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Abstract: Antarctica is a key location for many research fields. The lack of telecommunication systems
that interconnect remote base camps hardens the possibility of building synergies among different
polar research studies. This paper defines a network architecture to deploy a group of interconnected
remote Antarctic wireless sensor networks providing an IoT telemetry service. Long backhaul NVIS
links were used to interconnect remote networks. This architecture presents some properties from
challenging networks that require evaluating the viability of the solution. A heterogeneous layer-
based model to measure and improve the trustworthiness of the service was defined and presented.
The model was validated and the trustworthiness of the system was measured using the Riverbed
Model simulator.
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1. Introduction

During the last half-century, Antarctica has been a key location for many research
studies in several fields such as oceanography, bioscience, geoscience, physical sciences,
and other environmental studies [1]. Although many bases have been settled in the
peripheral areas of the Antarctic continent [2], the difficult environment and terrain provoke
numerous challenges when it comes to implementing new operational services for modern
studies. One of these challenges is the lack of telecommunication systems in Antarctica [3],
especially wireless sensor networks (WSNs). Without WSNs, new research studies tend
to use non-automatized ways of gathering data, which are more complex logistically, less
scalable, and more error prone. Moreover, most Antarctic bases are not interconnected [3].
This fact lowers the possibilities for different research groups to collaborate on similar
studies, and the advantages of providing synoptic region-wide observations and building
synergies are lost [3].

The lack of conventional telecommunication services in Antarctica leverages the use
of satellite communications or other systems such as high-frequency (HF) links to build
a network of interconnected remote WSNs [4]. The first option is commonly discarded
because of economic reasons, given the high costs of subscribing to this type of service.
Furthermore, the degree of coverage offered by satellite constellations in Antarctic latitudes
is not desirable [4]. To overcome these difficulties, the SHETLAND-NET [5] project aims
to expand the use of communications in HF (3–30 MHz) by ionospheric reflection to the
establishment of a low consumption communications system that allows the collection of
sensor data distributed throughout the archipelago of the South Shetland Islands. This
technology, called near vertical incidence skywave (NVIS), does not require direct vision
and is totally independent of the satellite since the signal is transmitted upwards, allowing it
to overcome any geographical feature [4,6,7]. The long backhaul NVIS link has a coverage
range of up to 250 km, and its reliability is dependent on ionospheric conditions and
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solar activity. Researchers from our university have previously participated in research
campaigns on Livingston Island, studying and verifying the NVIS communication system’s
viability [8–10]. A new campaign is planned to be carried out in the Antarctic field, with
the goal to test the new improvements of the NVIS link [11] and deploy an IoT network
for three different use cases: a telemetry service for light data (e.g., penguin tracking [12],
a telemetry service for fat data (e.g., lichen observation [13]), and a distributed computing
service to map the ionosphere along Antarctica).

However, a network deployed with long backhaul NVIS links may present some
situations typical of challenging networks [14], such as intermittent connectivity, end-to-end
disconnection, and variable error rates, making the implementation of the aforementioned
services over a traditional TCP/IP architecture difficult. For the sake of the project, it
is not feasible to wait until the Antarctic campaign starts to test the system in the field.
Antarctic campaigns are usually very time restricted due to the meteorological conditions.
Its remote location makes it challenging to overcome unanticipated difficulties that may
arise (e.g., incorrect dimensioning of the needed equipment, poor performance of the
proposed architecture). For this reason, it is necessary to study the viability and the
expected trustworthiness of implementing this kind of network before its deployment in
the field. The pre-deployment phase of the SHETLAND-NET project needs this previous
research on the factors that affect the robustness of a communication network, which will
help us build more reliable expectations for our proposed service’s results and minimize
the number of unexpected adversities (e.g., degraded service performance and reliability,
loss of connectivity). In our case, this study was executed by simulating the conditions and
the service that will be deployed in Antarctica.

This paper focuses on the use case of the telemetry service for light data. Many
Antarctic studies could be helped by automating the data gathering of their research (e.g.,
geomagnetic studies [15], blowing snow monitoring [16], climate change [17], biological
monitoring [12], or permafrost analysis [18]). Most of the data for these studies are currently
gathered manually, and some zones might be challenging to reach, even with special
vehicles such as snow motorbikes. For these reasons, the studies are focused on small
areas of the Antarctic region. Thus, a WSN that provides a broader coverage area and the
interconnection of remote areas could increase the results’ relevance (e.g., more samples
could be collected, broader synergies could be built). Moreover, the long backhaul links
in charge of communicating remote WSNs could also be used to interconnect different
Antarctic bases [4].

The paper has two main objectives. First, it was necessary to define which architecture,
technologies, and protocols the telemetry service will use. As mentioned before, the
drawbacks of challenging networks in addition to the extreme conditions sensors and
other equipment need to work within is that it can provoke the service to reach low
levels of performance and trustworthiness in the face of adversities. Thus, the paper’s
second objective was to propose and validate a model for visualizing, understanding, and
measuring the trustworthiness of the overall service before its deployment in the field.
With this model, the service’s weaknesses could be detected, and countermeasures could
be proposed to improve its trustworthiness and foresee their impact. We used the Riverbed
Modeler simulator [19] to validate the model and measure the service’s trustworthiness. To
confirm the results, the tests were performed by modeling the permafrost use case of [18],
where Ground Terrestrial Network-Permafrost (GTN-P) stations were used to measure
32 different parameters. These tests can be replicated to other concrete telemetry use cases
by modeling them too.

The rest of the paper is organized as follows. In Sections 2 and 3, the background and
related work are described, respectively. Section 4 defines the use case’s service architecture.
Section 5 presents the trustworthiness model. In Section 6, the performed simulations are
described, and the extracted results are discussed in Section 7. Finally, the conclusions of
the paper and future work are detailed in Section 8.
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2. Background Work in IoT

This section presents mature IoT and WSN technologies that can help to define the
network architecture of our telemetry use case for remote regions. In terms of network
architecture for WSNs, it is necessary to differentiate between the access network and the
backbone network. On the one hand, the access network provides connectivity to the IoT
sensors in a variable coverage range, depending on the technology. On the other hand, the
backbone is in charge of interconnecting the access networks to build a global WSN. The
backbone network can use long backhaul links to reach remote areas and broader coverage
than access network technologies.

2.1. IoT Access Network

The access network technologies for WSNs are commonly known as the IoT commu-
nication protocols [20] or IoT MAC layer protocols [21]. These protocols are commonly
classified, depending on the size of the coverage area, as short-range coverage protocols
and long-range protocols. Networks built on the latter kind of protocols are commonly
known as low-power wide area networks (LPWANs). The authors of [20,21] classified the
most used technologies in IoT. For short-range networks, the most common technologies
are RFID, NFC, Bluetooth Low Energy (BLE), Zigbee, 6LoWPAN, and Z-Wave. For LP-
WANs, the most used communication protocols are narrow-band IoT (NB-IoT), long-term
evolution-enhanced machine-type communication (LTE eMTC), Sigfox, and LoRa. To the
best of our knowledge, in the specific case of Antarctica, the deployment of WSNs are
scarce and limited to temporary testing deployments but not persistent. One example of
short-range communications is the SNOWWEB project [22], where a network of weather
stations was built using Zigbee transceivers. LPWANs seem to be more suitable options
since the coverage area for deploying the WSN is more extended. For that reason, the
authors of [23] studied the applicability of LoRa in Antarctic regions by characterizing its
channel in the field, achieving a coverage area of up to a 30 km radius. Despite this, it
seems feasible that some sensors of the WSN can be located out of range of the gateway
due to the geographic conditions. In this case, there is the need to use mobile gateways
and deploy mobile ad hoc networks (MANETs) [4,24–26].

