengthened with a quarter-wave phasing line to provide a
90◦ shift and connected to a radio frequency (RF) combiner (PDML-20A-100 from
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Merrimac Industries, Inc.), and the other feed line was directly connected to a RF
combiner. The output of the PN gave us a phase difference between the inverted vee
antennas of either +90◦ or −90◦. A block diagram of the phasing network is displayed
in Figure 4.
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• Amplifier: In order to do the sounding an A-class amplifier was used in the transmitter
side. The model chosen was the Bonn BLWA 0103-250, which achieves 250 W of
maximum power with an input power of 0 dBm.

• Low-noise amplifier (LNA): The model chosen was the ZFL-500LN+, with a mini-
mum gain of 20 dB, a frequency range between 0.05 and 500 MHz, and an operating
temperature between −20 ◦C and 70 ◦C.

• Filters: We used two band-pass filters (BPF) to avoid known interferences on both
sides. On the transmitter side, we filtered the NVIS useful frequency range from 3 to
7 MHz. On the other side, we used a filter with a band pass between 4 and 6 MHz. Our
system compensated for the phase delay of the BPF via software, as each data frame
was corrected in both amplitude and phase before being demodulated and studied.

• GPS: A GPS was used to synchronize the transmitter and receiver in time (fundamental
for the channel study performed). Time synchronization is essential to automate tests
and data analysis. Our experiment had different signals sent, which depend on the
minute of transmission. Thanks to the time synchronization, the transmitter knows
which data file to send and the receiver tags it before saving it in order to analyze the
data correctly. The transmitter and receiver were configured with extreme precision
thanks to the GPS modules incorporated into the Raspberry. Furthermore, we also
used PN sequences to detect the start of the received data structures and synchronize
the transmitter and the receiver.

3.2. Data Frame Design

The correct definition of the data frame was essential for the experiment. We defined
a level one frame of the Open Systems Interconnection model (OSI model), that consists
of a physical structure of the transmitted data. We named this level one frame the “data
frame”. A poor definition of the data frame could imply intersymbol interference (ISI)
and signal-to-noise ratio (SNR) fadings. Two different data frames were used to perform
our tests, which were designed on the basis of earlier studies and the soundings of the
ionospheric channel [27]. Figure 5 displays a graphical representation of the first type
of signal sent (Frame number 1), which was composed by a total of 50 data groups (we
named these structures “packets”), each formed by three different modulations: Phase-
shift keying (PSK), frequency-shift keying (FSK), and quadrature amplitude modulation
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(QAM). All the packets added a preamble that aims to mitigate the negative effects of the
ionospheric channel and the frequency deviation between the transmitter and the receiver
(the preamble is used to analyze and compensate the received signal’s phase and amplitude
via software). This preamble consisted of a 600 Hz tone and a sixth-order PN sequence,
and it was located at the beginning of each of the 50 transmitted packets. The sampling
speed of the system was 100 kS/s.
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Figure 5 exhibits the data frame’s duration at both the sample and time levels. An-
alyzing all the packet segments and their respective lengths, it can be observed that the
600 Hz tone’s duration was 6000 samples, the PN’s sequence duration was 512 samples,
and the modulated data transmitted corresponded to 10,500 samples. Furthermore, ev-
ery data block contained 250 symbols with a resample of 42 (10,500 samples divided by
250 symbols), resulting in a bandwidth of 2.38 kHz per data block. On the other hand,
the bandwidth used in the PNs was 12 kHz. This is because our frame had to respect the
coherence time of the ionospheric channel, and in the design of the data frame, we did
not want the PN sequences to have a significant influence. Our team decided to make the
pseudo-random sequences shorter in time, resulting in a bandwidth of 12 kHz.

The data frame designed had a total duration of 510.36 ms, which was less than the
most restrictive coherence time of the ionospheric channel (1.46 s) [28]. The total duration
of the 50 packets sent was 25.518 s.

The first tone of the data frame was preceded by an extra block made of a PN sequence,
intended to synchronize the system sample-wise.

All the data frames received were stored to be treated afterwards. The processing
applied to each one of the data frames is explained as follows: First of all, the system
identifies the data frame by correlating the signal received with the value of the PN
sequence transmitted. If there are equispaced peaks in the result of this correlation, a data
frame is identified. Once the system identifies the data frame, the first block encountered is
the 600 Hz tone. This tone of a duration of 60 ms is key to identify and correct the channel’s
Doppler shift. In our system, the Doppler shift could not be studied as a frequency offset,
as the Red Pitaya platform clocks have a low stability and create a relative frequency-drift
effect that is higher than the ionospheric channel. Measures of the platform show that the
maximum value of the frequency offset received, due to the low stability clocks, is about
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±20 Hz [29]. The 600 Hz tone added to the data frame helps in identifying the frequency
instability inserted by its variations between 580 and 620 Hz, approximately. Once the
frequency offset is calculated, the received signal is corrected and this frequency offset is
compensated for a correct demodulation of the signal.

