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Abstract: The advent of the Internet of Things (IoT) and the massive growth of devices connected to
the Internet are reshaping modern societies. However, human lifestyles are not evolving at the same
pace as technology, which often derives into users’ reluctance and aversion. Although it is essential
to consider user involvement/privacy while deploying IoT devices in a human-centric environment,
current IoT architecture standards tend to neglect the degree of trust that humans require to adopt
these technologies on a daily basis. In this regard, this paper proposes an architecture to enable
privacy-by-design with human-in-the-loop IoT environments. In this regard, it first distills two IoT
use-cases with high human interaction to analyze the interactions between human beings and IoT
devices in an environment which had not previously been subject to the Internet of People principles..
Leveraging the lessons learned in these use-cases, the Privacy-enabling Fog-based and Flexible (PyFF)
human-centric and human-aware architecture is proposed which brings together distributed and
intelligent systems are brought together. PyFF aims to maintain end-users’ privacy by involving them
in the whole data lifecycle, allowing them to decide which information can be monitored, where
it can be computed and the appropriate feedback channels in accordance with human-in-the-loop
principles.

Keywords: user involvement; fog computing; internet of things; privacy; flexibility; smart environments

1. Introduction

The Internet of Things (IoT)—committed to smartly connecting a deluge of digital
assets deployed in users environments—is one of the main drivers of the digital transforma-
tion in modern societies [1]. The advent of the IoT has materialized the conception of a new
interconnected world composed of new ubiquitous computing technologies. Several fields
and domains ranging from education [2] to Industry 4.0 [3], including transportation [4],
healthcare [5] and business [6], are exploiting the never-ending advances of IoT. Under
this context, the overriding presence of technology can play a relevant role in addressing
address new existing societal challenges [7] and bringing added value services in a way
never imagined before. However, despite this continuous progress in smart services and
technology, human beings seem to struggle to keep up with the pace of such digital achieve-
ments (e.g., smartphone adoption, use of social networks or e-administration services).
On the one hand, the cultural divide, digital skills or economic inequality may hinder
the equitable growth of these technologies [8]. On the other hand, human factors such
as the apprehension about being tracked or privacy concerns relating to who may access

Sensors 2021, 21, 3640. https://doi.org/10.3390/s21113640 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2116-2749
https://orcid.org/0000-0003-3916-9279
https://orcid.org/0000-0001-7439-2551
https://orcid.org/0000-0002-1070-7494
https://orcid.org/0000-0001-8055-6823
https://orcid.org/0000-0003-2755-4428
https://www.mdpi.com/article/10.3390/s21113640?type=check_update&version=1
https://doi.org/10.3390/s21113640
https://doi.org/10.3390/s21113640
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113640
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3640 2 of 27

the collected data can also be candidates to explain this issue [9,10]. This work focuses on
the latter.

Generally speaking, people in modern societies are averse to be continuously surveyed
(i.e., monitored) by a digital entity that they do not trust (i.e., up to what extent humans are
confident with the data or service offered by a “thing” [11]), without knowing which data
they are sharing [12]. This lack of trust continues to grow despite the efforts made by many
initiatives on user and data privacy (e.g., GDPR (General Data Protection Regulation ) in
Europe [13], CCPA (California Consumer Privacy Act) in USA [14] or LGPD (Lei Geral de
Proteção de Dados (in English: General Data Protection Law)) in Brazil [15]). In addition,
the lack of understanding about the behavior of these digital services (e.g., for a regular
user, it is hard to grasp why a given IoT device has taken a certain decision) makes users
lose their trust and perceived value toward them. Notwithstanding, the IoT paradigm
should greatly contribute to boosting the involvement of human beings in new optimized
services powered by technology and, hence, somehow minimize their reluctance [16].

Current IoT reference architectures [17], such as RAMI 4.0, IIRA, or even the IoT
World Forum Reference Model, focus on specifying the hierarchical layers (also referred to
as levels), information flows, functionalities and interoperability guidelines to design an
IoT environment. However, the role of end-users is typically seen as a passive high-end
interface rather than an embedded entity inside the whole data lifecycle (also referred
to as human-in-the-loop [18]). Possibly, this design approach, together with the lack of
standards for trustworthiness in the IoT [19], have led to the aforementioned trust concerns
of IoT environments [11]. Note that these trust issues are more relevant than ever because
of the current global COVID-19 situation and the measures taken by different countries to
control the flows of people [20]. In the last months of 2020, society has witnessed important
concerns raised over privacy involving the tracking strategies established to cope with the
disease (i.e., technologies to track where people are, where they have been or what their
disease status is) [21].

Therefore, the purpose of this paper is to propose a human-centric and human-aware
(i.e., human-in-the-loop) IoT architecture where distributed and intelligent systems are
brought together to foster user adoption and trustworthiness in IoT environments. In this
regard, this work first proposes two different real-world use-cases to discuss the tangible
challenges of enabling the digitization of user environments by means of IoT architectures,
while considering user preferences, characteristics and behaviors. The findings and expe-
riences collected from these two use-cases define the requirements of the proposed PyFF
(Privacy-Fog-based Flexible): a user-oriented architecture for enabling privacy-by-design
with human-in-the-loop IoT environments.

This work shows that understanding users and securing their privacy and including
them into the data lifecycle, as done in PyFF, to make them aware of which data they
are disclosing, is pivotal in the design and deployment of any IoT service that involves
physical interaction [22]. In fact, PyFF is also envisaged as a first step to conceive Internet
of People [23] architectures, where a shift from infrastructure-centric to human-centric
environments is necessary. Although an extensive real-world deployment and evaluation
of the PyFF architecture is still not available, the benefits of this approach are contextualized
in the framework of a communal smart IoT environment: the digital transformation of a
traditional office-based workplace. The selection of this particular use-case is conditioned
by the additional difficulties it poses. Beyond the traditional privacy and security concerns
that smart spaces need to face, smart workplaces propose additional threats. For example,
privacy perception acquires new dimensions involving a social component, as these data
can be associated with the image given to third parties or with the perception of productivity
and work performance [24]. Additionally, due to the long hours that users (i.e., workers)
spend in workplaces, this can be considered a strategic environment to address challenges
such as user comfort and energy efficiency by means of IoT.
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In essence, the contributions of this paper are twofold:

1. The PyFF architecture is proposed, which is conceived to transform digital environ-
ments while increasing energy efficiency, user comfort and maintaining users’ privacy.
This architecture is derived from the analysis of two empirical studies (i.e., Smart
Sustainable Coffee Machines and GreenSoul project) that are aimed to study user be-
haviors towards workplace digitization when it comes to automatizing energy-saving
actions.

2. A multi-faceted qualitative comparison among the proposed PyFF architecture, Green-
Soul and the Smart Sustainable Coffee Machines is presented. This comparison en-
ables practitioners to assess the strengths and weaknesses of these three different
IoT paradigms discussed in this work. In addition, these results can be taken as
reference guidelines on how to convert a digital workplace into an appropriate setting
to involve workers in decision making and motivate them towards more sustainable
and healthier behaviors while promoting changes.

As an expanded version of our work in [25], we consider that the novelty of PyFF seeks
to combine innovative data processing architectures, distributed intelligence processes and
advanced immersive interaction interfaces between users and things to give place to user-
aware (human-centred) IoT domains. This idea seeks to turn IoT environments into more
efficient, trustworthy and acceptable scenarios for their users. Thus, we aim to transform
the way users interact with their environment while promoting healthier behaviors or
increasing levels of comfort for their occupants in return. PyFF offers a generalized version
of fog-based privacy-aware architecture to use for any IoT-based smart environment.

To sum up, the proposal of the PyFF architecture, which puts humans in the loop
within IoT environments, aims to contribute to making the Internet of People a reality and
enable the conception of privacy-by-design IoT environments. The qualitative evaluation
conducted in this paper shall guide developers and system architects to build reliable
heterogeneous systems with regards to the data life cycle from the Edge to the Cloud.