2.2. IoT Backbone Network

On the other hand, the backbone network is in charge of interconnecting remote
WSNs to build a single major network. For this purpose, LPWAN communications are
not valid because the links that need to be established must have a broader range (several
tenths of kilometers). Moreover, since the Antarctic region has many terrain variations,
it is expected that two nodes separated by several kilometers do not have line of sight
(LOS) [7]. Satellite communications are a solution to overcome these problems. However,
geostationary Earth orbit (GEO) satellites do not cover Antarctica’s latitudes adequately,
and current low-altitude Earth orbit (LEO) satellites provide partial or no coverage in
deep polar regions [27]. The authors of [27] studied the possibility of covering the whole
Antarctic continent with a three-satellite constellation in elliptical orbits, but it has not been
implemented. A significantly lower cost solution suitable for WSNs in remote areas is the
use of HF communications. Specifically, the NVIS technique has already been tested in
Antarctica [4,6,7]. Results show that this kind of long backhaul link can reach a throughput
of up to 20 Kbps and a coverage radius of up to 250 Km without the need for LoS [28].
The main drawback of NVIS is the considerable variation of the transmitting channel’s
characteristics, the ionosphere, which can lead to periods of non-connectivity, becoming
a challenging network [14]. Thus, it is necessary to test and measure NVIS networks’
trustworthiness when used to transport data from actual use cases.

3. Related Work on Cyber Physical Systems’ Trustworthiness

This section describes the related work by other authors to define and measure the
trustworthiness of cyber physical systems (CPS). A CPS is defined as a system with inte-
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grated computational and physical capabilities. Common examples of CPSs include indus-
trial control systems, automated vehicles and aircraft controls, wireless sensor networks,
smart grids, and almost all devices typically encompassed by the Internet of Things [29,30].
The trustworthiness of CPS is defined in the literature, in general terms, as the property
of behaving as expected under adversarial conditions [31]. However, these adversarial
conditions can come from different reasons, e.g., faulty nodes, byzantine errors, malicious
behaviors, and network malfunction [32]. For this reason, in the literature, there can be
found many different approaches to measuring or providing trustworthiness that refer to
disparate elements. We propose to classify them into the following four categories that will
be used later to define our trustworthiness model:

1. Data Trustworthiness: It is defined as the possibility of ascertaining the correctness
of the data provided by the source [33]. Many methods try to detect faulty nodes,
false alarms, and sensor misreading using different approaches [32]. For instance,
the authors of [34] presented a distributed Bayesian algorithm to detect faulty nodes,
while the authors of [35] used a fog computing architecture to detect, filter, and correct
abnormal sensed data. In addition, the authors of [36] presented a data intrusion
detection system to trigger false data from malicious attacks;

2. Network Trustworthiness: It can be defined as the probability that a packet will
reach its destination unaltered despite the adversities (e.g., link failure, link satura-
tion, malicious attacks), and it is a crucial factor of low-power and lossy networks
(LLNs) [37]. Improving network trustworthiness and performance is a challenge that
has been addressed from different perspectives such as transmission coding [38–41],
load balancing and redundancy protocols [42], transport protocols [43], dynamic
routing and topology control protocols [44,45], cybersecurity mechanisms [46], and
delay tolerant network (DTN) architectures and protocols [47]. In the case of routing,
both proactive routing protocols (e.g., the IPv6 Routing Protocol for low-power and
lossy networks (RPL) and optimized link state routing (OLSR)) and reactive routing
protocols (e.g., ad hoc on-demand distance vector (AODV) and link-quality source
routing (LQSR)) have been proposed in the literature to solve the drawbacks of LLNs
and MANETs [44,45];

3. Social Trustworthiness: This trend has gained more attention since the irruption
of the Social Internet of Things (SIoT) concept [48,49]. In SIoT trustworthiness, the
capability of the objects to establish social relationships autonomously between them
is leveraged to define more complex trust and reputation models that take into account
several input parameters. The authors of [50] define a subjective model that considers
factors as the computational capabilities of the nodes, the type of relationship between
them, the total number of transactions, the credibility of a node, and the feedback
provided by other nodes, among others. In [51], the authors evolved their previous
model and based it on more parameters, such as the neighborhood of nodes, and
presented a new objective model with a faster transitory response. The authors of [52]
proposed another model that defines the input parameters as the expected gain on
success, the expected damage on a failure, the expected cost, the expected result, and
the goal. The authors of [53] define a decentralized, self-enforcing trust management
system based on a feedback system and reputationally secure multiparty calculations
to ensure the privacy of each party’s provided data;

4. Consensus: This represents a state where all participants of the same distributed
system agree on the same data values [54]. Consensus protocols can be divided
into two general blocks: proof-based consensus and byzantine consensus. The first
group is oriented to blockchain technology, where all participants compete with
each other to mine a block, and the most used protocols are proof-of-work, proof-of-
stake, and its variants [55–59]. The main drawback of these protocols for IoT is that
most devices have simple hardware specifications and low processing power, being
incapable of performing the mining tasks of blockchain [60]. The second major group
of consensus protocols is the more classical byzantine based. These kinds of protocols



Sensors 2021, 21, 3446 5 of 30

implement voting-based mechanisms to reach an agreement rather than competing
among them, which generally results in less resource consumption. The drawback
of these mechanisms is the number of messages that need to be delivered through
the network to reach an agreement. The most well-known protocols in this category
are Practical Byzantine Fault Tolerance, RAFT, PaXoS, and Ripple, although several
variants have emerged year-by-year [55].

To the best of our knowledge, all the approaches that can be found in the literature
focus on specific areas of trustworthiness, but none of them include all of the four trust-
worthiness topics. This fact can lead to misinterpreting the reasons for an inferior service’s
trustworthiness level, and wrong countermeasures to improve it could be applied if the
interdependencies between different trustworthiness categories are not considered (as
will be seen in Section 5.4). For this reason, we found the need to design our own model
to measure a system’s trustworthiness level that included the four categories mentioned
above, which could help us anticipate and identify the possible weaknesses in our IoT
telemetry system. Table 1 summarizes the characteristics of the analyzed trustworthiness
approaches.

Table 1. Qualitative benchmark of the studied trustworthiness approaches.

Trustworthiness
Use [34–36] [38–41] [42] [43] [44,45] [47] [50–53] [54–60] Own Model

Data
Trustworthiness High None None None None None Medium Medium High

Network
Trustworthiness Low Medium High Medium High High Low Low High

Social
Trustworthiness None None None None None None High None High

Consensus None None None None None None None High High

Metrics used
Faulty
Sensed

Data

Bit Error
Rate

Packet
Delivery

Ratio
(PDR)

PDR,
Throughput,

Delay

PDR,
Delay

PDR,
Delay

Successful
Transac-

tions

Successful
Transaction,
Byzantine

Node
Tolerance,

Throughput

Faulty Sensing
Ratio, PDR,
Successful

Transaction
Rate, Byzantine
Node Tolerance

4. Network and Service Architecture

Prior to applying the model of trustworthiness, our first goal was to define the archi-
tecture of the telemetry use case that was to be deployed in the Antarctic campaign of the
SHETLAND-NET project. As mentioned before, the concrete case was the improvement of
permafrost studies by automating data gathering from the GTN-P stations (the sensors),
which measure 32 different parameters. Currently, data are gathered only once a day,
and the authors from [18] left the complete automation of the GTN-P stations as an open
challenge, given that their approach suffers from a lack of connectivity. It is important to
remark that the architecture described below applies to any telemetry use case. However,
we will use the example of the GTN-P stations’ permafrost research that will be carried out
during our campaign in the field.

We propose to use the architecture defined for the deployment phase SHETLAND-
NET project [5]. In our approach [28], we aim to interconnect all remote sensors to a control
center, building a heterogeneous global wireless sensor network (GWSN) composed of
several wide wireless sensor networks (WWSN), able to gather data more frequently. The
first approach to designing a remote sensing system for the Antarctic region was described
in [4] during the SHETLAND-NET project’s early stages, describing how sensors could
reach and use NVIS as a long backhaul link. However, it was mostly centered on designing
the characteristics of the physical layer of the NVIS (backbone) network. In this paper,
a more detailed description of the overall network architecture is presented. The network
diagram is detailed in Figure 1.
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The access network (WWSN) will be in charge of providing connectivity to the remote
sensors, transporting the gathered data from the sensors (GTN-P stations connected to a
low-consumption board) to the gateways (e.g., a Raspberry Pi). The main gateway of each
WWSN will be located near the research base, with the GTN-P stations located around
it in a few-kilometer radius. For redundancy reasons, groups of GTN-P stations can be
clustered and placed close enough to interpret that they measure the same permafrost
values. These stations will sense the data and send it to the gateway once per hour. For
this use case in Antarctica, it is logical to think that the wider the area that can be covered
by the access communication technology the better, because more sensors will be able
to be placed far from the research base so researchers will have access to sensors placed
farther away while saving valuable time in collecting the data. For this reason, short-range
communications are less suitable, and LPWAN communications are preferred. The lack of
telecommunication operators providing service in Antarctica forces operator-dependent
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communication services, such as Sigfox, NB-IoT, or LTE eMTC, to be discarded. This
leaves LoRa as the main candidate to deploy the access network. LoRa transceivers will
be placed in each GTN-P station, responsible for sending the measured data to the LoRa
gateway. As explained in [4], this gateway was implemented with a Raspberry Pi 3B+ in
previous Antarctic campaigns of the SHETLAND-NET project, and it is responsible for
storing the gathered data from all the sensors it is giving service to, ready to send all these
data through the backbone network.

