Title:
Journal Information:
Author(s):
Volume, pages:

Doubling condition at the origin for non-negative positive definite functions
Proceedings of the American Mathematical Society,
Gorbachev D., Tikhonov S..
147 10,
DOI: $10.1090 /$ proc/14191

DOUBLING CONDITION AT THE ORIGIN FOR NON-NEGATIVE POSITIVE DEFINITE FUNCTIONS

DMITRY GORBACHEV AND SERGEY TIKHONOV

Abstract

We study upper and lower estimates as well as the asymptotic behavior of the sharp constant $C=C_{n}(U, V)$ in the doubling-type condition at the origin $$
\frac{1}{|V|} \int_{V} f(x) d x \leq C \frac{1}{|U|} \int_{U} f(x) d x
$$ where $U, V \subset \mathbb{R}^{n}$ are 0 -symmetric convex bodies and f is a non-negative positive definite function.

1. Introduction

Very recently, answering the question posed by Konyagin and Shteinikov related to a problem from number theory [13], the first author proved [1] that for any positive definite function $f: \mathbb{Z}_{q} \rightarrow \mathbb{R}_{+}$and for any $n \in \mathbb{Z}_{+}$one has

$$
\sum_{0 \leq k \leq 2 n} f(k) \leq C \sum_{0 \leq k \leq n} f(k),
$$

where the positive constant C does not depend on n, f, and q. More precisely, it was proved that $C \leq \pi^{2}$.

In this paper we study similar inequalities for a non-negative positive definite function f defined on $\mathbb{R}^{n}, n \geq 1$, i.e.,

$$
\begin{equation*}
\int_{|x| \leq 2 R} f(x) d x \leq C \int_{|x| \leq R} f(x) d x, \quad R>0 \tag{1.1}
\end{equation*}
$$

for some $C>1$. The latter is the well-known doubling condition at the origin. The doubling condition plays an important role in harmonic and functional analysis, see, e.g., [14]. Note that very recently inequality (1.1) in the one-dimensional case was studied in [3].

Definition 1. A positive definite function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$is called double positive definite function (denoted $f \succeq 0$).

[^0]As usual [11, Chap. 1], a continuous function $f \in C\left(\mathbb{R}^{n}\right)$ is positive definite if for every finite sequence $X \subset \mathbb{R}^{n}$ and every choice of complex numbers $\left\{c_{a}: a \in X\right\}$, we have

$$
\sum_{a, b \in X} c_{a} \overline{c_{b}} f(a-b) \geq 0
$$

By Bochner's theorem [11, Chap. 1], $f \in C\left(\mathbb{R}^{n}\right)$ is positive definite if and only if there is a non-negative finite Borel measure μ such that

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}^{n}} e(\xi x) d \mu(\xi), \quad \xi \in \mathbb{R}^{n} \tag{1.2}
\end{equation*}
$$

where $e(t)=\exp (2 \pi i t)$. For $f \in C\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)$ it is equivalent to the fact that the Fourier transform of f

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e(-\xi x) d x
$$

is non-negative. Note also that since any positive definite f satisfies $f(-x)=\overline{f(x)}$, a double positive definite function is even.

Throughout the paper we assume that $U, V \subset \mathbb{R}^{n}$ be 0 -symmetric closed convex bodies. For any function $f \succeq 0$ we study the inequality

$$
\begin{equation*}
\frac{1}{|V|} \int_{V} f(x) d x \leq C \frac{1}{|U|} \int_{U} f(x) d x \tag{1.3}
\end{equation*}
$$

where $|A|$ is the volume of A or the cardinality of A if A is a finite set. By $C_{n}(U, V)$ we denote the sharp constant in (1.3), i.e.,

$$
C_{n}(U, V):=\sup _{f \succeq 0, f \neq 0} \frac{\frac{1}{|V|} \int_{V} f(x) d x}{\frac{1}{|U|} \int_{U} f(x) d x}
$$