The remainder of this paper is organized as follows. Section 2 details the two use-cases
that inspired us to introduce and define the requirements of the new PyFF architecture:
(1) the Smart Sustainable Coffee Machines project designed to test the effectiveness of
persuasive technology to raise energy efficiency awareness in the mid an long term; and
(2) the GreenSoul project that aimed at saving energy consumption in tertiary buildings
engaging employees though bespoke ICT-based feedback. Section 3 depicts the PyFF
architecture and discusses how it can be used to transform a digital workplace into a
human-centric smart workplace. To better understand the functionality of the proposed
architecture, an illustrative scenario is provided in Section 4 which showcases the flexibility
and use of PyFF in a smart workplace scenario. Section 5 provides a qualitative comparison
of the three IoT environments used in this paper. Section 6 compares our findings in the
field of smart workplaces derived from the conception of PyFF with the related work.
Finally, a discussion on the drivers and challenges and some conclusions are provided in
Section 7.

2. Enabling the Digitization of User Environments by Means of IoT Architectures

To discuss the tangible challenges to enabling the digitalization of user environments,
this section analyzes two already existing real-world uses-cases: (1) the Smart Sustainable
Coffee Machine; and (2) the GreenSoul project. They are briefly introduced in the following.

• The Smart Sustainable Coffee Machines use-case [26] consists of instrumenting several
capsule-based Coffee Machines in ten different work environments to provide them
energy sensing and user-interaction capabilities. This scenario is aimed at measuring
the importance of preserving user’s privacy when it comes to collecting sensitive
data. The conducted experimental tests have led to a better understanding of the
importance of user environment digitization and its side-effects. In fact, over-reliance
on automation may bring undesired effects to pro-environmental behavior and reduce
personal responsibility for action [27].
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• The GreenSoul project use-case [28] consists of deploying IoT interactive artifacts
to employees of six tertiary buildings across Europe (Austria, Greece, the UK and
Spain) to enhance their awareness about energy consumption. The objective was
to understand the new dynamics and discussions that these devices may bring in a
communal context when they are deployed from scratch (e.g., the interaction with the
device in the daily routine, the attachment or the confidence to the information they
provide, emotions related to the IoT devices or their role as mediators of conversations
among peers).

The analysis of these two use-cases combined with our previous work in [25] about
boosting energy efficiency in smart workplaces, exhibits the key parameters that limit user
involvement in IoT environments. Indeed, these use-cases have been used to collect new
insights and issues on what IoT may bring to communal contexts. These insights have
motivated the design requirements of the PyFF architecture.

2.1. Use-Case 1: Smart Sustainable Coffee Machines

The first use under analysis comes from an experimental intervention that took place
over one year in 15 different sites with more than 100 users. This use-case was designed
to assess the benefits of using IoT devices to increase users’ consciousness about energy
consumption in a persuasive way. To this end, the Coffee Machines found in office envi-
ronments were selected as the target IoT devices that would be used to persuade users to
become more energy efficient (and aware) in the mid- and long-term. It is worth noting that
the selection of the Coffee Machine for this experiment is not arbitrary. On the one hand, it
is well-known that Coffee Machines are a commonplace asset in the majority of office-based
working environments. On the other hand, due to the fact that Coffee Machines need to
spend a considerable amount of energy maintaining the pump pressure and water heated,
their power consumption can be higher than other A-class appliances such as modern
refrigerators (i.e., A++), laptops, monitors or even ovens [29]. Full information and further
details about the implementation of this experiment can be found in [26].

In the following, the main strategies to transform a regular appliance into an IoT
device used for the sake of this use-case are summarized and the major findings on the
user interaction with an IoT domain derived from this use-case are outlined.

2.1.1. Preparation of the IoT Environment and Experiment Configuration

As shown in Figure 1, embedded energy measurement equipment developed with
an Arduino board was attached to the capsule-based Coffee Machines. The Arduino
microcontroller resulted in a very convenient way to sense the energy consumption of the
Coffee Machine—by means of an energy meter directly attached to its I/O ports—while, at
the same time, providing a straightforward gateway to the Internet by means of its Ethernet
port. This enabled the system itself to easily send energy consumption information to a
remote server [30].

Figure 1. The energy consumption data flow from the Ethernet-based Arduino microcontroller board to the remote server
where the data were stored for later processing and analysis [26].
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This layout enabled researchers to define three different experimental conditions
related to how the users would be informed on energy awareness (i.e., how the IoT domain
would interact with users): Automation, Persuasion and Web-based dashboard. Each
experimental condition is detailed in the following:

1. Web-based dashboard: In this configuration, a website showing the energy consump-
tion of each user from the coffee machine was developed. This enabled participants to
monitor their own consumption and provide rational insights by means of showing
historical data.

2. Persuasive feedback: This configuration combined subtle visual hints with ambient
feedback provided in real-time to persuade the user to decide when the coffee machine
should be turned off.

3. Automation: This configuration required no intervention from the user. In this way,
the coffee machines decided themselves when was the best moment to shut down
and did so accordingly. This was aimed at providing a notion of comfort for the users
since they did not have to worry about switching the coffee machine off and on to
save energy.

It is worth mentioning that the last two configurations (i.e., Persuasive feedback and
Automation) used an Auto Regressive Integrated Moving Average (ARIMA) model (running
on an external server rather than on the coffee machine itself due to the reduced storage
and computing capabilities of the Arduino board) to statistically forecast the number of
users who would use the appliance every hour of the day [31]. The final architecture to run
the experiment is shown in Figure 2.

Figure 2. System architecture of the Coffee Machine use-case [26].

2.1.2. Evaluation Procedure and Obtained Results

The evaluation procedure was based on structured questionnaires. These question-
naires aimed to obtain users information related to the socioeconomic profile of each par-
ticipant to contextualize the experiment population; their pro-environmental attitudes [32]
as well as their the pro-environmental readiness to change [33]; and their confidence in
technology as a means to address environmental challenges. This information facilitated
objectively assessing whether and up to what extent the users wanted to modify their pro-
environmental behavior. It is worth noting that each participant enrolled in the experiment
had to answer these questionnaires twice: once before the experiment and then after the
experiment (i.e., 1 year later).
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The obtained results and main lessons learned from this use-case are summarized in
the following:

• Energy Consumption: After running the experiment with the IoT coffee machines, the
energy consumption for the Persuasive feedback and Automation experimental condi-
tions dropped by 44% and 14%, respectively. Surprisingly, no energy consumption
reduction was observed in the Web-based dashboard experimental condition. Therefore,
the following remarks can be inferred. First, it is possible to improve energy consump-
tion of daily appliances. Second, human supervision can mitigate bias in statistical
models (i.e., the Persuasive feedback condition saved more energy than the Automation
one). Finally, persuasion is key to involving users (i.e., no changes where observed in
the Web-based dashboard experimental condition)

• Questionnaires: After analyzing all the questionnaire data, it was found that the users
of the Automation experimental condition were the ones who most distrusted the
autonomous behavior of the coffee machine and, thus, felt skeptical that technology
could be a driver for pro-environmental change. Additionally, after the experiment,
this experimental group proved to be less likely to adopt attitudes to favor the envi-
ronment. These findings are fairly well correlated with the work of Murtagh et al. [27],
who found that automation impairs pro-environmental attitudes and undermines
actions for personal responsibility. To sum up, the following remark can be inferred
from the evidence above: autonomous appliances (e.g., the coffee machine in this
use-case) may contribute to reduce the confidence and trust in technology. Therefore,
user idiosyncrasy cannot be neglected when implementing automation in an IoT
domain.

• Focus Groups: To further capture user feedback on this experiment, a set of focus
groups was conducted. From them, the most relevant observation came from the
users of the Automation experimental condition. Specifically, they complained about
the fact that users were kept out the loop of the coffee machine operation. That
is, it was not possible to intervene on the decision process that the coffee machine
did to self shutdown. Users reported feelings of frustration when being unable to
use the appliance at will—although they were aware that this was done to improve
energy consumption.
The main lesson learned from this situation is that users need to understand the
behavior of an autonomous device in order to ensure a long-term effective coexistence.

Overall, the results obtained in this use-case shown an unexpected rebound effect asso-
ciated to automation in IoT environments. To sum up, leaving the processes management—
particularly, those ones related to energy efficiency—to automated entities (e.g., statistical
and machine learning) may bring to averse phenomena: passivity to act in favor of the en-
vironment and widespread distrust on the suitability of technological solutions to address
latent environmental issues.