The backbone network will be composed of all NVIS nodes, which will interconnect
remote WWSNs through the long backhaul links to form the GWSN. Each NVIS node
mainly consists of a Red Pitaya, a Raspberry Pi 3B+, and an HF antenna [7]. The link
that can be established between two NVIS nodes has a range of up to 250 km. In order to
interconnect all the WWSNs and reach all remote areas, a multi-hop network will need
to be deployed. Thus, some of the NVIS nodes will have to act as repeaters. At least one
NVIS node will need to be connected to the control center in order to send all the data to
it. To avoid a single point of failure (SPF), having more than one NVIS node connected to
the control center is recommended. The possibility of having multiple paths to reach one
destination demands the need for a routing protocol able to find the best possible loop-free
path in the network [28].

The operation of the backbone network can be summarized as follows. Each NVIS
node will act as a concentrator, gathering the data from every GTN-P station inside their
LoRa coverage area. Once all possible data are collected, the NVIS node will forward it
to the node connected to the control center, following the path determined by the routing
protocol through the backbone network.

However, we can find three main issues that can provoke this architecture to become
a challenging network [14]:

1. Due to the fact of Antarctica’s extreme weather and environmental conditions, both
sensors and gateways could experience temporary or persistent malfunctioning;

2. The irregular elevations of the Antarctic terrain might create situations where sensors
do not have a LoS path through the gateway. This fact degrades the performance of
LoRa communications considerably [23];

3. Depending on the ionosphere’s state and the solar activity, NVIS links may become
unavailable temporally or intermittently [4,6,7,11].

For this reason, our primary goal was to establish a model to measure the trustworthi-
ness of a CPS, with which the performance of the proposed architecture can be evaluated
and its weaknesses detected and improved. Our model will be used in the pre-deployment
phase of the SHETLAND-NET project to foresee performance difficulties of the defined
architecture that may arise during its deployment in the field and predict the effect of the
proposed countermeasures.

5. Trustworthiness Model Definition

Our model proposal to measure the trustworthiness and evaluate a CPS’s performance
(in our case, a group of interconnected remote Antarctic wireless sensor networks providing
an IoT telemetry service) is a layer-based model. This model is characterized by two base
layers (Data Trustworthiness Layer and Network Trustworthiness Layer), two extension
layers (Social Trustworthiness Layer and Consensus Layer), and the interaction among
all of them. The Data Trustworthiness, Network Trustworthiness, Social Trustworthiness,
and Consensus Layers can collectively define a system’s trustworthiness. A graphic
representation of our layered model is shown in Figure 2.

We postulated that each layer is characterized by its definition (scope), how the
trustworthiness of that layer is measured (metric), and how the value of this metric can be
improved (correction).
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On the one hand, Data and Network Trustworthiness are the base layers of our model,
because the system that we want to measure is meaningless if we do not have data to be
exchanged between nodes through a network. On the other hand, Social Trustworthiness
and Consensus are the extension layers because they include functionalities that are not
needed in the service architecture but are optional to implement.

5.1. Trustworthiness Layers’ Definitions

We propose the following definitions for each layer, based on the classification of
trustworthiness approaches we defined in Section 3:

1. Data Trustworthiness Layer: Is the layer responsible for ascertaining the correctness
of the data provided by the source;

2. Network Trustworthiness Layer: Is the layer responsible for assuring that a packet
reaches its destination on time and unaltered despite the adversities (e.g., link failure,
link saturation, or malicious attacks);

3. Social Trustworthiness Layer: Is the layer responsible for leveraging the capability of
the objects to establish social relationships autonomously between them to improve
the trust between them and the correctness of gathered data;

4. Consensus Layer: Is the layer responsible for reaching a state where all participants
of a group agree on the same response or result.

5.2. Trustworthiness Layers’ Metrics

Managing the trustworthiness of a system is possible when the different layers are
separately understood. This way, objectives and metrics can be defined to measure the level
of trustworthiness. In order to measure the four layers of trustworthiness, we have defined
a quantitative metric for each layer. Once metrics are defined, a trustworthiness target can
be determined, which is a quantitative objective given to a trustworthiness metric. If a
trustworthiness characteristic does not meet its target, a change factor is needed to revert
the situation. The combination of all change factors defined to meet the trustworthiness
targets is called the trustworthiness implementation.
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We propose that the trustworthiness model will use the normalized metrics defined in
Table 2 to quantify and measure trustworthiness. We selected these well-known metrics as
they are also used to measure the impact of the technologies and approaches described in
Section 3. We normalized all of them for better cohesion with our layer-based approach.

Table 2. Trustworthiness metrics.

Layer Metric Range

Data Faulty Sensing Ratio [35,36] [0, 1]
Network Packet Delivery Ratio [44,45] [0, 1]

Social Successful Transaction Rate [50,51] [0, 1]
Consensus Byzantine Node Tolerance [55,56] [0, 1]

The faulty sensing ratio (FSR) is defined as the proportion of false sensed values (FSV)
by all nodes and total sensed values (TSV) in a defined time period as stated in Equation (1).

FSR =
FSV
TSV

. (1)

We considered that a sensed value is every independent and semantically significant
measured data that a sensor stores in its memory (e.g., RAM, Flash, hard drive). Suppose
no corrective methods are used in the system. In that case, sensed data (e.g., temperature,
humidity, position, ice content) are considered to be faultily sensed if the value stored in
the sensing (source) node’s memory is different from the value that the sensor should have
correctly read (within a tolerance percentage). In real implementations, the number of
FSV can only be measured if the sensed data’s value is known a priori (ground truth) [61].
Otherwise, only in simulations it is possible to quantify the number of FSV. FSV and
TSV are parameters that must be gathered within the same time slot to calculate the ratio
correctly. The lower the FSR, the better the data trustworthiness.

The packet delivery ratio (PDR) is calculated as the quotient between the total number
of packets received (Pr) by all nodes and the total number of packets sent (Ps) by all nodes
in the same time slot as stated in Equation (2). A packet is considered received if and only
if the reception time (Trx) is less or equal to the transmission time (Ttx) plus a defined
threshold offset η (Trx ≤ Ttx + η), and the packet content is not altered. The higher the PDR
is, the better the network trustworthiness. In our proposal, retransmitted packets (if any)
and original packets are counted separately to compute the metric value.

PDR =
Pr
Ps

. (2)

The successful transaction rate (STR) is the proportion between the number of suc-
cessful transactions (STs) and the total number of transactions (TTs) in a defined time slot
as stated in Equation (3). We defined a transaction, l, as a sensed value, v, that a node, j,
expects to receive from a node or group of nodes, i. Retransmitted or duplicated packets
for the same value, v, are considered part of a single transaction, l. A transaction, l, is
considered successful when a node, j, expects to get some information or data (v) from
node i before a defined maximum reception time (Trxmax) and receives it as expected, thus
providing good feedback (fijl = 1) for that transaction to node i. ST and TT are parameters
that must be gathered within the same time slot to calculate the ratio correctly. The higher
the STR, the better the social trustworthiness.

STR =
ST
TT

. (3)

The byzantine node tolerance (BNT) is defined as the proportion of the supported
byzantine nodes (Nb) that can participate in the consensus system without affecting the
correctness of the general agreement and the total number of nodes (Nt) that participate
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in the consensus system as stated in Equation (3). A node is considered to be byzantine if
it experiences a crash or soft fault that incapacitates it to behave as expected, or if it does
not behave as expected on purpose (malicious node). The higher the BNT, the higher the
probability to reach a correct general agreement. Although theoretically, the BNT value
range is between 0 and 1, in practice, it is not possible to reach a correct consensus with a
BNT ≥ 0.5.