The fact that $C_{n}(U, V)<\infty$ for any U and V will follow from Theorem 1 below.
First, we list the following simple properties of $C_{n}(U, V)$.
(1) A trivial lower bound

$$
\begin{equation*}
C_{n}(U, V) \geq 1 \tag{1.4}
\end{equation*}
$$

since $1 \succeq 0$;
(2) The homogeneity property

$$
\begin{equation*}
C_{n}(\lambda U, \lambda V)=C_{n}(U, V), \quad \lambda>0 \tag{1.5}
\end{equation*}
$$

since $f_{\lambda}(x)=f(\lambda x) \succeq 0$ if and only if $f \succeq 0$;
(3) The homogeneity estimate

$$
\begin{equation*}
C_{n}(U, \lambda V) \geq \lambda^{-n} C_{n}(U, V), \quad \lambda \geq 1 \tag{1.6}
\end{equation*}
$$

since $V \subset \lambda V$;
(4) $C_{n}(U, U)=1$ and if $V \subset U$, then

$$
C_{n}(U, V) \leq \frac{|U|}{|V|}
$$

(5) The multiplicative estimate

$$
C_{n}(U, V) \leq C_{n}\left(\lambda^{k} U, V\right)\left(C_{n}(U, \lambda U)\right)^{k}, \quad \lambda \geq 1, k \in \mathbb{Z}_{+}
$$

which follows from the chain of inequalities

$$
\begin{aligned}
C_{n}(U, V) & \leq C_{n}(\lambda U, V) C_{n}(U, \lambda U) \\
& \leq C_{n}\left(\lambda^{2} U, V\right) C_{n}\left(\lambda U, \lambda^{2} U\right) C_{n}(U, \lambda U) \\
& =C_{n}\left(\lambda^{2} U, V\right)\left(C_{n}(U, \lambda U)\right)^{2} \leq \ldots \\
& \leq C_{n}\left(\lambda^{k} U, V\right)\left(C_{n}(U, \lambda U)\right)^{k}
\end{aligned}
$$

(6) A trivial upper bound for the doubling constant: for fixed $\lambda>1$ and any $r>\lambda$

$$
\begin{equation*}
C_{n}(U, r U) \leq\left(C_{n}(U, \lambda U)\right)^{\log _{\lambda} r} \tag{1.7}
\end{equation*}
$$

which follows from the multiplicative estimate.
Bellow we will obtain the upper bound for the constant $C_{n}(U, r U)$, which depends only on n.

We will use the following notation. Let $A+B$ be the Minkowski sum of sets A and $B, \lambda A$ be the product of A and the number λ, and $B_{R}:=\left\{x \in \mathbb{R}^{n}:|x| \leq R\right\}$ be the Euclidean ball.

2. The upper estimates

In what follows, we set

$$
H:=\frac{1}{2} U \quad \text { and } \quad K:=V+H
$$

Theorem 1. Let $X \subset \mathbb{R}^{n}$ be a finite set of points such that

$$
\begin{equation*}
K \subseteq H+X \tag{2.8}
\end{equation*}
$$

Then

$$
C_{n}(U, V) \leq \frac{|X||U|}{|V|}
$$

From the geometric point of view, condition (2.8) means that the translates $\{H+a: a \in X\}$ of the set H covers the set K.
Example 1 ([3). If $n=1$ and $r \in \mathbb{N}$, then

$$
C_{1}(r):=C_{1}([-1,1],[-r, r]) \leq 2+\frac{1}{r}
$$

Indeed, take $H=\left[-\frac{1}{2}, \frac{1}{2}\right], X=\{-r,-r+1, \ldots, r-1, r\}$, and $K=\left[-r-\frac{1}{2}, r+\frac{1}{2}\right]=$ $H+X$.

Let $n \in \mathbb{N}$. There holds $([10, ~(6)])$

$$
\begin{equation*}
N(K, H) \leq \frac{|K-H|}{|H|} \theta(H) \tag{2.9}
\end{equation*}
$$

Here $N(K, H)$ denotes the smallest number of translates of H required to cover K and

$$
\begin{equation*}
\theta(H)=\inf _{X \subset \mathbb{R}^{n}} \theta(H, X) \tag{2.10}
\end{equation*}
$$

where $\theta(H, X)$ is the covering density of \mathbb{R}^{n} by translates of H [9, p.16]. In other words, for a discrete set X such that $\mathbb{R}^{n} \subseteq H+X$ one has $|X \cap A||H| /|A|=$ $\theta(H, X)(1+o(1))$ for a convex body A such that $|A| \rightarrow \infty$.