2.2. Use-Case 2: GreenSoul Project

The second use-case, referred to as GreenSoul (GS) [28], was designed to optimize
energy costs in tertiary buildings considering the individual profile of each user. Although
this use-case is also targeted at energy consumption, GS takes a step forward from the
Coffee Machine and considers user behavioral patterns in order to take/suggest actions.

Therefore, before giving personalized recommendations and/or subtle nudges on
energy consumption, GS accurately monitored the operation of as many appliances as
possible (e.g., monitors, heating, ventilation and air conditioning devices). In addition,
GS considered the idiosyncrasy of each user in order to provide him/her with suitable,
yet effective, feedback to reach the overall goal of increasing energy efficiency without
neglecting privacy and comfort. Overall, GS took some of the lessons from the Coffee
Machine use-case and proposed strengthening the engagement of end-users rather than to
develop complex automation algorithms in order to obtain durable results.
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In the following, the IoT infrastructure deployed on the buildings to optimize their
energy consumption is summarized and the major findings on the user interaction with
the IoT domain derived from this use-case are outlined.

2.2.1. Preparation of the IoT Environment and Experiment Configuration

A three-layered scheme following the physical building deployment and Edge Com-
puting approach (Figure 3) was designed for the GS architecture: (1) the Device Layer;
(2) the Building Layer; and (3) the Front-End Layer.

Figure 3. GreenSoul Reference Architecture [28].

The Device Layer, the bottom part of the architecture, features the set of sensors that
are considered relevant for data extraction and analysis; actuators that can be remotely
controlled to assure that energy efficiency is achieved; and adaptors, which are new
electronic devices connected to home or office appliances, of personal use (e.g., monitors,
PCs, etc.) or collective use (e.g., printers, coffee-makers, outlets or power strips, etc.).
Similarly to the smart coffee maker, the purpose of such adaptors was to optimize efficient
usage of the mentioned appliances.

The Building Layer is responsible for giving value and meaning to the information
retrieved. It consists of the GS-Decision Support System (GS-DSS) component, responsible
for processing data and generating final operational recommendations at the Edge level.

Finally, the Front-End Layer features the components of the Visualization Interfaces
that provide users access to mobile and web applications. With these interfaces, the GS
platform will capture, store and manage energy-consumption data per device/user. Then,
data are analyzed and displayed for educational and informative purposes.

The GS architecture benefits from flexibility in terms of: (1) enabling remote intelligent
management of diverse remote devices (energy-meters and persuasive-ambient devices)
always within the building; (2) applying persuasion techniques through GS-ed devices
and mobile apps to eco-educate users both individually and at user-group level; and (3)
providing device and environment decision-intelligence locally and at the Edge level to
enhance the eco-friendliness profile of a given installation, where several common use
devices are used by a group of users [26].
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2.2.2. Evaluation Procedure and Obtained Results

The effectiveness of the overall GreenSoul system was tested by carrying out an
intervention in six pilot buildings across Europe involving more than 350 people. Four
different treatments combining three different persuasion principles through ICT were
deployed (i.e., self-monitoring, cause–effect and conditioning). These treatments were
delivered using different feedback channels: a custom-based interactive coaster that pro-
vided visual information about energy consumption (self-monitoring); a gamified mobile
app with some automation features (conditioning); a series of analog signage in the form
of post-its and posters with “green messages” (cause–effect) ,which can be considered as
the control-treatment; and all three previous treatments together. Figure 4 illustrates each
of them.

Figure 4. The GreenSoul Persuasion Treatments with the associated technology to deliver them (post-its, mobile app,
physical devices and all the treatments together) [28].

As with the smart coffee-maker intervention, this study was divided into two phases:
individual and collective. During the individual phase, the primary objective was to
foster the awareness and motivation of the participants in energy efficiency practices.
Hence, the only individual information that was provided to end-users was regarding their
performance with devices and appliances under their own control. In the second phase, we
gave persuasive hints about how to reduce the energy consumption of electricity-powered
devices not directly attached to the individual but more related to equipment of shared use
(e.g., lighting, HVAC or common appliances).

Again, the overall GS solution was evaluated through a triangulation approach. To
this aim, three different qualitative and quantitative sources were used: (1) pre–post
validated surveys to assess energy awareness, motivations to change the behavior and
main obstacles that hinder the adoption of energy practices in the workplace; (2) the energy
consumption per user, per treatment and per building along the whole study; and (3) focus
groups throughout all experimental phases to understand user motivations at each time,
interventions pitfalls and other relevant matters.
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The results emphasized the importance of understanding user profiles in both socioe-
conomic and behavioral terms to inform ICT-based campaigns to promote sustainable
practices among employees. Related to privacy, automation and trust on systems and
work-peers, we found that people trusted more in ICT interventions at the beginning, yet
they simply presented cues of absentmindedness. Therefore, this suggests that providing
frequent subtle feedback (i.e., reminders) to employees and tenants would contribute to
helping users to remember green actions once they are aware of an energy-related prob-
lem. The GS intervention also shed light on the importance of understanding the level
of confidence in technology if an ICT-based intervention to change the people’s behavior
want to be applied. This finding was also relevant in the previous use-case. The pilots sites
with higher levels of confidence in technology at the end of the intervention were found
to be the ones with fewer barriers to behave energy efficiently. Finally, we also observed
that high rates of confidence in technology and trust are correlated to a more actionable
approach in favor of the environment.

To sum up, both use-cases stress the need to provide or maintain the confidence
of end-users on technology if we want them to maintain their involvement on green
actions suggested by ICT-interventions. This suggests the use of Fog/Edge Computing
architectures to retain private data close to end-users while the whole internal process of
computing the feedback is explained to them at any point.

2.3. Architecture Requirements for Enabling a Privacy-by-Design with Human-in-the-Loop
IoT Environment

The results and experiences collected from the Smart Sustainable Coffee Machines
and the GreenSoul project endorse the need to conceive a more flexible and privacy aware
architectural solution. The most important insights derived from the analysis of these
use-cases are summarized below:

• A fully-automated management system focused on energy efficiency seems to cause
passivity among people to act in favor of the environment. In fact, users are not
involved in actions which are automatically taken by the systems, and thus can hardly
be influenced to adopt a good habit to help to reduce energy consumption.

• The automated system can also generate widespread distrust in the technology since
it will discourage humans from taking the lead on their own actions.

• Users are often sensitive to sharing their data, resulting in users’ reluctance if the
desired level of privacy is not respected. However, it is of paramount importance
to sense as many data and monitor as many devices as possible to provide accurate
recommendations (e.g., in health or energy-related scenarios) in order to increase
end-users confidence.

• Since involving users to take actions in the smart environment is recommended, it is
important to study their profiles in both socioeconomic and behavioral terms. This
will help in defining the ICT intervention campaigns to communicate with each one
accordingly and promote sustainable practices among users.

These insights allow us to define the following requirements that will guide the
conception of the PyFF architecture:

1. Flexibility: The system must be able to provide different degrees of service at the
same time according to the user profile and service to be delivered.

2. Privacy: The system must take into account the sensitivity of the data originated in
the IoT environment, the service properties and user willingness to expose her/his
associated data when exchanging and computing data over the IoT environment.
Therefore, service performance shall be reduced, if necessary, to keep the desired
privacy level.

3. Scalability: The system must provide for an ever-growing number of devices (and
users) cohabiting and communicating among each others in the same IoT environment.

4. Including humans in the loop: The system must consider user preferences and
behavior, which requires a shift from infrastructure-centric to human-centric [23]
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architectures. Therefore, users are no longer a high-end interface but a critical part on
the whole information flow.

5. Data governance: The system must provide clear means to define which data will be
exchanged, by whom and where they will be processed.