BNT =
Nb
Nt

. (4)

5.3. Trustworthiness Improvement Examples

Now that we have defined the four trustworthiness layers and their associated metrics,
we can give some examples of techniques and protocols that can be used as countermea-
sures at each layer to improve the metrics’ values.

5.3.1. Data Trustworthiness Countermeasures

At the Data Trustworthiness Layer, corrective methods can be applied that try to detect
abnormal data (false sensed values) stored in the source node due to the fact of a sensor
malfunctioning, a misreading of the sensed data, or erratic writing to the node’s memory.
Corrective methods can be used to detect and correct these abnormal values by comparing
them to the values sensed by the same node previously and other mechanisms such as
hashes, checksums, and parity bits. If these corrections are performed at the post-processing
stage by the receiving server or gateway, the nodes’ malicious data manipulation can also
be detected. However, our model assumes that corrections are only made by the own
node (source node). Otherwise, errors that originated during the data transport through
the network, which are out of our scope of definition for the Data Trustworthiness Layer,
could be misinterpreted as source node errors. The drawback of this assumption is that
only non-malicious errors are likely to be corrected at this layer because malicious nodes
might not correct data on purpose. Our model specifies that other layers of the model are
responsible for mitigating malicious behaviors (e.g., the Network Trustworthiness Layer).

The method presented in [35] is a suitable example of a corrective method for data
trustworthiness. This value-level corrective method defines thresholds to detect potential
abnormal data (e.g., a lower-value limit tlow, an upper-value limit tup, and an abrupt
change threshold tch). When a potential abnormal value is detected, it is compared with
the values sensed from the node’s neighbors, computing the group value similarity (G).
Since this breaks our model’s assumption, this value similarity could be computed with the
historical values from the sensor itself as in [36]. If the similarity is lower than a threshold
tsim, then the abnormal data are confirmed and corrected (e.g., interpolation with previous
and posterior correct values sensed by the own node). This method might experience false
positives (by detecting a correct value as abnormal and modifying it) and false negatives
(by not detecting an abnormal value), which can be grouped into faulty sensed values
(FSV). If the thresholds are too strict, the number of false positives will increase, while the
number of false negatives increases if the thresholds are too lax. The fewer the number of
FSV, the better the data trustworthiness, so an optimal trade-off value for the thresholds
must be found to minimize the overall number of FSV. This number is easy to gather
in simulation scenarios, but in real implementations, it is only possible if the values are
well-known a priori (ground truth values).

5.3.2. Network Trustworthiness Countermeasures

At the Network Trustworthiness Layer, transmission coding techniques such as FEC
convolutional codes [38], LDPC codes [39,40], and polar codes [41] are used to increase
the robustness of the transmitted signal. Routing protocols and quality of service (QoS)
mechanisms are used to find the best path from a source to a destination by quantifying
the quality or performance of each link in the network. For each destination, more than
one path can be determined as feasible thus providing load balancing. Many metrics
exist to calculate the best path such as the number of hops, the bandwidth of the link,
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the delay, and the expected number of retransmissions. These routing protocols can be
classified under different categories such as proactive/reactive, link-state/distance-vector,
or monometric/multimetric [45]. Selecting the best path for a traffic flow will eventually
improve network statistics such as throughput, delay, jitter, or packet delivery ratio (PDR).
In the case of challenging networks, DTN overlay architectures and protocols, such as
the Bundle Protocol [62], is also a solution that can be used to improve the network
trustworthiness.

Another relevant element to take into account in this layer is the data security through
the network. While traveling from the source to the destination, data should remain
private, available, and unaltered, preventing it from cyberattacks [63]. For this purpose,
network elements such as next-generation firewalls or intrusion detection systems and
security mechanisms, such as data encryption, authentication, anti-spoofing techniques,
and network filters, are used in the network.

5.3.3. Social Trustworthiness Countermeasures

At the Social Trustworthiness Layer, most solutions tend to use reputational mecha-
nisms to determine which nodes to trust when exchanging information. This reputation
is commonly based on previous transactions’ feedback to build an opinion for the node’s
trustworthiness [64]. More complex and robust mechanisms also incorporate parameters
such as the indirect opinion of other nodes, the relevance (weight) of each transaction, the
node’s centrality, the node’s computational capacity, and the type of relationships between
the nodes [50].

The model in [51] provides two different ways for computing the reputation of a node.
On the one hand, a subjective model of social trustworthiness is presented to compute the
reputation of node i under the perspective of every other node (Rij), these reputations being
different from each other, because the experience of interaction with node i for two different
nodes can be different. Moreover, reputations are asymmetric, meaning that the reputation
that node j calculates from node i can be different from the reputation that node i calculates
for node j (Rij 6= Rji). Thus, the system’s overall trustworthiness can be represented as an
N × N matrix for the reputation that each node calculates for all the other nodes, where
N is the total number of nodes. On the other hand, objective models calculate one single
reputation for each node (Ri), representing the trustworthiness that the system as a whole
perceives from node i. This reputation takes into account the opinion and the feedback
from all the other nodes. Thus, the system’s overall trustworthiness is represented as an
N-size vector with the reputation that the whole network perceives for each node.

Both the subjective and objective approaches aim to leverage the transactions between
trustful nodes and isolate those with bad reputations, which are considered more faulty
or malicious prone. Thus, their goal is to maximize the number of successful transactions
(STs).

5.3.4. Consensus Countermeasures

At the Consensus Layer, several mechanisms can be used to reach a decentralized
general agreement (GA) that all nodes in the group consider to be true. Theoretically, if the
number of byzantine nodes is more than 50% of the total number of participating nodes,
every consensus mechanism will fail to reach a benevolent agreement. Consensus mecha-
nisms aim to reach the GA while tolerating a percentage of byzantine nodes. Consensus
protocols are generally classified into competing mechanisms (proof-based) and voting-
based mechanisms. The latter are more suitable for IoT devices because they consume
fewer resources from the node. These protocols commonly consist of various voting phases
to reach the GA, and their goal is to maximize the number of tolerated byzantine nodes
(BNs). A drawback of these mechanisms is that they need participating nodes to exchange
a large number of messages between them to reach a consensus which can be a problem in
low-bandwidth networks, consuming most of this bandwidth. Some protocols look for a
trade-off between the number of tolerated BNs, throughput, and scalability.
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5.4. Trustworthiness Layers’ Dependencies

Trustworthiness layers’ dependencies must also be understood before deploying the
system’s architecture. In this way, we can build more accurate expectations of how the
model’s overall trustworthiness and concrete layers will be affected by applying a trustwor-
thiness countermeasure in one layer. If the impact of applying specific countermeasures
could not be foreseen, their implementation in the field could negatively affect the overall
system’s trustworthiness. For instance, how will the data trustworthiness affect the consen-
sus? Can a robust consensus protocol lower the trustworthiness of the network because it
is causing bottleneck congestion? In the SHETLAND-NET project, the trade-offs between
these layers need to be carefully analyzed before deploying the system in the field to obtain
the optimal overall trustworthiness level. If we were not considering these dependencies,
it could be possible to experience a degraded performance of the deployed architecture
without the necessary resources or response time to correct it during the campaign. Our
model dependencies proposal is exhibited in Figure 3. These dependencies are qualitatively
analyzed below, and the simulation tests performed in Section 6 were necessary to validate
the model and quantify their actual impact on the overall system’s trustworthiness.
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The Consensus Layer is directly affected by the other three layers. If FSV (Data Layer)
is closer to 0, it means that nodes tend to measure the sensed values correctly, so they will
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be more prone to reach a correct general agreement. From the Social Layer, it is possible
to ostracize those nodes with a lower reputation (which should be the ones with more
false sensed values) if the application can afford to lose the data from them. In this case,
if nodes with the worst reputation were omitted, it should be more probable to reach a
correct general agreement for the rest of the nodes. Finally, suppose the PDR (network
trustworthiness) is closer to 1. In that case, it means that the whole network delivers the
most packets unaltered and on time, so fewer nodes will be considered byzantine due to
the network issues and reaching correct general agreements will be more feasible. It is
important to notice that all these dependencies do not affect the Consensus Layer metric,
the byzantine node tolerance, which depends only on the consensus algorithm used and
the total number of nodes participating in the consensus group.