The second block included in the data frame’s preamble is the sixth-order PN sequence,
whose function is to identify the start of the modulated data. The resampling of the PN
sequence was about eight and had a total duration of 5.12 ms, as shown in Figure 5. The
modulated data blocks were located just after the PN sequence.

As shown in Figure 6, a second data frame was designed for the study of the correlation
coefficient between the ordinary and extraordinary channels and their respective delay
spread. This second data frame consists of a group of equispaced PN sequences. The spaces
between the known sequences do not present any kind of signal, and present a theoretical
value of zero amplitude. The purpose of this design is the correct correlation of the PN
sequences, as it is fundamental for the correct computation of the multipath values and the
correlation coefficients between channels.
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A key factor for our study was the separation between PN sequences, as it indicates
the separation between the packets. This separation is the direct measurement cadence of
our system. For the first data frame (Figure 5), a measurement was performed every 165 ms
(6.06 Hz). For the second data frame used (Figure 6), a measurement was performed every
60 ms (16.17 Hz).

3.3. Test Scenario

To study the ionospheric channel, the research group installed a sounding system [29]
between two points in the Catalonia region (Spain). These NVIS nodes established a link
between La Salle University-URL Campus in Barcelona (41.41◦ N, 2.13◦ E) and a remote
location in Cambrils, Tarragona (41.08◦ N, 1.07◦ E). Figure 7 presents a satellite picture of
the terrain with the node locations highlighted in yellow. The distance between the two
points without line of sight (LOS) was approximately 97 km, a value that is perfectly within
the coverage area of an NVIS link. Surface wave signals did not affect our link thanks to
the radiation pattern of antennas used in the experiment (their main beam is completely
vertical, towards the sky) and the large distance between both points. This was verified
as we transmitted different data frames throughout the whole day. During night, when
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there is absence of ionospheric propagation at 5.4 MHz, we did not receive any signal in
our receiver, thus confirming that surface waves do not affect our experiment. Figure 8
presents the elevation profile between the nodes.
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Because of the high interferences and electromagnetic noise in the HF band in Barcelona
and its surroundings, the receiver was established in Cambrils. This configuration mini-
mized the interferences in the receiving node, thus maximizing the robustness of the link.

The channel study presents a sounding of 12 complete days in December 2019. A total
of 8308 files of 29.7 MB were studied, resulting in more than 240 GB of collected data. In
one hour, a total of 30 tests were performed. The tests are the transmissions made on our
link. These tests follow the format indicated by the experiment, which indicates the data
structure to be sent, the transmission power, and the order of modulation sent. These tests
followed two different experiments depending on which data frame they were transmitting
(Figure 5 or Figure 6). As it can be observed in Table 1, the first data frame transmitted
did a transmitting power sweep for five different modulation orders. This experiment is
used to evaluate the SDR’s frequency instability by computing the frequency shift of the
signal received.

Table 1. Experiment for the first data frame (see Figure 5).

Modulation Order Transmitting Power Min

2, 4, 8, 16, 32 3 W 05, 06, 07, 08, 09
2, 4, 8, 16, 32 6 W 15, 16, 17, 18, 19
2, 4, 8, 16, 32 12 W 25, 26, 27, 28, 29
2, 4, 8, 16, 32 25 W 35, 36, 37, 38, 39
2, 4, 8, 16, 32 50 W 45, 46, 47, 48, 49
2, 4, 8, 16, 32 100 W 55, 56, 57, 58, 59

On the other hand, the second data frame (Table 2) did not present any modulated
data (no modulation order implied) and was only transmitted at one transmitting power
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value. This second data frame and its experiment are used to compute the correlation
coefficient between both channels (correlation of the impulse responses of both channels),
the availability (data frames detected throughout a day), and the delay spread (received
multipath of the signal).

Table 2. Experiment for the second data frame (see Figure 6).