From (2.9), taking into account that $H=-H, K-H=V+2 H=V+U$, and $|U|=2^{n}|H|$, we obtain that

$$
N(K, H) \leq 2^{n} \frac{|V+U|}{|U|} \theta(H)
$$

Moreover, it is clear that the best possible result in Theorem 1 is when X is such that $|X|=N(K, H)$. Therefore, we have
Corollary 1. For $n \geq 1$ and any U and V, we have

$$
C_{n}(U, V) \leq 2^{n} \frac{|V+U|}{|V|} \theta(H) .
$$

In particular, for $r \geq 1$

$$
\begin{equation*}
C_{n}(U, r U) \leq 2^{n}\left(1+r^{-1}\right)^{n} \theta(H) \tag{2.11}
\end{equation*}
$$

Estimate (2.11) substantially improves (1.7). For $n=1$ and $r \geq 1$, we have that $\theta\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)=1$ and $C_{1}(r) \leq 2\left(1+r^{-1}\right)$, which is similar to the estimate from Example 1

Note that Rogers [8] proved that

$$
\begin{equation*}
\theta(H) \leq n \ln n+n \ln \ln n+5 n, \quad n \geq 2 \tag{2.12}
\end{equation*}
$$

Estimate (2.12) was slightly improved in (4] as follows

$$
\theta(H) \leq n \ln n+n \ln \ln n+n+o(n) \quad \text { as } \quad n \rightarrow \infty
$$

Therefore, we obtain
Corollary 2. We have

$$
C_{n}(U, V) \leq 2^{n}(n \ln n+n \ln \ln n+n+o(n)) \frac{|V+U|}{|V|} \quad \text { as } \quad n \rightarrow \infty
$$

In particular, taking $V=r U, r \geq 1$, we arrive at the following example.
Example 2. We have

$$
\begin{equation*}
C_{n}(U, r U) \leq 2^{n}(n \ln n+n \ln \ln n+n+o(n))\left(1+r^{-1}\right)^{n} \quad \text { as } \quad n \rightarrow \infty \tag{2.13}
\end{equation*}
$$

Proof of Theorem 1. Consider the function

$$
\varphi:=\varphi_{H}=|H|^{-1} \cdot \chi_{H} * \chi_{H},
$$

where χ_{H} is the characteristic function of H and $(f * g)(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y$ is the convolution of f and g.

Since $\varphi \succeq 0, \operatorname{supp} \varphi \subset U$, and $\varphi \leq \varphi(0)=1$, we have for any $f \succeq 0$

$$
I:=\int_{\mathbb{R}^{n}} f(x) \varphi(x) d x=\int_{U} f(x) \varphi(x) d x \leq \int_{U} f(x) d x
$$

Let $X \subset \mathbb{R}^{n}$ be a finite set and

$$
S(x)=\frac{1}{|X|} \sum_{a \in X} \varphi(x-a)
$$

Then $S \geq 0$ and $\widehat{S}=\widehat{\varphi} D$, where

$$
D(\xi)=\frac{1}{|X|} \sum_{a \in X} e(a \xi)
$$

is the Dirichlet kernel with respect to X.

Let us estimate the integral I from below. Using $f(x)=f(-x)$, we get

$$
\int_{V} f(x) S(x) d x \leq \int_{\mathbb{R}^{n}} f(x) S(x) d x=\int_{\mathbb{R}^{n}} f(x) S_{0}(x) d x:=I_{1}
$$

where $S_{0}(x)=2^{-1}(S(x)+S(-x))$. Taking into account that

$$
\widehat{S_{0}}(\xi)=\widehat{\varphi}(\xi) \frac{D(\xi)+D(-\xi)}{2}=\widehat{\varphi}(\xi) \frac{1}{|X|} \sum_{a \in X} \cos (2 \pi a \xi) \leq \widehat{\varphi}(\xi), \quad \xi \in \mathbb{R}^{n}
$$

and using (1.2), we obtain

$$
I_{1}=\int_{\mathbb{R}^{n}} \widehat{S_{0}}(\xi) d \mu(\xi) \leq \int_{\mathbb{R}^{n}} \widehat{\varphi}(\xi) d \mu(\xi)=\int_{\mathbb{R}^{n}} f(x) \varphi(x) d x=I
$$