We propose that the Social Layer can also be directly affected by the other layers. On
the one hand, FSV and STR are inversely related. If the FSV is close to 0, a transaction
coming from that node is less probable to have a false sensed value, meaning that it will
become a successful transaction if the network delivers it properly to the destination. In
addition, the source node will obtain good feedback from the receiving node, increasing its
reputation. On the other hand, PDR and STR are directly related. As the PDR decreases,
it is more feasible that packets targeted to a node are lost in the network, decreasing the
STR. Thus, the receiver would evaluate the transaction as a failure, providing bad feedback
and decreasing the sender’s reputation. Finally, if the Consensus Layer is implemented,
the negative effect of some false sensed values from byzantine nodes and lost packets can
be masked thanks to the consensus algorithm. Nodes could still reach a correct general
agreement, marking that transaction as successful and increasing the STR.

The network layer can be directly affected by the Social and Consensus Layers in terms
of congestion [65,66]. Depending on the application, if nodes with the lowest reputation
could be ostracized, their sensed data might not be sent through the network because they
might not be requested. Thus, these nodes’ links might be less congested and less prone
to packet drops, increasing the PDR. Adversely, as mentioned before, using a consensus
mechanism introduces a considerable amount of network traffic. In addition, the number
of messages exchanged between a group of nodes is directly proportional to the number of
nodes in the group. Thus, if the network bandwidth was not enough to support this extra
traffic, the network could be more prone to be congested and drop packets, decreasing
the PDR.

Finally, it is intuitive to think that the Data Layer should not be affected by the other
layers. The variability of the FSV should depend on the error probability of the sensors and
the node itself (e.g., equipment quality, battery degradation), which could also be affected
by external factors (e.g., environmental characteristics). However, we propose that the
Data Layer can be affected by the Social Layer. Suppose the Social Layer is implemented
and is being used to ostracize the lowest reputation nodes. In that case, we considered that
sensed values from omitted nodes must not be counted for the FSR computation. Thus, if
the lowest reputation nodes were the ones with more false sensed values, the overall FSR
should increase.

It is important to see that Data and Network Layers (the base layers, which are always
present) are entirely independent, given that the correctness of data is always measured on
the source node, never on the destination. This way, data loss or alteration caused by the
network does not affect the data correctness measure.

Notice that Social and Consensus Layers (the extension layers, which are optional) are
the ones affected by the rest of the layers. However, the way they are affected is different.
On the one hand, the dependencies from other layers to the Social Layer directly affect
the value of its trustworthiness metric, the STR. On the other hand, the Consensus Layer
metric, the BNT, is not affected by other layers, but these dependencies can improve the
probability of reaching a correct general agreement, which in final terms improves the
Social Layer metric, the STR.
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In that sense, we considered that the system’s overall trustworthiness can be measured
with the STR metric, which is the one affected by the four layers of our model, and
intrinsically incorporates the effects of the other three metric values (i.e., FSR, PDR, and
BNT). Moreover, notice that without implementing the extension layers, the STR can still
be computed, which will combine the effects of the base layers (i.e., Data and Network
Trustworthiness).

Although the dependencies between the layers and metrics of our model have been
identified, it is still challenging to quantify the effect of looped dependencies on the system’s
trustworthiness. We identified two actions that can provoke a direct looped dependency.
First, if Social Trustworthiness Layer is used to ostracize the lowest reputation nodes,
their sensed values will be omitted, decreasing the FSR and eventually increasing the STR.
However, suppose more traffic than supported by the network is concentrated on the links
that lead to most reputation nodes. In that case, it is possible to create network congestion
that will decrease the PDR and eventually decrease the STR. Second, implementing a
consensus mechanism might help tolerate byzantine nodes and faulty network links, which
eventually increases the STR. Nonetheless, suppose the network bandwidth is not large
enough to allocate the extra traffic introduced by the consensus mechanism. In that case,
the network may suffer from congestion, decreasing its PDR and eventually decreasing the
STR.

To quantify the effects and trade-off points between these dependencies, it is essential
to test the model’s applicability with a use case and measure the trustworthiness metrics
under different circumstances and several times. Given the complexity and cost of per-
forming such a number of tests in the field during the Antarctic campaign, we opted to
use simulation tests, which provides more flexibility. These pre-deployment simulations
will help us decide which are the most suitable and trustworthy architectures for our
system and anticipate the possible weaknesses and problems that may arise during the
deployment in the field.

6. Simulation Tests

To validate the trustworthiness model, it was necessary to measure the metrics values
for the use case scenario several times under different circumstances. For this purpose, the
use case scenario was represented and evaluated in the Riverbed Modeler Simulator [19].
As stated before, our use case scenario was a group of interconnected remote Antarctic wire-
less sensor networks providing an IoT telemetry service. Concretely, the telemetry service
will be used to automatize the data gathering of GTN-P stations to study the permafrost of
the Antarctic region. The remote sensors of WSNs will be connected to a concentrator gate-
way through LoRa (access network), and these gateways will be interconnected between
them and a control center through long backhaul NVIS links (backbone network). The
extreme conditions GTN-P stations need to work with, added to the challenges of NVIS
links and a LoRa network without LoS, might degrade the overall system’s trustworthiness.
In order to foresee which problems may occur during the Antarctic campaign and build
more accurate expectations of the system’s performance and outcomes, we applied our
proposed trustworthiness model to measure and evaluate them.

The first step was the modeling of the network, the nodes, and the application. Once
the model is designed and implemented in the simulator, the set of tests and the simulation
parameters must be defined. After that, the simulations were run, and results were collected
and evaluated.

6.1. Network Models

For the use case scenario, the backbone network (NVIS) and the access network (LoRa)
were modeled separately. On the one hand, the NVIS channel was modeled following the
characteristics described in [7]. The transmission frequency was 4.3 MHz with a channel
bandwidth of 2.3 kHz and a bit rate of 4.6 kbps. An FEC convolutional coding with a 1

2
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rate code and interleaving were used to increase the reliability of the transmission. The
range of the HF link was up to 250 km.

Moreover, given that the ionosphere characteristics vary considerably throughout a
day, we also modeled the probability of a packet being correctly delivered through an NVIS
link hour by hour, following the results in [11]. These results showed that the NVIS links
are unlikely to be available from 17:00 until 6:00. In contrast, the channel availability from
6:00 to 17:00 varied from 70% to 100% when both the ordinary and extraordinary waves
received were combined as shown in Figure 4.
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On the other hand, the LoRa channel was modeled based on the results shown
in [23,67]. The transmission frequency was 868 MHz with a channel bandwidth that varied
depending on the chosen data rate (DR) and the rate spreading factor (SF). In our case, we
chose CR3 (4/7) and SF7, resulting in a channel bandwidth of 125 kHz and a bit rate of 5.47
kbps. The range of the link was up to 30 km. In the line of sight (LoS) case, the channel was
always available with a packet loss of 0%. Otherwise, with no LoS, the packet loss varied
from 0% to 98% depending on the signal reflections, with an average value of 72%. Due
to the Antarctic surface’s irregularities, we cannot assume that the GTN-P stations will be
located in LoS with the gateway. For this reason, we considered that 25% of the sensors
will have a LoS to the LoRa gateway, while the remaining 75% will not have LoS. Table 3
summarizes the characteristics of our network models.

Table 3. Network parameters used to model the scenario.

Parameter NVIS LoRa

Transmission Band 4.3 MHz 868 MHz
Channel Bandwidth 2.3 kHz 125 kHz

Channel Bitrate 4.6 kbps 5.47 kbps
Coverage Range Up to 250 km Up to 30 km

Daytime Availability (6 a.m.–5 p.m.) 70–100% 100% (LoS), 2–100% (No LoS)
Night Availability (5 p.m.–6 a.m.) 0% 100% (LoS), 2–100% (No LoS)

Maximum Payload Size 242 bytes 140 bytes
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6.2. Node Model

In the case of the node, both the GTN-P station and the gateway will use the same
finite state machine model. The “INIT” state initializes the model and its attributes. The
“IDLE” state is used when the node is waiting for a packet to arrive, transitioning to the
“PROCESS” state, or a self-interruption to send the sensed data values, transitioning to the
“SEND” state.