Transmitting Power Min

50 W

05, 06, 07, 08, 09
15, 16, 17, 18, 19
25, 26, 27, 28, 29
35, 36, 37, 38, 39
45, 46, 47, 48, 49
55, 56, 57, 58, 59

4. Ionospheric Channels Analysis

This section presents the detailed results obtained with the channel sounding per-
formed. The availability of the ordinary and extraordinary NVIS Channels, their cross-
correlation coefficient, and the delay spread are exhibited. Furthermore, the frequency
offset caused by the SDR’s frequency difference was also computed. The first three pa-
rameters (availability, correlation, and delay spread) were studied and computed using
the second data frame (Figure 6), as they focus on data frame detection and PN sequence
correlations. The remaining frequency instability was analyzed using the first data frame
(Figure 5) as it was computed packet-wise. Finally, we analyzed the usage of polarizations
diversity (the combining of the ordinary (O) and extraordinary (X) channels) and its im-
provement to the robustness of the NVIS link. Two different combining methods were used
and studied: selection combining and equal-gain combining. All the results of this study
are the product of observing the data sent over the 12 days. The data of all the days was
put together in different graphs to analyze the behavior of our link in the described period.

First of all, the availability of the ordinary and extraordinary wave’s channels was
evaluated. Figure 9 displays the percentage of data frames detected at 5.4 MHz at the
reception point in Cambrils. This data frame detection was based on the PN sequences
received and their correlation with our known sequence. The availability was defined as
follows: the total number of data frames received with respect to the total number of sent
data frames. The maximum availability (number of transmitted data frames) was defined
as the peak performance (corresponding to the 100% in our graph). The number of data
frames detected for every hour was based on this factor and then displayed in the graph.
Figure 9 states that the ionospheric channel is not active up until 7 Coordinated Universal
Time (UTC) (8 a.m. Central European Time (CET)) and stops being active at 17 UTC time
(6 p.m. CET). This result matches with the sunrise and the sunset in the month when the
tests were performed (November/December), as it corresponds approximately to the hours
of the activation and deactivation of the ionospheric channels. The best availability was
between 7 UTC and 16 UTC (8 a.m. and 5 p.m. CET). This high availability corresponds
to the day’s highest amount of solar activity. Comparing the ordinary and extraordinary
channels, it can be affirmed that the extraordinary channel clearly performed better. The
extraordinary wave received reached a peak performance of data frames detected at 15 UTC.
Two exceptional intervals (7 UTC and 16 UTC) can be identified in Figure 9, in which almost
only the extraordinary wave propagated and right-hand circular polarization (RHCP) was
received. The ordinary wave (LHCP) rarely propagated, resulting in availabilities between
30% and 40%. These intervals are known as “happy hours” [13]. At sunrise the ionization
showed a steep gradient and, accordingly, the morning happy hour was short (typically
30 min at mid-latitudes in winter, our scenario). The evening happy hour often lasted
more than an hour due to the slower ion recombination processes [13]. Consequently, the
highest differences in availability between the two channels coincided with the happy hours
mentioned. Figure 9 also exhibits the performance (percentage of data frames detected)
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of both the ionospheric channels. The legend of the graph is defined as follows: OR is
the performance of the ordinary wave, XOR is the performance of the extraordinary wave
received, and OR and XOR refers to the total performance between both ordinary and
extraordinary modes. The results are clearly better, achieving a result of 86% of the data
frames detected from 7 UTC to 16 UTC.
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The usage of both ionospheric channels at the same time resulted in the reception of
simultaneous signals. If these signals are decorrelated (two channels are considered as not
correlated when their cross-correlation coefficient value is lower than 0.7 [30]), an increase
of SNR (signal-to-noise ratio) can be achieved. MIMO and single-input multiple-output
(SIMO) links can benefit directly from this SNR gain, enabling link enhancement by the
application of diversity techniques.

Figure 10 displays the cross-correlation coefficient between the ordinary wave’s chan-
nel and the extraordinary wave’s channel throughout the day. This value was computed by
correlating the impulse responses of both channels. Before calculating the coefficient, the
impulse responses were previously synchronized, so the delay between the received waves
was not taken into account. A probability graph was exhibited in order to evaluate if both
received signals were decorrelated enough, depending on the hour of the day. Analyzing
the results, it can be stated that there is a probability of nearly 40% to achieve a correlation
coefficient below 0.7 in the happy hour intervals. The SNR of the received signals in these
intervals could be improved by the usage of diversity techniques.

In Figure 11, the delay spread of the ordinary and extraordinary waves can be analyzed,
respectively. The multipath of the NVIS link between Barcelona and Cambrils was studied
throughout the day. All the undesired paths limited our channel’s coherence bandwidth,
thus affecting the data frame design and the link’s performance.