3. PyFF: A Privacy-Fog-Based Flexible Architecture

Driven by these reflections, this work proposes PyFF: a Privacy Fog-based Flexible
architecture for IoT-based smart environments. PyFF features a distributed hierarchical
system that takes advantage of the Fog Computing paradigm for enabling privacy-by-
design with human-in-the-loop IoT environments. Specifically, PyFF is committed to:
(1) collecting, storing and processing multi-modal data from low-cost devices in a scalable
way; (2) providing several degrees of data privacy according to the user and application
preferences; (3) hosting recommendation and forecasting distributed algorithms with
variable computational cost; and (4) implementing ICT-based channels to communicate
the concluded recommendations to users based on their profiles and preferences. Overall,
based on a hierarchical design inspired by Fog Computing, we detail hereafter the PyFF
system model and the functionalities of its layers. These layers are depicted in Figure 5.

Figure 5. The proposed PyFF system architecture.

From an architecture point of view, PyFF is compatible with existing well-known
IoT architectures that, incidentally, are typically composed of three logical layers [34]:
Perception layer (that could be mapped to the Sensing layer of PyFF), Network layer (that
could be mapped to the Early Stage Computing Layer of PyFF) and Application layer (that
could be mapped to the Intensive Computing layer of PyFF). However, existing architecture
reference models (e.g., RAMI 4.0, IIRA, IoT-A and IEEE 2413-2019) focus on specific
challenges (e.g., infrastructure data and connectivity, business usage implementation,
interoperability and secure information exchange) and seem to neglect user involvement
in the whole data lifecycle [35]. Therefore, PyFF aims to: (1) simplify the complexity of
existing IoT reference models; and (2) enable privacy-by-design with human-in-the-loop
IoT environments.

3.1. PyFF: System Model

The very first requirement that PyFF should meet—thoroughly learned from the
GreenSoul use-case—is flexibility. The level of data privacy can change according to
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company policies and/or users preferences (e.g., users from the same company may have
different privacy policies). Accordingly, the use-case of the Smart Sustainable Coffee
Machines has stressed the relevance of providing user-adapted recommendations when
using persuasive techniques to raise energy efficiency awareness. Therefore, PyFF must
be able to adapt to the desired and dynamic levels of privacy, accuracy and automation.
The flexibility of the proposed approach allows the user to interact with the system while
iteratively personalizing it at any time. Thus, fine-grained control is given to the user,
who has the power to modify and adjust the system behavior according to their privacy
requirements and their current wiliness to be an active part of the process. This fine-grained
control consists of specifying how “far” the associated data of users will go, that is which
devices—and users—will store and/or process a certain datum for a given service. Such
specification will be made by the user at service sign-up and epidemically propagated [36]
to all the affected devices. This fine grained-control could be implemented by means of a
declarative access control policy language such as XACML [37], which can be adapted to
provide adaptive reasoning, as done in [38].

The Fog Computing nature of the proposed approach (see Figure 5) helps the system
to be inherently flexible and enables it to integrate different technologies and standards
with little effort, which makes it adaptable to any given scenario restrictions.

PyFF is composed of four main and flexible layers: (1) Sensing Layer is responsible for
data collection; (2) Early Stage Computing Layer is represented by a Fog network used for
local computation; (3) Intensive Computing Layer is deployed in a Cloud infrastructure and
responsible for data aggregation, which is used to obtain more accurate recommendations;
and (4) User–Environment-interaction Layer is used to optimize the interaction between the
users and their surrounding smart devices while giving recommendations.

Such flexibility provides data processing, storage and networking scalable services
between Cloud Computing infrastructures and IoT devices, generally located, but not ex-
clusively, on the Edge of the network [39]. Indeed, the Fog Computing approach alleviates
those fears related to sharing sensitive and private data on the Cloud by enabling users
and applications to conduct intensive operations close to where the data were generated
(i.e., Edge) and, thus, minimize the amount of information sent to the remote servers. This
approach inherently increases data security since these data are kept inside the enterprise
network and its firewalls, which can be best seen as privacy-by-design [40] enabler.

The four layers featured by PyFF are supervised by a Decision Support System (DSS)
that, with the aid of the user, defines through intents the scope of every datum according
to some rules such as privacy, presence or availability. This intent-based DSS is based on a
previous work of the authors, the S3OiA framework [41]. Hence, PyFF can be considered
a flexible architecture thanks to the fact that it can be decomposed into layers that can be
added/removed depending on the system needs. The role and functionality of each layer
is detailed in hereafter.

3.1.1. Sensing Layer

Similar to submetering [42] in the electric field, the sensing layer is committed to
collecting the greatest amount of data from the environment. It can be best seen as an
IoT sub-domain where Internet-connected digital objects sense as many environmental
variables as possible. For instance, a desktop computer can easily detect user presence,
sitting posture and eye gaze/blinking by means of the built-in camera [43]. It can also
infer user activity by counting keystrokes (or clicks on the mouse) during a period of time.
Analogously, a smartphone can easily sense background noise, ambient light intensity or
the amount of phone calls interrupting user’s activity. Additionally, other smart devices
such as smart plugs, smart watches or smart speakers (digital assistants) can be easily
reconfigured to report all the data that they seamlessly capture. Data communications in
this Sensing Layer can be implemented by means of well-known protocols such as XMPP,
MQTT or CoAP [44] since all sensed data will be later processed and matched to a certain
behavior at the upper layers.
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3.1.2. Early Stage Computing Layer

Inspired from the Fog architecture, the Early Stage Computing Layer receives data
from the Sensing Layer and conducts local non-intensive computations. From a data
privacy point of view, this layer can be best seen as the frontier which sensible data shall
not go beyond. In fact, as already seen in the GS use-case (see Section 2.2), several studies
have shown that users, enterprises and stakeholders are keener to share and collaborate if
those sensitive data are managed at the Edge of the network (i.e., fog) rather than outside
of the premises [45].

Consequently, as long as the data privacy policies allow it, the Early Stage Computing
Layer sends encrypted objects to the upper layer for strong recommendations or more
sophisticated aggregated analytics. The latter requires greater computing power and more
robust models.

Devices located at the Edge of the network can be typically identified as gateways,
computers or local servers. Additionally, it is worth mentioning the situation in which
the same physical device—due to its advanced sensing, computing and communication
capabilities—can belong to the Sensing and Early Stage Computing Layers at the same
time. This would be the case of the Arduino boards used in the Coffee Machines use-
case (see Figure 1). One of these Arduino boards can locally decide (at the Early Stage
Computing Layer) to turn on or off the coffee machines according to the current date
and time, which would result in an immediate energy saving but may potentially lead
to user dissatisfaction. However, before taking this decision, the Arduino board can
check the overall energy consumption of the whole building (e.g., it might be empty) and
decide—irrespective of the current date and time—to allow the user to have a cup of coffee.
This is why this early stage layer transferring sensed data to the upper layer for more
intensive computing and in exchange would obtain a richer and more accurate picture of
the environment.

For a further explanation of the role of the Early Stage Computing Layer, imagine that
a smart plug sends the power consumption of a heater. When the gateway detects that
the heater has been working uninterruptedly for a specified number of hours, it might
suggest to turn off the heater, which would result in energy saving—similar to the Smart
Sustainable Coffee Machines use-case. In the upper layer (i.e., Intensive Computing Layer),
the power consumption data will be correlated with other variables (e.g., office hours,
office occupancy and ambient temperature) to make the recommendation stronger and,
maybe, more widespread (e.g., in addition to the user, it could also trigger an alert to the
staff in charge of facility management).

In addition, another example could be the situation where a potential camera is used
to track users’ positions, and, thus, user privacy becomes of paramount importance. In
this case, the proposal is to take an alternative approach by encrypting and sending to the
following layer the user’s body/face edges and most notable features [43] instead of the
whole video stream (as done in [46]). Note that this strategy intrinsically boosts worker’s
privacy since it is guaranteed that: (1) the whole image stream cannot be reconstructed from
the landmarks (i.e., no raw images are sent); and (2) no other environmental information of
the user leaves the physical building. Additionally, the overall amount of data transferred to
the communications network is greatly reduced, which increases the system performance.

Indeed, as data go from one layer to the next, the degree of data privacy is unavoidably
reduced. Therefore, PyFF aims to move as few data as possible (following the principles of
Cloud Computing [47]: move computation to data rather than moving data to computation)
and, when the size of data or complexity of the computation associated to them makes it
necessary for them to be sent to the next layer, data are encrypted (using a privacy scheme
such as the one proposed in [48]).