6.3. Application Model

Pseudocode algorithms for the application modeling are shown in Appendix A,
Algorithms A1, A2, and A3. The application consists of the telemetry service to gather data
from measured values by sensors and send them to the control center. To better understand
the below explanations, we encourage revisiting Figure 1 to recall the proposed network
architecture.

Each measured value, v, is considered a transaction, l, that must reach the control
center. The application can be run without implementing any of the extension layers
of the proposed trustworthiness model (standard mode) or can implement the Social or
Consensus Layers of the model (redundancy mode), inclusively or exclusively. In standard
mode, each value, v, is measured by a single GTN-P station, while in redundancy mode,
the implementation of a reputational or consensus mechanism leverages the creation of
clusters (groups of GTN-P stations) that measure the same value v.

The GTN-P stations will send data packets once per hour, simulating the moment
when the 32 values are gathered from the GTN-P station sensors, stored in memory,
and delivered to the gateway. We decided to sense these values hourly because it is the
same sensing frequency that the members of the PERMASNOW project [18] used when
they performed their automatization tests. In this process, if no consensus mechanism
is performed, a hardcoded value, v, for each parameter will be inserted into a 132 byte
payload (32 values and a timestamp, 4 bytes each). With a probability, Pb, the value, v, will
be modified to another value out of an acceptable range (vmin, vmax), and the total number
of FSV will be increased by one. This payload will then be inserted into the packet to be
sent to the gateway. If an ACK packet is not received from the gateway before a timeout
Tout, the data packet will be retransmitted up to a maximum of three times. In the case of
implementing a consensus mechanism, all the GTN-P stations participating in the cluster
(which are measuring the same v) will start the process to reach a general agreement. Once
they have reached it, only the cluster leader will send the payload to the gateway with
the agreed value v. During the consensus process, if the Social Layer is also implemented,
each packet exchanged between the nodes participating in the consensus group will be
used to compute the reputation Ri of nodes. The node with the highest reputation will be
elected as the group leader. Moreover, a node i with a reputation Ri lower than Rmin will
not have the right to vote for the value election. However, it will be allowed to continue
participating in the consensus group to increase its reputation until it can be granted the
right to vote again. On the contrary, if no reputational mechanism is being used, all group
members will always have the right to vote, and the leader will be chosen randomly.

On the other site, gateways will collect the data from the GTN-P stations inside its
LoRa coverage area and then forward it through the NVIS backbone network until it
reaches the control center. Given that gateways are also nodes, they may experience a
byzantine failure with probability Pb. In that case, the gateway will modify the payload’s
content. In standard mode, each value v received from node i must be forwarded to the
control center. In redundancy mode, if no consensus mechanism is being used (only the
Social Layer is implemented), the gateway will receive several candidates for the value v
from every node in the cluster. The gateway will inspect the values from it and check if
they are in the acceptable range (vmin, vmax). In an affirmative case, gateway j will provide
positive feedback for that transaction l from node i (fijl = 1). Otherwise, the feedback will be
negative (fijl = 0). After providing feedback for every transaction, the reputation Ri of the
nodes will be updated, and the value provided from the node with the greatest reputation
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will be chosen as the definitive value v. Alternatively, if a consensus mechanism is used in
redundancy mode, the gateway will only receive a single value v for each cluster, which
will have to be forwarded to the gateway.

Due to the NVIS backbone network’s unavailability during night hours (from 17:00
until 6:00), values received by the gateway during this period will be stored in the gateway’s
memory and forwarded to the control center later (when the NVIS links start functioning
at 6:00). On the contrary, values received during daytime (from 6:00 until 17:00) will be
forwarded to the control center as soon as the gateway receives and processes them. As
GTN-P stations do, the gateways also expect to receive an ACK packet for every payload
packet they send to the control center. If an ACK packet is not received from the control
center before a timeout, Tout, the data packet will be retransmitted up to a maximum of
three times.

Finally, the control center will receive all the transactions that had not been lost
through the network. Each value v from the received payload by the control center from
node or node cluster i will be considered a transaction l. The control center will compute
the STR by comparing the received values for each payload with the hardcoded values.

The probability, Pb, of a node having a byzantine fault is unlikely to be constant over
time. As stated in [68], by associating the battery discharge to the WSN node aging process,
the node reliability can be identified and associated with the battery charge level. Thus,
following the model in [69], we can assume the impact of aging following a linear form as
defined in Equation (5):

Pb(t) = Pb0 + kt, (5)

where Pb0 is the probability of a node having a byzantine fault at time t = 0, and k is the
aging factor. Thus, the probability of a node having a byzantine fault will increase hour
by hour until its battery is completely drained at t = td, when it experiences a crash fault
and Pb(td) = 1. However, this model will only be applied to GTN-P stations that will be
powered by batteries. On the contrary, we assume that the gateways will always have a
constant power supply in our use case because they will be placed in the research base.
Thus, their probability of experiencing a byzantine fault will remain constant over time as
defined in Equation (6):

Pb(t) = Pb0. (6)

As explained in Section 4, the use of corrective methods to improve the data trustwor-
thiness provoke, in practice, that the probability, Pb0, of a node experiencing a byzantine
fault will decrease, thus reducing the number of FSV. For that reason, different values of
Pb0 will be used in our simulations to emulate the use of different corrective methods.

6.4. Social Trustworthiness Model

The reputational model for implementing social trustworthiness in our use case is
a simplified version of the objective model defined in [51]. Our use case simplification
assumes that all transactions will have the same weight, all nodes have the same computa-
tional capability, and the relationship factors between them are equal. Thus, the reputation
Ri of node i can be measured as defined in Equation (7):

Ri = αOshort
i + (1− α)Oshort

i (7)

where Oshort
i is the short-term opinion of node i, Oshort

i is the long-term opinion of node i,
and α is a design value between (0, 1) to ponder the importance of short-term and long-term
opinions. The short-term opinion of node i is measured as stated in Equation (8):

Oshort
i =

M

∑
j=1

Lshort

∑
l=1

Cij f l
ij/

M

∑
j=1

Lshort

∑
l=1

Cij, (8)
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where M is the total number of nodes of the group, excluding node i, Lshort is the number
of last l transactions considered to be relevant for building the short-term opinion, f l

ij is the
feedback that node j gave to node i for transaction l, and Cij is the credibility of node j to
evaluate node i.

Analogously, the long-term opinion is calculated as defined in Equation (9):

Olong
i =

M

∑
j=1

Llong

∑
l=1

Cij f l
ij/

M

∑
j=1

Llong

∑
l=1

Cij , (9)

where Llong is the number of last l transactions considered to be relevant for building
the long-term opinion, and Llong > Lshort . The credibility of node j to evaluate node i is
calculated as shown in Equation (10):

Cij =
Rj

1 + log
(

Nij + 1
) , (10)

where Nij is the number of transactions between node j and node i.

6.5. Consensus Model

A consensus protocol can be modeled by knowing the background traffic (bps) that is
introduced into the network and the number of byzantine nodes supported (Nb). In our
use case, each group of redundant GTN-P stations will run the practical byzantine fault
tolerance (PBFT) algorithm [70]. From [71], we can assume that the background traffic
exponentially grows as the number of nodes participating in the consensus (Nt) group
increases. Moreover, the number of tolerated byzantine nodes, Nb, is calculated as:

Nb =
Nt− 1

3
, (11)

In the simulation, if more than Nb nodes experience a byzantine behavior, the agree-
ment reached will have incorrect values. Otherwise, the resulting payload will contain the
correct values.

6.6. Tests Definitions

A summary of the characteristics of the simulation tests is shown in Table 4.

Table 4. Simulation parameters.