The figure displayed below only takes into account the well-demodulated data frames.
If a data frame did not present enough SNR and the PN sequences were not correctly found,
no multipath was computed. Therefore, the following graph was analyzed together with
the channel’s availability, presented above (Figure 9). Only the hours where both channels
were active (7 UTC to 16 UTC) were taken into account for the delay spread study in order
to have accurate results.
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After carefully analyzing the delay spread of both channels, the highest value of the
link was found to be 2.89 ms, corresponding to a coherence bandwidth of 346 Hz, and was
provided by the extraordinary wave. On the other hand, the ordinary wave presented
a peak value of 2.71 ms, corresponding to 369 Hz of coherence bandwidth. Both values
implied receiving strong ISI among symbols in our system if we considered a time symbol
of 0.42 ms (standards STANAG and MIL-STD-188 110, 2.38 kHz bandwidth). The coherence
bandwidth of the ionospheric channel was thus defined as follows:

CB = 1/σ, (1)

where σ corresponds to the delay spread. If we now study the less restrictive values, it can
be observed that both waves often presented no multipath at all, as was observed in the
mean values of the delay spread received (very low delay spread values). Therefore, the
study of the mean value of the delay spread is key in our system design. The overall mean
values of the delay spread of both channels were similar, presenting some differences if the
graph was analyzed hour by hour. The differences in the multipath detected could only be
observed if we compared all data frames individually, resulting in different instantaneous
values. The mean value received of the ordinary wave was 0.33 ms, and the mean value
received of the extraordinary wave was 0.31 ms. Taking into account the most-restrictive
mean value (0.33 ms), which corresponds to a coherence bandwidth of 3 kHz (higher
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than our used bandwidth; thus, our system overcame the ISI of the channel in almost all
transmissions). Figure 12 displays the distribution of the delay spread of both ionospheric
modes independently.
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Another fundamental parameter to study for our NVIS system was the frequency
offset that our link was affected by. This frequency variation depends on the movement
between the transmitter and the receiver, which in our scenario should be produced by
the displacement of the physical layers of the ionosphere. Notwithstanding this, the
doppler shift caused by the ionosphere was negligible compared to the frequency variation
that the clocks of the Red Pitaya platform produced. This shift was directly related to
the temperature of the platform, which affected the clock’s stability. The channel study
performed in this research was implemented with rather cheap nodes, in a system where
low-stability clocks are usual. Accordingly, a good data frame design and a good post-
processing of the signals received was key to mitigate the negative effects of the usage of
low-cost technologies.

Figure 13 exhibits a boxplot for all the hours throughout the day when the iono-
spheric channels are active. It can be appreciated that the maximum frequency offset
received was −19.5 Hz and the minimum was −15 Hz, values that were remarkably higher
than the ionospheric layer’s Doppler shift (a value that can reach a maximum of 4 Hz,
approximately [31]).
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Finally, we present the study of the combination of the ordinary and extraordinary
wave’s received. Tests on the bit error rate (BER) and bit energy-to-noise power spectral
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density (Eb/N0) of the system were performed to evaluate the improvement of the robust-
ness achieved. The results of the fourth-order modulations with a transmit power of 50 W
are presented below.

First of all, we measured the relationship between the Eb/N0 received from the indi-
vidual characteristic waves (ordinary and extraordinary) compared to the Eb/N0 received
as a result of the application of diversity combining techniques (selection combining and
equal-gain combining). The Eb/N0 of the signal received was computed as follows:

Eb/N0 (dB) = SNR(dB) + 10·log 10(B) − 10·log 10(Rb), (2)

where Rb is the signal’s bitrate (depends on the modulation order under test), B is the noise
bandwidth of the measurement (2.3 kHz in our scenario), and SNR is the signal-to-noise
ratio of the received signal.

Figure 14 presents the behavior of the ionospheric waves and their combining by the
mean Eb/N0 received throughout the day. Figure 14 only exhibits the 4QAM results in order
to make the graph clearer. The 4PSK modulation presented almost identical performances
in terms of Eb/N0, while the 4FSK presented worse results. All three modulations are
studied in terms of the BER in Figure 15. We can state that the selection combining (SC)
technique presented a higher Eb/N0 value than the individual ionospheric waves in all the
studied hours. An improvement of up to 4 dB was achieved (at 12 UTC) while using this
method. The equal-gain combining (EGC) technique also improved the performance of
the link. An improvement of up to 3 dB was achieved (at 13 UTC), but there were certain
times of the day (11 UTC, 14–16 UTC) when this technique did not improve the robustness
of the link. Finally, we can also see that the mean Eb/N0 received by the O and X modes
differed by a maximum of 2 dB. Figure 14 compares the results obtained by using selection
combining, equal-gain combining, the ordinary mode, and the extraordinary mode.
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50 W throughout the day.