3.1.3. Intensive Computing and Storage Layer

Recent advances in machine learning require powerful computing platforms (e.g.,
GPUs) to run analysis and forecasting algorithms (e.g., those based on deep neural net-
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works). This comes together with an eagerness of data. That is, these algorithms typically
require large amounts of data to operate properly and provide accurate recommendations.
For those applications/services that require these artificial intelligence algorithms, the
modest features of devices deployed on the Edge network are not effective to appropri-
ately handle such amount of data. Therefore, PyFF proposes a layer deployed in a Cloud
infrastructure named as Intensive Computing and Storage Laye, which can be used at will
whenever more computation and/or storage is needed (e.g., cloud bursting). Furthermore,
this layer can also work as a complement for those applications where the processing
capabilities are placed at the Early Stage Computing Layer. In those, inference tasks can
be performed locally, where new data can be extracted, processed and converted into
knowledge. Then, if the user allows their information to be externalized, learning models
can be updated according to this extracted knowledge using the higher resources available
at the Intensive Computing Layer.

At this point, the power of a Cloud Computing infrastructure is exploited by: (1) log-
ging and aggregating all the collected data that reaches this layer—ideally, most of the
data would reside on the lower layers; (2) using a computing-intensive Learning Classifier
System able to build a set of user-readable rules (i.e., recommendations); and (3) forward-
ing these rules to the devices that have sensing but also acting capabilities from the Early
Stage Computing Layer (i.e., User–Environment-interaction Layer). The recommendations
resulting from this computing intensive data analysis will be mainly transmitted by means
of the User–Environment-interaction Layer, which will be in charge of finding the best
time/manner to deliver recommendations to the user (for instance, user’s presence must
be guaranteed before making a recommendation), as previously learned with the Smart
Sustainable Coffee Machines and GreenSoul use-cases. Note that the server used for the
coffee machines use-case (see Figure 1) could be deployed in this layer.

3.1.4. User–Environment-Interaction Layer

The availability of a large amount of data enables us to use this information to influence
users and guide their actions towards more accurate and precise behaviors. For instance, it
is better to recommend the user to switch off the light rather than telling him/her to reduce
the energy consumption. For this reason, this layer oversees optimizing the interaction
between the users and the devices by delivering contextualized feedback. This depends
on when and how to interact with the users to effectively influence their behavior: on the
one hand, by choosing the right recommendation mechanism (e.g., persuasive strategies
based on personalized messages [26]), while, on the other hand, by selecting the right
moment to provide the recommendations through anticipation (about-to-do moments)
and reflection on action (just-in-time moments). The first one is based on anticipation,
consisting of recognizing pre-action patterns that allow providing immediate interaction to
redirect the activity through context-aware signals (lights, sounds or vibrations, among
others). The second one consists on providing the user with all the information related to
their behavior and performance, analyzing in depth patterns and changes over time and
showing the possible consequences of this trend. Unlike the previous type of action, in this
case, we seek to influence future habits through personal inquiry.

A second approach that PyFF also supports is related to closing the loop of interaction
and allowing the users to not only receive information but also provide feedback to the
system through intents [41]. Implementation wise, these intents are in line with the idea of
the contemporary concept of human-in-the-loop [18] (i.e., human beings are the ones who
guide an intelligent system as it learns) and with the way Amazon Alexa or other voice
assistants are developed (available online: https://developer.amazon.com/en-US/docs/
alexa/custom-skills/create-the-interaction-model-for-your-skill.html (accessed on 7 May
2021)). The intents and their associated utterances can be provided through multimodal
interaction (e.g., tangible, voice-based or explicitly through a digital interface such as a web
app or mobile app). These intents have to be propagated through the system to retrain and
tailor the way and moment the feedback is provided according to the users’ criteria and

https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-the-interaction-model-for-your-skill.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-the-interaction-model-for-your-skill.html
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needs. Hence, feedback and intents are two interwoven concepts towards personalization.
The more the feedback from users is provided to the system, the sooner it will provide
bespoke interaction in PyFF. The intents could be interpreted by the system through a
rule base engine following the Rete Algorithm [49]. Some candidate implementations are
Jess [50], CLIPS (available online: http://www.clipsrules.net/ (accessed on 7 May 2021)),
pyKe (available online: http://pyke.sourceforge.net/index.html (accessed on 7 May 2021))
or Durable Rules (available online: https://github.com/jruizgit/rules (accessed on 7 May
2021)) which allow different programming languages for their implementation.

Finally, in certain applications/services, no recommendation to the end-user is re-
quired (see the Automation group in the Smart Sustainable Coffee Machines use-case). In
this case, this layer could be removed/overlooked, which again shows the flexibility of the
proposed system.

3.1.5. Decision Support System

Since PyFF features a hierarchical heterogeneous architecture, a system orchestration
is, hence, required to ensure communication and interoperability between the proposed
four layers. PyFF integrates a Decision Support System (DSS) mainly based on middleware
solutions for IoT-, Fog- and/or Cloud-based systems [51–54]. By investigating the work
that Pore et al. [55] carried out on design issues for Fog and Edge middlewares, an
approach using micro-services could be implemented to hold and orchestrate PyFF system.
Indeed, some well-known Fog Computing frameworks such as Apache Edgent (available
online: https://edgent.incubator.apache.org (accessed on 7 May 2021)) or Edgex Foundry
(available online: https://docs.edgexfoundry.org/ (accessed on 7 May 2021)) use this
paradigm that enables modular, scalable, secure and technology-agnostic applications [56].
In fact, the DSS with the aid of the user defines through intents the scope of every datum
according to some rules. The list of rules to decide how to assign services and communicate
between layers includes:

1. Privacy: Where users are enquired regarding their willingness in sharing sensitive data.
2. Accuracy: To decide where (i.e, Fog and/or Cloud) the computation (e.g., a recom-

mendation) will take place.
3. User involvement: Where the system decides communication channels used to notify

users based on their preferences and the multi-modal channels employed to assess
how good or bad was the feedback received.

With the defined rules, the DSS covers communication and interaction between PyFF
layers in order to decide: (1) which data to retrieve from physical devices; (2) how to
protect data (anonymization, encryption, etc.); (3) which computation layer to address for
recommendation (Fog or Cloud); (4) how to interfere with the environment to take actions
based on computational results; and (5) how to communicate recommendations to users.

In essence, the main difference of PyFF with regards to other prior Fog/Edge archi-
tectures, systems and existing frameworks lies in the user involvement and the flexibility
of the architecture to enable all the layers or just the most basic and functional ones. In
other reviewed approaches, the end-user is mainly depicted as a bare consumer of the
services provided by the architecture, usually in the top layer called “applications” or
“marketplace”. However, PyFF provides a technology agnostic orchestration system able to
put the user in the center of the decision making of what services offer and to what level of
privacy they should be offered.

4. Illustrative Example: Smart Workplace

To better understand the functionality of the proposed architecture, an illustrative
scenario to showcase the flexibility and use of PyFF is provided. This scenario is abstracted
in Figure 6, while Figure 7 shows the mapping of the PyFF multi-layers architecture in a
real-world environment. Let us consider an SME company that has several/shared offices
for its workers and management. Every office, regardless of the employee category (i.e.,
blue or white collar) uses a set of standard devices (i.e., desktop computer with in-built

http://www.clipsrules.net/
http://pyke.sourceforge.net/index.html
https://github.com/jruizgit/rules
https://edgent.incubator.apache.org
https://docs.edgexfoundry.org/
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camera, smartphone, smart plug, smart light and voice assistant) equipped with sensing
capabilities in the workplace environment (yellow row in Figure 6 and yellow components
in Figure 7).

Figure 6. Abstraction of the PyFF architecture to address energy efficiency and user comfort in a smart workplace environment.

Figure 7. Implementation of the PyFF architecture in a smart workplace.

On the one hand, the desktop computer of the office continuously monitors (i.e., Early
Stage Computing Layer) the worker position and periodically triggers alerts when no significant
movement is detected for long periods of time. This is aimed to improve the workers’ health
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conditions by reminding them to avoid sedentary attitudes (blue row in Figure 6 and blue
server in Figure 7).