Parameter Value

Number of runs per test 30
Simulation duration 120 hours (5 days)

Simulation step 1 h

Pb0
[1 × 10−3, 2 × 10−3, 4 × 10−3, 8 × 10−3, 1 × 10−2,

2 × 10−2, 4 × 10−2, 8 × 10−2, 1 × 10−1]
k 5.7 × 10−5

Routing protocol [AODV, OLSR]
Consensus mechanism [None, PBFT]
Social Trustworthiness [True, False]

Number of NVIS gateways 5
Number of GTN-P clusters per gateway [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

Number of GTN-P redundant stations per
cluster [1–10]

Each different test will be run 30 times, which gives us the total amount of 113,400 tests.
Each test has a simulation duration of 5 days (120 hours), and the average value of the
STR trustworthiness metric will be calculated. The different byzantine probabilities are
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proposed to simulate scenarios with different corrective methods that can reduce the
byzantine probability of a node. On the other hand, two different routing protocols will be
used to analyze which kind of method (reactive or proactive) has a better impact on the
service’s trustworthiness. Moreover, the Consensus and Social Trustworthiness Layers will
be implemented or not to analyze their influence on the service’s performance. Finally, the
impact of the number of nodes connected to each gateway will also be studied by varying
them. In standard mode, there was only one GTN-station per group (because there is no
redundancy). This means that each of the 9 Pb0 values must be tested against each number
of GTN-P clusters per gateway, giving us a total of 90 possibilities. In redundancy mode,
this number increases to 900 since the number of GTN-P stations per cluster varies from
1 to 10. If we sum the cases of standard mode, redundancy mode with consensus, and
redundancy mode with social trustworthiness, we have a total of 1890 different cases, which
are doubled to 3780 considering that we want to test the system with two different routing
protocols. Considering that each test is repeated 30 times, a total of 113,400 simulations
were run in the simulator.

7. Simulation Results

After performing all the simulations, the average value of the STR was calculated for
every set of 30 runs per test. The obtained results had a maximum error deviation of 0.61%
with a confidence interval of 99%. Three different operational modes for the telemetry
service can be clearly identified: the standard mode, the redundancy mode with Social
Trustworthiness Layer, and the redundancy mode with Consensus Layer. For every mode,
an N x M-dimension grid with all the possible combinations of stimulation parameters
was formed, where M is the number of different Pb0 values (nine in our case as stated in
Table 4, row 5), and N is the number of different GTN-P node combinations per gateway
(10 in standard mode and 100 in redundancy mode). For every point in this grid, the
average value of the trustworthiness STR metric was computed. If we link all the STR
values for every neighboring point in the grid, a mesh with all the STR values is formed.
We call this mesh the trustworthiness mesh. Figure 5 exhibits the trustworthiness mesh
three-dimensional graph for all the operational modes. Given that the differences between
the AODV and OLSR scenarios’ obtained results are negligible, only the results for the
AODV scenarios are shown. Figure 6 shows different two-dimensional perspectives of
the trustworthiness mesh graph to understand and analyze the results better. For both
figures, the “byzantine fault probability” axis has nine discrete points, which are (1 × 10−3,
2 × 10−3, 4 × 10−3, 8 × 10−3, 1 × 10−2, 2 × 10−2, 4 × 10−2, 8 × 10−2, 1 × 10−1). The
“redundant sensors x sensor clusters” axis has 100 discrete points, according to Table 4,
rows 11 and 12, which are (1 × 2N, 2 × 2N, . . . , 10 × 2N), where N = (3, 4, . . . , 12).

From Figures 5 and 6, we can analyze the behavior of the trustworthiness mesh. We
can see how without redundancy, the STR is always lower than 0.8. Thus, we can conclude
that due to the characteristics of the NVIS and LoRa networks, the threshold of maximum
trustworthiness that can be achieved is approximately 80% of total transactions in our
use case. This means that, on average, each monitored value arrives at the control center
19 times a day at most. The authors of [18] left the complete automatization of this use
case as an open challenge, aiming to increase the monitoring frequency to visualize the
daily variations of the monitored properties (air, snow, bottom snow, surface, and ground
temperature, among others). Our project’s objective was to receive 14 out of 24 (58.33%)
values each day at least. This is the minimum acceptable threshold to achieve the goals
in [18]. In the tests results, acceptable STR values (>0.58) are maintained if the number of
sensor nodes is kept under 512, although it decreases below the desired trustworthiness
threshold if the number of sensors per gateway is higher. Also, we can notice that the
shape of the trustworthiness mesh is practically identical for all three cases in the “1 × N
sensors” zone (no redundancy). This means that, as was expected, adding the Social or the
Consensus Layers did not improve the level of trustworthiness if there was no redundancy.
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From Figures 5 and 6a, we can conclude that adding sensor redundancy and imple-
menting the extension layers of our model improved the trustworthiness of the system,
given that STR values greater than 0.8 were achieved. In cases of low redundancy (“2 × N
sensors” and “3 × N sensors”), implementing the consensus mechanism did not improve
the trustworthiness of the system when compared to the Social Trustworthiness case (the
STR values are very similar). This is because, with two or three redundant nodes, the
number of byzantine nodes tolerated by the consensus mechanism was still 0. Starting
with four redundant nodes (“4 × N sensors”), the consensus mechanism’s effects started to
be noticed, achieving better STR values than the Social Trustworthiness case.

However, as the byzantine fault probability of the nodes decreases (meaning the FSR is
lower), the difference between the STR values from the consensus mechanisms case and the
Social Trustworthiness case becomes smaller. This means that implementing a consensus
mechanism is more appropriate when the probability of the nodes experiencing byzantine
behaviors is relatively high, and it is not necessary when this probability is low. In our
cases, differences between STR values from both cases were not relevant as Pb0 ≤ 0.01.

Moreover, the quantity of network traffic that the consensus mechanism adds, com-
bined with the LoRa and NVIS networks’ low bandwidth, provokes low scalability for
this solution. We can see that by looking at the evolution of the consensus trustworthi-
ness mesh’s STR values (red). We notice that as the number of sensor clusters increase,
the STR values decreases until it drops to 0. This is because the nodes generate more
traffic than the network supports. Thus, the network is congested, and the PDR rapidly
decreases. Furthermore, the higher the number of redundant sensors per cluster, the sooner
the STR dropping point (network saturation) happens. This resolves one of the looped
dependencies postulated in Section 5.4.
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On the contrary, it seems that implementing a social trustworthiness approach is
more robust to these variations. Even if it did not achieve the same levels of STR as the
consensus mechanism case when the number of sensor clusters was low, its STR values
never dropped below 0.55 (very close to our desired minimum trustworthiness threshold),
even in the scenario with more sensors and worse FSR. It is clear that the trustworthiness
of the social case was also affected when the number of sensor nodes increased (which
implies more network load and lower PDR), but its STR did not drop drastically and
could maintain acceptable values. Due to the fact of our use case’s modeling, the social
trustworthiness implementation did not ostracize the nodes so that their sensed values
were not collected, and the network load decreased. This is because in our simulations,
each node had the same probability of experiencing a byzantine fault or sensing the value
correctly, so ostracizing one of them could negatively affect the results. Thus, the behavior
of the other looped dependency postulated in Section 5.4. remains uncertain.

From Figure 5, we can also conclude, as expected, that data trustworthiness had a
direct affection on the overall system’s trustworthiness. In all cases, as the byzantine fault
probability, Pb0, increased (meaning that more values are faultily sensed, increasing the
FSR), the STR decreased.

Finally, Figure 6b shows for each of the 900 possible scenarios which is the most
trustworthy option to implement the service. From this view, we can clearly see the
robustness of the social trustworthiness case, showing how it gains ground as the number
of sensors in the network increases.

8. Conclusions

This paper continues the SHETLAND-NET project’s task to design a remote WSN
for the Antarctic region using NVIS technology. The article focused on the use case of
deploying a group of interconnected remote Antarctic wireless sensor networks providing
an IoT telemetry service. A system and network architecture to implement the telemetry
service was defined, using LoRa at the access network and NVIS long backhaul links at the
backbone network. The extreme conditions remote sensors need to work with, added to
the challenges of NVIS links and a LoRa network without LoS, can provoke a degradation
of the overall system’s trustworthiness. In order to study the viability of the service to be
implemented before its deployment in the field during the Antarctic campaign, and aiming
to anticipate the possible challenges that may arise, we proposed a model to measure and
evaluate the trustworthiness of the system proposed. This trustworthiness model consists
of four layers (two base layers and two extension layers) that can affect the successful
transaction rate (STR) trustworthiness metric.