Figure 15 presents the BER study performed in our link, specifically the fourth-order
modulations with a transmitting power of 50 W. A clear improvement can be observed if
we compare the characteristic waves individually with the combining of these techniques.
The O and X (ordinary and extraordinary) modes had a 75% to 80% probability to achieve
a BER lower than 10−4 when using the 4PSK and 4QAM modulations, respectively. If we
used selection combining (SC), this probability improved up to 96% and 85%, respectively.
On the other hand, if we used equal-gain combining (EGC), the probabilities to receive
a BER lower than 10−4 improved to 82% for both modulations. The 4FSK modulation
was the modulation with the worst performance. For the O and X waves, the 4FSK had a
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55% to 57% of probability to achieve a BER lower than 10−4, respectively. Using diversity
combining, this probability improved up to 88% with SC and 59% with EGC.
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5. Conclusions

In this work we present the single-frequency study of the two ionospheric charac-
teristic waves as different communication channels. We analyzed the cross-correlation
coefficient and the availability of both waves using nearly orthogonal polarized antennas.
Similarly, we also studied the delay spread of both channels. We measured the frequency
offset caused by the use of low-stability clocks on a low-cost system. Finally, we studied the
BER and Eb/N0 improvement of the system with the application of polarization diversity
techniques, using selection combining and equal-gain combining. The research carried
out in this work focused on two main objectives: the exploration of the feasibility of using
polarization diversity techniques thanks to the decorrelation between the ordinary and
extraordinary waves, and the study of the properties of each ionospheric channel for the
optimization of the data frames in future studies and further channel characterization.
From 17 UTC to 6 UTC, the lowest cross-correlation coefficient was found.

This work presents the comparison between all the parameters studied. Table 3 is
exhibited below for a better understanding of these parameters.

Table 3. Channel study summary.

Parameter
Ordinary Wave Extraordinary Wave

Max Min Mean Max Min Mean

Availability (7 UTC to
16 UTC) 74% 30% 57.6% 94% 56.67% 72.2%

Delay Spread 2.71 ms ~0 ms 0.33 ms 2.89 ms ~0 ms 0.31 ms
SDR Frequency offset −19.5 Hz −14.5 Hz −17.7 Hz −19.5 Hz −14.5 Hz −17.7 Hz

The availability results showed that the extraordinary wave presented better results.
Two “happy hour” [13] intervals were identified (sunrise and evening beginning), where
the number of data frames detected by each ionospheric channel differed more. Another
study realized in this work analyzed the usage of both signals simultaneously and the
data frame detection between them both working together. The mean value of this new
availability (from 7 UTC to 16 UTC) was 86%, increasing the results obtained by a singular
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characteristic wave by more than 13%. These results encourage the study and application
of diversity techniques and their combining at the receiver to increase the SNR of this
NVIS link.

The delay spread (directly related to the multipath) of both channels was almost
identical, a fact that allowed us to use the same coherence bandwidth for both channels.
Having a huge value difference between both channels would imply the usage of the
most restrictive data frames for the channel with the lower delay spread, not taking full
advantage of the parameters of one channel.

The study of the Doppler shift was not performed properly because the system used a
low-cost platform (higher frequency offset from the Red Pitaya clocks than the ionosphere’s
Doppler shift). Thus, well-designed data frame working together with a powerful post-
processing of the signal are key to mitigate the channel’s negative effect (up to ±20 Hz in
this work’s infrastructure).

After analyzing the results obtained in the BER and Eb/N0 studies, we can conclude
that the application of polarization diversity implies an improvement in the robustness of
the link. A higher Eb/N0 and a lower BER were received using both selection combining
and equal-gain combining. Selection combining presented the best results, improving the
mean Eb/N0 up to 4 dB compared to an individual ionospheric mode, and also remarkably
lowering the BER results for the different modulations studied (4PSK, 4FSK, and 4QAM).
Furthermore, we can also affirm that the ordinary and extraordinary waves were received
with different mean Eb/N0 values, which differed up to 2 dB.

According to our knowledge, no similar studies were performed for NVIS transmis-
sions. The closest study for a channel like ours and the analysis of the different modes
of the ionosphere was performed in [28] (a multifrequency study from 2012). Similar
results were obtained in the multipath study for both the O and X modes. Our study, in
addition, presented the availability of the different modes for NVIS transmissions and their
correlation coefficients. The authors of [28] also presented a study of the BER improvement
(up to 8% improvement) by the use of polarization diversity. Our system, on the other
hand, improved the robustness of NVIS communications much more, up to 33% (4FSK at
50 W).
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