For those workers with no data privacy concerns (i.e., high-level staff may be averse to
allow their sensed data to go away from the company), the face/body landmarks are sent
to the Intensive Computing Layer (red row/cloud in Figures 6 and 7) to precisely analyze
the worker’s gaze, eye blinking and sitting posture. This layer sends back recommendations
to the desktop (green row in Figure 6) in order to complement their local decisions (e.g., in
addition to the “sedentary attitude” alert, another specific recommendation could be triggered:
“perform neck exercises”). Note that, at this point, some users are taking advantage of the
rich recommendations provided by the machine learning algorithms running at the Intensive
Computing Layer (at the cost of assuming potential privacy leaks of the sensed data), while other
users renounce these recommendations (at the price of keeping their sensed data safe). This
flexibility is aimed at obtaining a larger user acceptance, as learned from the Smart Sustainable
Coffee Machines and GreenSoul use-cases.

In this scenario, it is also worth considering the case in which a smartphone collects
(Sensing Layer) data regarding ambient light intensity. When the smartphone detects an excess
of ambient light (Early Stage Computing Layer), it triggers a notification for the user suggesting
that s/he turns off the office light to reduce energy waste. Additionally, the ambient data sensed
by the smartphone will again be cross-checked with data from other sources (e.g., it might be
the case that the desktop screen is momentarily displaying bright images) in order to make a
stronger recommendation (e.g., making an automatized phone call to the user). This is why, in
some situations, the early stage layer needs to transfer sensed data to the upper layer for more
intensive and correlated computing and global storage.

Similarly, the smart plug is continuously sending the power consumption to the same
desktop application that locally monitors worker’s movements. This enables the system to
autonomously infer behavioral status (via association rules [57]) from the user and his/her
environment. For instance, with these rules, the system can assume—as early as at the Early
Stage Computing Layer—that, if there is no movement and the fan is turned on (i.e., there is
power consumption), the worker might have left and forgotten to turn off the fan and, thus,
might decide to trigger a warning via the voice assistant, just in case the worker is still in the
office. This inferred behavior must be further refined at the Intensive Computing Layer, where
the power consumption of the smart plug will be correlated with the worker agenda to check
whether the worker may be elsewhere and, thus, unilaterally decide to turn off the fan by means
of the smart plug.

Finally, it is worth considering how the proposed system implicates users to get involved
in these recommendations (to engage and leading them to a more responsible lifestyle) by
means of the User–Environment-interaction Layer. In fact, workers are directly involved in
changing their own habits in terms of energy waste. Users can configure the degree of privacy
they want and through which interfaces (e.g., cell phone or email) they are willing to receive
recommendations. Indeed, the system could be completely autonomous and, for instance, turn
on and off devices accordingly, as done in the Smart Sustainable Coffee Machines use-case.
However, in PyFF, we prefer in addition to implement a user-unaware energy efficient model,
instill better intentions for workers. With this, we are avoiding users reluctance to technology
as well as helping to tackle the root problem of energy consumption/waste by using those
recommendations at a larger scale (i.e., at home, in public spaces and elsewhere).

Overall, with this example, it can be seen how the IoT architecture provided by PyFF
can contribute to worker comfort and energy efficiency in a flexible and privacy-friendly, yet
persuasive, way. In addition, as shown in Figure 6, the PyFF approach enables to add/remove
layers according to the desired services or user constraints, which endorses the system flexibility.
Indeed, one application may choose to use only the Early Stage Computing and the User–
Environment-interaction Layers if all its users are reluctant to share their data. However, in the
case of different data sensitivity preferences between users, both computing layers can be kept
and only exclusively those data that meet the desired levels of privacy moved to the Cloud.
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5. Qualitative Evaluation

We depict hereafter, a qualitative study to compare between both use-cases and the
new PyFF architecture. The reason behind this cross validation is to demonstrate the
improvement that PyFF brings in terms of flexible design for a smart workplace. Since
PyFF has not been implemented yet, and since we conducted extensive experiments for
both use-cases, Smart Sustainable Coffee Machines and GreenSoul, the comparison below
is mainly based on the strategy of each architecture to enable a privacy-by-design with
human-in-the-loop smart workplace. To this end, we define in Table 1 a set of metrics under
three categories: (1) Privacy, to evaluate at up to what level the architecture respects privacy
policies at corporate and/or employee level; (2) Automation, to assess the autonomy of
the proposed system to offer the required optimization (e.g., energy efficiency) trading-off
the degree of intrusiveness; (3) Flexibility, to estimate the possibility of re-adapting the
design considering all potential parameters (physical components/architecture, ethical and
privacy policies, size of data/network, etc.); and (4) Deployment, to assess the deployment
efforts required to deploy it in a real-world environment.

To help read the qualitative comparison, we rank most factors varying from ++ (imple-
mented/measured) to −− (not implemented). The ranking demonstrates how much the
evaluation criterion was considered (or not) for each architecture. The example in Table 1
shows that data protection factor has been considered for both use-cases but relatively
less than PyFF (anonymization schemes vs. privacy-based, user-centric scheme), with a +
value for both GreenSoul and coffee Machine and ++ for PyFF. Seemingly, the disruption
factor has clearly been neglected in the coffee machines because of the fully-automated
(i.e., out-of-control) system which cost a—for its evaluation.

5.1. Privacy Metrics

Smart environments are challenging scenarios where technology is the primary way
to collect data and obtain information about users. They must preserve users’ privacy and
consider ethical concerns regarding personal data collection [58]. In Table 1, we evaluate
the privacy through four main metrics: (1) Data Protection, i.e., what protocols are used
to protect data; (2) Data usage, i.e., at what level we are disseminating data (Local/Edge,
Cloud, etc.); (3) Homogeneity, i.e., whether we are using the same rule/protocol for every
device/user in the application or not; and (4) Disruption/Intrusion, i.e., whether the new
smart environment is being intrusive/disruptive to the user of not.

As demonstrated along the proposed two use-cases, users are more reluctant to be
monitored in spaces that can be associated with their behaviors and habits (e.g., schedules
and work performance in smart workplaces) [59]. In PyFF, privacy concerns are covered,
ensuring the security of the data on every layer of the architecture, with special focus on
the way sensitive information is processed and sent to the Cloud. Therefore, no unwanted
personal data are made available. and, thus, the privacy of the users is preserved. In
this regard, the Early Stage Computing Layer is introduced as an intermediate layer that
offers local decisions based on data collected at the Sensing Layer and ensures sharing
resources and services in the neighborhood of a network while enhancing their secrecy
and availability. Nonetheless, in some applications, pre-processed data still need to be
delivered to an upper layer with more computing and storage capabilities. To maintain the
management requirements of the potentially sensitive information, the most critical point
to consider on this layer is data privacy. Therefore, PyFF proposes to: (1) filter/transform
personal data; and/or (2) encrypt data before sending them to the upper layer (i.e., Cloud
services). Many existing security schemes can be used in this Fog-inspired architecture. For
instance, SKES-Fog can be implemented as far as a smart environment architecture could
be presented using domains, as suggested in [48]. Besides, data filtering or transformation
allows deleting unnecessary data during the decision-making process (e.g., user’s identity).
Later, the interaction layer will assign the anonymized data to its corresponding worker to
send accurate recommendations (based on the decisions from the Intensive Computing
and Early Stage Computing Layers) and receive feedback from them.
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Table 1. PyFF qualitative evaluation.