The trustworthiness model and the system architecture were validated using the
Riverbed Modeler simulator. The obtained results have a maximum error deviation of
0.61% with 99% of confidence. The results show that the defined system architecture
can reach acceptable levels of STR (>0.58) in case a relatively low number of sensors are
deployed, although it drops too much with a large number of sensors. Adding redundancy
to the measured values with multiple sensors and applying a social reputational mechanism
improves the robustness of the system’s trustworthiness, reaching higher STR values (>0.8)
and never dropping below 0.55 even in high sensor-density scenarios. On the contrary,
applying a consensus mechanism improves the system’s trustworthiness when a low
number of sensors are deployed. However, the STR values abruptly decrease as the
number of deployed sensors increases.

Our model can also be used to visualize the work domain to implement our service,
given a desired minimum trustworthiness level. For example, suppose our project requires
a minimum STR of 0.7, so an average of 16 out of 24 sensed values per day reach the control
center correctly. In this case, we could tolerate situations where the number of successful
transactions that reached the control center was less than the average due to the fact of
unexpected conditions but still achieving an STR higher than 58.33% to meet the objective
of [18]. Figure 7 shows the work domain of our telemetry service for an STR higher than
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0.7. For every point in the grid, if no solution provides an STR higher than the desired
minimum value, the surface for that area is white-colored, meaning we cannot deploy the
service with those conditions. On the contrary, if one or more solutions achieve an STR
higher than the desired minimum value, the surface is painted with the color of the solution
with the highest STR. However, it could be possible that we would prefer a solution that
was not the one with the highest STR if all of the following criteria were met:

• The solution still has an STR greater than the desired minimum value;
• The solution has less cost than the solution with the highest trustworthiness in any

sense (e.g., economic, computational resources, network load);
• The difference of the STR value achieved by the solution with less trustworthiness

and the solution with the highest trustworthiness is less or equal to an established
threshold value dmax.
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We first preferred to deploy the standard mode in our use case, followed by the redun-
dancy mode with the Social Trustworthiness Layer implementation and the redundancy
mode with Consensus Layer implementation. This way, we prioritized the solution with
lower resource consumptions (computational and network loads). To construct Figure 7,
we set the value of dmax to 0.01. For our use case example, we chose this value arbitrarily.
However, the value of this design parameter must be carefully analyzed for every particular
use case to choose the actual optimal solution. The graph provides a clear vision of the
work domains or areas that meet the necessary conditions to deploy the requested service
guaranteeing the required minimum trustworthiness level. Furthermore, we can identify
which solution to implement with the highest STR or the best trade-off between cost and
STR for every grid point.

Performed simulations have also led us to understand better how all the proposed
model actors work and relate to each other. Figure 8 synthesizes it. Blue-colored elements
form part of our model base layers, and orange-colored elements form part of the extension
layers. The final goal was to increase the STR to provide better trustworthiness. Three
main factors directly help to increase the STR: (1) mitigating/tolerating byzantine errors;
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(2) decreasing the FSR (2), and (3) increasing the PDR. These factors can be seen as subgoals
that leverage the success of the final goal to provide trustworthiness. Each of these subgoals
can be accomplished by implementing a set of actions or countermeasures. Each of these
countermeasures affects only one of the subgoals.
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Moreover, we have two transversal actions that affect more than one subgoal. These
transversal actions implement the extension layers of our model: the Consensus Layer
and the Social Trustworthiness Layer. Continuous-line arrows indicate a positive outcome,
discontinuous-line arrows indicate a negative outcome, and dotted-line arrows indicate an
uncertain outcome. Using social trustworthiness can reduce network congestion thanks to
the ostracism of nodes with the worst reputation and send only the values from nodes with
the highest reputation to the control center. Social trustworthiness also helps to reduce the
FSR thanks to the ostracism of bad reputation nodes. It also leverages the mitigation of
byzantine errors because only values from high reputation nodes (leaders) are trusted.

On the other hand, implementing a consensus mechanism mitigates byzantine errors
thanks to the general agreements that are reached by all nodes from a consensus group.
Contrarily, the Consensus Layer can negatively affect the PDR, given that it introduces
a considerable amount of extra traffic to the network that could lead to link congestion.
Finally, the Consensus Layer could also be affected by the Social Trustworthiness Layer
if nodes’ reputations were used to increase the reliability of general agreements (e.g.,
weighted voting based on node’s reputation, ostracism of byzantine nodes), although its
exact effect still remains unclear.

Future work aims to study the influence of implementing a DTN architecture at the
NVIS backbone network, given that it has characteristics of challenging networks. The
authors also plan to study the viability of deploying a FANET in the access network to
provide connectivity to sensors placed outside the coverage area of the current LoRa
network.
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Appendix A

Algorithm A1: Sensor Node Application Pseudocode

int t, gateway_id, own_id, pk_id, tx_time, num_retries;
int data_values[3 2], node_reputations[N]; //N: number of redundnant nodes
float Pb0, Pb, k;
boolean consensus, social, is_leader, ack_received;
initializeVariables(Pb0,k,consensus,social, gateway_id, own_id, is_leader, ack_received);
for (t=0; t++; t<T_MAX){
num_retries = 0;
Pb = Pb0 + k * t;
data_values = gatherData(Pb);
if (consensus==TRUE){
data_values = reachGeneralAgreement(data_values);
if (social==TRUE) node_reputations = computeReputations();

if (checkLeader(node_reputations)==TRUE)
[tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id);
}else{
pk_id = NULL;
}
}else{
[tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id);
}
if (pk_id != NULL){
ack_received = checkAck(pk_id);
while(ack_received==FALSE && num_retries<MAX_RETRIES){
if (currentTime() >= tx_time + MAX_TIMEOUT){
[tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id);
num_retries++;
}
ack_received = checkAck(pk_id);
}
}
pk_id = NULL;
}
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Algorithm A2: Gateway Node Application Pseudocode

int own_id, sensor_id; control_ctr_id, pk_id, tx_time, num_retries;
int data_values[32], stored_values[N][32], node_reputations[N]; //N: number of redundnant
nodes
float Pb;
boolean social, ack_received, data_pk_received;
initializeVariables(Pb, social, sensor_id, pk_id, own_id, control_ctr_id, ack_received,
data_pk_received);
while(TRUE){
num_retries = 0;
if (dataPkReceived()==TRUE){
[sensor_id, pk_id, data_values] = retrievePkData();

if (social==FALSE){
sendAck(pk_id, own_id, sensor_id);
[tx_time, pk_id] = forwardDataPk(data_values, gateway_id, sensor_id,

control_ctr_id);
ack_received = checkAck(pk_id);

while(ack_received==FALSE && num_retries<MAX_RETRIES){
if (currentTime() >= tx_time + MAX_TIMEOUT){

[tx_time, pk_id] = forwardDataPk(data_values, gateway_id, sensor_id,
control_ctr_id);

num_retries++;
}
ack_received = checkAck(pk_id);

}
ack_received=FALSE;
num_retries=0;

}else{
stored_values[sensor_id] = data_values;

node_reputations[sensor_id] = computeReputation(data_values);
if (roundIsFinished()==TRUE){

[data_values, sensor_id] = chooseData(node_reputations, stored_values);
[tx_time, pk_id] = forwardDataPk(data_values, gateway_id, sensor_id,

control_ctr_id);
ack_received = checkAck(pk_id);

while(ack_received==FALSE && num_retries<MAX_RETRIES){
if (currentTime() >= tx_time + MAX_TIMEOUT){
[tx_time, pk_id] = forwardDataPk(data_values, gateway_id, sensor_id, control_ctr_id);

num_retries++;
}
ack_received = checkAck(pk_id);

}
ack_received=FALSE;
num_retries=0;

}
}
}
}
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Algorithm A3: Control Center Application Pseudocode

int own_id, sensor_id; gateway_id, pk_id;
int data_values[32];
boolean data_pk_received;
initializeVariables(sensor_id, pk_id, own_id, gateway_id, data_pk_received);
while(TRUE){
if (dataPkReceived()==TRUE){
[sensor_id, gateway_id, pk_id, data_values] = retrievePkData();
storeData(data_values, sensor_id);
computeSTR(data_values);
sendAck(pk_id, gateway_id);
}
}
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