Qualitative Evaluation
Metrics GreenSoul Smart Sustainable Coffee Machines PyFF

Data protection + (anonymization & encryption) + (anonymization) ++ (based on privacy policy)
Data usage Edge Cloud Device, Edge, Cloud (based on user’s choice)

Homogeneity Yes Yes heterogenous privacy rules & preferencesPrivacy

Disruption/Intrusion -(many new deployed devices) - -(full automation) ++(Interaction-based scheme & no extra devices)

User involvement +(one-way recommendations) - -(full automation) ++ (full-duplex & adapted to user involvement preferences)
Recommendation accuracy Fog-based Cloud-based Cloud/Fog (parameter)

ICT/HCI dashboard dashboard depends on user’s behavior/preferenceAutomation

Real-time Yes Yes Yes

Adaptive reasoning Non-existent Non-existent layer-based

Context-based Energy Energy(coffee machines) Any contextFlexibility

Scalability workplace - home & workplace + ++

Deployment cost Hardware + software Hardware + software Hardware + software

Fault isolation and tolerance NA Yes Yes

Heterogeneous devices Yes No Yes

Reliability - (fog-ML-based recommendation) +(Statistical method) NA
Distributed No No Yes

Deployment

Event management + DSS NA ++ DSS + User-Environment layer



Sensors 2021, 21, 3640 19 of 27

Furthermore, data need to be gathered without affecting users’ routine and minimizing
their attention span, especially in workplaces. Thus, these systems need to be non-intrusive,
creating an ecosystem surrounding the user that allows collecting data without any effect
on his/her routine [60]. PyFF avoids intrusion and disruption by using digital devices
already deployed in the environment or the users’ devices so that space is not over-
instrumented with disruptive elements. In general terms, one of the strong points of
a successful ICT initiative should be ensuring how the user interacts with technology,
promoting its adherence while creating a sense of confidence and trust. While comparing
PyFF architectural approach to the ones in the Smart Sustainable Coffee Machines and
GreenSoul use-cases, we found both use-cases relatively intrusive. GreenSoul requires
an amount of new deployed devices (which causes over-instrumentation in the smart
environment) while Coffee Machine makes the system fully automatic which causes user’s
reluctance. Since privacy is strongly based on the level of users’ adherence to sharing data
and/or being instrumented with smart devices, PyFF enables privacy-by-design [61] with
a heterogeneous scheme. With this, users have the choice of subscribing to the level of
privacy they feel comfortable with (e.g., sharing data/identity, selecting a set of smart
devices to collect data from, etc.) and update it according to the context or their current
attitude towards the system. However, both use-cases implement one single protocol for
all users and devices which make them less adaptive to users’ preferences and behaviors
change on the run.

5.2. Automation Metrics

Designing a smart environment requires building autonomous processes to collect
data, analyze information and make decisions. In the qualitative comparison, four metrics
are defined to evaluate Automation in PyFF: (1) how much user involvement is respected; (2)
what the level of Recommendation accuracy (i.e., intensive/early stage computation based
on Cloud/Fog) is; (3) ICT/HCI, i.e., how the system interacts with users (Communication
channels); and (4) if the system offers Real-Time services.

As concluded from the proposed use-cases, it remains important to communicate
with the users during any actions/recommendations issued from the automation process.
In fact, there is a risk of losing users’ trust and adherence in technology, while making
the architecture totally automated (as in the Smart Sustainable Coffee Machines use-case).
For this reason, PyFF was designed from a human-centered perspective to promote new
habits in smart environments by considering the role of the user as a key factor in bringing
changes. The basis of the change-management process is the way the information is used
as an awareness mechanism and how this information is provided to the workers. In
particular, information needs to be delivered effectively and digital feedback is an appro-
priate way to influence in the receiver [62]. In PyFF, the role of the user is boosted by
the User–Environment-interaction Layer, in charge of optimizing the interaction between
the users and the system through contextualized feedback [26] and privacy-based user
intentions [41]. The former pursues involving the workers in the smart process and in-
fluencing their behavior through the application of technological persuasion techniques
that increase their engagement and motivation. The latter allows the user to express the
data a user wants to preserve and a set of requirements which have to be accomplished
to this endeavor. Thus, the user will always be able to supervise the whole procedure
in a reliable and understandable manner. This human-in-the-loop approach augments
human interactions, making them part of the information retrieval, understanding and
processing [63,64]. Thanks to this layer, Cloud services and humans in the loop transpar-
ently interact with each other, allowing a more secure and confident data exchange. The
User–Environment-interaction Layer involves users in the process of promoting sustainable
behaviors and, thus, encourages them to have confidence on a layered architecture that
seeks to ensure the security, privacy and trust. This provides an adaptable interaction that
can be dynamically adapted to different contexts and user preferences and, ultimately,
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allows users to educate the system (and reciprocally help the system educate the users)
rather than relying exclusively on what the system decides for them.

5.3. Flexibility Metrics

An acceptable way to reach flexibility in a layer-based architecture is: (1) to offer
Adaptive Reasoning by adding/removing layers in every application accordingly; (2) to
implement Context-based protocols by offering a solution for any application domain
(instead of only smart workplaces as in previous use-cases); and (3) to define a scalable
solution that easily re-adapt to the size of network, devices and users (see Table 1).

The PyFF adaptive reasoning feature offers the possibility to add/remove one or more
layers depending on the system needs (recall that we propose four layers). According
to the service complexity, this can be implemented in the user registration process of the
service by including a semantic reasoner or a simple questionnaire (e.g., “would you be
comfortable with device X having access to your datum Y?”). The output of this module
will be the privacy and behavioral rules that will constrain the scope of the service delivered
to each user.

The addition and removal of PyFF layers is shown in the following examples. Let us
first consider a use-case about a top-confidential work environment (i.e., military field):
here, Cloud services can easily be excluded by removing the “Intensive Computing layer”,
which may result in a reduced performance as long as the low layer devices lack from
the required storage and computing capabilities to deliver service. Inversely, in a smart
farm environment [65], where we need very accurate recommendations by aggregating
data from all distributed lands (i.e., farms), and where privacy is not a big issue, there
will be no need for the “Early Stage Computing Layer”. In addition, the role of the User–
Environment-interaction Layer will be limited to communicate decisions to the user (i.e.,
farmer) without any suggestions of taking actions (because the goal behind the system is to
remotely monitor the fields using deployed smart devices). These two examples—different
from the smart workplace scenario—show that PyFF is a context-sensitive solution where
its architecture can be generalized to a larger spectrum of use. Even though in this paper
we focus on the energy-efficiency and users well-being in a smart workplace environment
as an illustrative example, PyFF architecture is based on decoupling elementary services
in any system (physical devices, privacy and computation rules, real-time and accuracy,
HCI, etc.).

5.4. Deployment

When the size of IoT-based environments grows in terms of devices, the deployment
and maintenance of their systems becomes relevant and intensive. It is very common to
find IoT domains composed of heterogeneous and non-standardized devices, which makes
them hard to deploy (e.g., individual configurations required) and maintain (e.g., when the
system fails it is hard to find and isolate the faulty device).

Additionally, when the number of devices grows, the system may degrade its per-
formance due to the communication overhead between devices and a lack of a scalable
backbone. In this regard, the hierarchical approach featured by PyFF relies on Fog and
Cloud Computing to alleviate the scalability issues emerged when facing a large number
of IoT devices.

Furthermore, the distributed nature of PyFF makes it very robust against faulty IoT
devices. These devices are known to be fault prone for several reasons (e.g., lack of reliable
power sources, continuous exposition to harsh environments, etc.). In the likely case of a
faulty IoT device, PyFF would be able to: (1) trace the source of the fault (i.e., the Intensive
Computing Layer would identify non-coherent values compared to other sources or the
Early Stage computing layer would receive very different values compared to its historic
records); (2) isolate and ignore the faulty device (i.e., conducting a top-down analysis of
the information flow along the hierarchical architecture); and (3) report to the user that a
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device is faulty (i.e., using the User–Environment-interaction Layer). Hence, the source of
the events can be traced naturally.

6. Related Work

As shown above, technological advancements are starting to accelerate the evolution
of future smart environments. Now, this concept goes much further than implementing
technology to achieve this digital transformation and points to creating interactive spaces
where people and technology collaborate. Under this vision, smart environments sense the
physical world, give meaning to the obtained information and trigger suitable reactions to
transform human lifestyles. As a consequence, the Internet of Things (IoT) can enhance
health [66], wellness [67] or promote sustainable practices [68] in domains such as the
city [69] or the workplace [70]. The latter is a good example of how human and machine
intelligence can collaborate. Indeed, the inherent nature of these spaces, where an average
employee spends a substantial part of her daily routine, involves that the habits and
behaviors performed in the workplace play a key role in every individual and the society.

Thus, workplaces can be seen as ideal scenarios to guide workers towards new
lifestyles that are extended beyond their workday [71]. Linking the workplace with health
promotion and energy-related matters lead to the development of a sustainable working en-
vironment that increases awareness through healthier and more sustainable behaviors [72].
In particular, they can contribute to a more environmentally friendly energy manage-
ment [73] and cover the lack of awareness of the individual about the impact these habits
on their health [74]. For example, a work environment augmented with IoT can detect
and classify unhealthy habits such as bad postures or sedentary habits and notify those
harmful practices to end-users. Moreover, it can assist the user towards energy-awareness
and to attain sustainable changes in the mid and long term.

A key factor when designing and implementing programs to promote new habits
in the workplace is to study specific methods to identify which are the main problems
and then to carry out useful strategies to solve them [75]. In this regard, ubiquitous
technology can be used, firstly, to identify the unhealthy and unsustainable behaviors that
are executed in these spaces and, secondly, to correct the inadequate practices that are
recognized. Transforming the quality of the workplace experience implies monitoring
which habits need to be changed and providing information about the consequences of
these habits. Technology-based solutions allow us to physically or digitally interact with
our surroundings to obtain data that can be transformed into information and, in the end,
knowledge about the daily routines of the workers. Based on this knowledge, context-
aware guidance can be provided to influence the users and change their behaviors. Thus,
technology-based solutions can be considered appropriate drivers to promote wellness and
energy awareness in the workplace.

Several attempts have been made to design enhanced workplaces [76] through the
adoption of the Information and Communication Technologies (ICTs). From occupational
risk assessment and ensuring safety in the workplaces [77], different solutions are pro-
posed to reach large audiences and help them to prevent indirect risks associated with
these spaces and bring energy awareness to their routine. For the former, occupational
health and promoting more active behaviors in the workplace stand out as one of the
most addressed concerns. In this direction, Taylor et al. reviewed the existing literature
addressing interventions designed to reduce sitting time and the role of the organizational
culture [78]. The obtained results coincide with the ones presented by Stephenson et al. [79],
who concluded that interventions using a computer and mobile and wearable technologies
can be useful in reducing these behaviors. The PEROSH initiative [80] studied how wear-
able devices could be part of wellness promotion interventions. It elaborated a decision
support framework for selecting useful sensors and proper data collection strategies for
avoiding sedentary behaviors neglecting data privacy issues. In the same way, Jimenez
et al. [81] presented some guidelines to promote workplace health by using electronic
and mobile health tools to provide easier administration for campaign proposers while
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considering data privacy from a technical and psychological points of view. However, no
specific ICT architectures have been proposed to conduct these processes. Other works
have approached wellness interventions through digital technologies and have also been
proposed for reducing sedentary behaviors [82] as well as to increase energy expenditure
and promote more active periods [83,84].

Commercial solutions such as Comfy (available online: https://www.comfyapp.com/
(accessed on 7 May 2021)) are committed to providing a virtual link between the digital
workplace and the physical environment by means of a Cloud-based platform able to
collect users data. These data might also be used to monitor user activity [85] or even
suggest the most appropriate time intervals to take a break [86] considering the user’s
focus state. Collected data can also come from a smart chair that could be used to improve
the user’s sitting position [87]. Novel technologies such as 5G in IoT domains have been
devised to boost comfort [88] and safety [89] in working environments.

As far as energy awareness in working environments is concerned, there have also
been some proposals so far. For instance, a digital interface was proposed by Irizar-Arrieta
et al. [90] that was aimed to notify users about their associated energy consumption.
This is very similar to the interactive coaster developed in the context of the GS project
(Section 2.2) which was aimed to make workers aware of the energy consumption of the
electronic devices that were naturally spread over their offices [91]. Recently, there have
been proposals aimed at reaching a large number of users: from displaying statistics in
real-time regarding energy consumption in a physical ground of a factory [92] to measuring
the power consumption of shared laboratory equipment [93], including proposals to
transform working tools and equipment into smart devices that persuade their users with
eco-awareness [26].

Moreover, some works have already explored the human factor behind these inter-
ventions and how people and the devices that populate smart workplaces can cooperate
towards higher energy efficiency [94] or bringing health awareness to the workplace by
increasing technology acceptance [95]. In general, work environments are especially chal-
lenging scenarios where additional barriers regarding privacy concerns of the collected
information [96] and the ethical concerns [58] must be considered. Moreover, context and
commitment to change are also a key factor when workday duties involve the total daily
routine [97].

This work goes one step further in the line of converting work environments into
appropriate settings to promote the adoption of lifestyle changes that persist over time.
In contrast to the literature reviewed, our proposal puts the focus on the users’ concerns
as a way to successfully tailor their future actions. To that end, we present the require-
ments to design an open novel architecture able to allocate interactive interventions in
the workplaces while considering system scalability, users’ privacy and cost. Moreover,
this work highlights the role of the worker at the center of a system that addresses both
energy consumption and workers health, as a whole rather than tackling these aspects
individually with expensive or commercial (e.g., Comfy Enlighted (available online:
https://www.enlightedinc.com/ (accessed on 7 May 2021)) ad hoc single purpose devices.

In essence, the presented approach links innovative data architectures with the future
work environment while addressing the human role in the process.

7. Conclusions

The IoT paradigm has enabled the rapid conception of a plethora of new applications
and use-cases committed to improving and supporting humans’ daily lives. However,
despite the apparent benefits brought by these solutions, there is a growing number of
users who exhibit a somehow averse behavior towards these improvements. In this work,
we describe and analyze two IoT use-cases (i.e., Smart Sustainable Coffee Machines and
GreenSoul projects) to identify the source of these reluctant attitudes and set up the grounds
of an architecture to address them. The results from both tested deployments allow us
to conclude the importance of involving users to take actions in the smart environment

https://www.comfyapp.com/
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themselves while preserving their privacy preferences. This motivated the design of PyFF,
a privacy-friendly by design architecture aimed to enable the transformation of physical
spaces into smart environments by actively involving the user in such a process.

PyFF is a Privacy Fog-based Flexible approach where the user decides which data
he or she wants to disclose (i.e., respecting privacy) and to what extent (i.e., exploiting
the Fog and Cloud Computing paradigms). From these premises, PyFF can continuously
monitor users’ activities and their environment and advise on the best actions to increase
their comfort while, for instance, optimizing energy usage (i.e., through flexible ICT
communication channels). Additionally, instead of conceiving expensive and new ad hoc
gadgets, PyFF aims to take advantage of the off-the-shelf technology already deployed in
user environments (e.g., desktop computers and smartphones) to sense the environmental
status and user dynamics and naturally interact with them. To overcome the data storage
and computing limitations associated to this continuous monitoring, PyFF features a
Fog Computing domain (i.e., Early Stage Computing Layer) composed of all the digital
devices deployed around the user (that can join or leave at will) and a Cloud Computing
layer (i.e., intensive computing layer) that will be used whenever these devices need
to carry more complex computations. Therefore, the combination of Fog and Cloud
Computing layers enable PyFF to limit the scope of the sensed data according to the users’
preferences in relation to the privacy they wanted to preserve, while obscuring its data
when needed (i.e., splitting the computation process in several distributed nodes improves
data security [98,99]). In essence, other architectures [54] are focused on how to distribute
the data, which data models to use, how many vendor protocols are able to endow or what
means of interoperability are the most appropriate to define a minimum interoperable
system (available online: https://oascities.org/minimal-interoperability-mechanisms/
(accessed on 7 May 2021)). However, PyFF has not yet proposed another architecture
with more or fewer layers than others, but a way of understanding the data flow and the
deployment based on the user requirements, needs and privacy concerns.

The conducted qualitative evaluation shows at what level PyFF can adjust its architec-
ture to make it more flexible compared to both use-cases in terms of privacy, deployment
cost and automation. The next steps for this research work are: (1) conduct experiments
in a real environment to assess quantitative metrics; (2) deepen the security protocols
to enhance the proposed privacy scheme; or (3) study the possibility of splitting each
layer into micro services to offer more flexibility in terms of fault tolerance, heterogeneity
and accuracy.
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