provided that f and φ are even.
Let $K=V+H \subseteq H+X$. This means that for any points $x \in V$ and $y \in H$ there is $a \in X$ such that $x+y \in H+a$. Hence,

$$
\sum_{a \in X} \chi_{H}(x+y-a) \geq 1
$$

Using $H=-H$, we have

$$
\varphi(x)=\frac{1}{|H|} \int_{H} \chi_{H}(x+y) d y
$$

Therefore, for any $x \in V$

$$
\begin{aligned}
S(x) & =\frac{1}{|X|} \sum_{a \in X} \frac{1}{|H|} \int_{H} \chi_{H}(x-a+y) d y \\
& \geq \frac{1}{|X||H|} \int_{H} \sum_{a \in X} \chi_{H}(x-a+y) d y \\
& \geq \frac{1}{|X||H|} \int_{H} d y=\frac{1}{|X|}
\end{aligned}
$$

Thus, combining the estimates above, we arrive at the inequality

$$
\frac{1}{|X|} \int_{V} f(x) d x \leq \int_{V} f(x) S(x) d x \leq I \leq \int_{U} f(x) d x
$$

which is the desired result.

3. The lower estimates

Our goal is to improve the trivial lower estimate (1.4). The idea is to consider the functions $\sum_{a, b \in X \cap B_{R}} \delta(x+a-b)$, where X is a packing of \mathbb{R}^{n} by H and $R \gg 1$ (see also [2, 3]).

First we consider the one-dimensional result, partially given in Example 1 .
Theorem 2 ([3). For $r \in \mathbb{N}$, we have

$$
2-\frac{1}{r} \leq C_{1}(r) \leq 2+\frac{1}{r}
$$

and $\lim _{r \rightarrow \infty} C_{1}(r)=2$.

This is one of the main results of the paper [3]. The upper bound is given in Example 1. The lower bound follows from Theorem 3 below for $U=[-1,1]$, $V=[-r, r]$, and $\Lambda=\mathbb{Z}$. The fact that $\lim _{r \rightarrow \infty} C_{1}(r)=2$ follows from estimates of $C_{1}(r)$ for integers r and (1.6).

Now we consider the general case $n \geq 1$. Our aim is to improve the trivial lower bound (1.4) respect to n.

Let

$$
\delta_{L}(H)=\sup _{\Lambda \subset \mathbb{R}^{n}} \delta(H, \Lambda)
$$

where $\delta(H, \Lambda)$ is the packing density of \mathbb{R}^{n} by lattice translates of H [9, Intr.]. In other words, $\Lambda=M \mathbb{Z}^{n} \subset \mathbb{R}^{n}$ is a lattice of $\operatorname{rank} n\left(M \in \mathbb{R}^{n \times n}\right.$ is a generator matrix of Λ, $\operatorname{det} M \neq 0$) such that $a-b \notin \operatorname{int}(2 H)$ for any $a, b \in \Lambda, a \neq b$, and $|\Lambda \cap A||H| /|A|=\delta(H, \Lambda)(1+o(1))$ for a convex body A such that $|A| \rightarrow \infty$. Note that in this case $H+\Lambda$ is a lattice packing of H [6, Sect. 30.1]. Recall that $H=\frac{1}{2} U$.

Theorem 3. Let $H+\Lambda$ be a lattice packing of H. Then

$$
\begin{equation*}
C_{n}(U, V) \geq \frac{|\Lambda \cap \operatorname{int} V||U|}{|V|} \tag{3.14}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
C_{n}(U, V) \geq 2^{n} \delta_{L}(H)(1+o(1)) \quad \text { as } \quad|V| \rightarrow \infty \tag{3.15}
\end{equation*}
$$

Proof of Theorem 3. Let Λ be an lattice with the packing density $\delta(H, \Lambda)$. Denote $\Lambda_{N}=\Lambda \cap B_{N}$ for $N>0$. Let B_{r} be the smallest ball that contained V. Assume that $R \geq r$ is sufficiently large number and ε is sufficiently small. Define $\varphi_{\varepsilon}=\varphi_{B_{\varepsilon}}$.

We consider the function

$$
f(x)=\sum_{a, b \in \Lambda_{R}} \varphi_{\varepsilon}(x+a-b)
$$

It is easy to see that

$$
f(x)=\sum_{c \in \Lambda_{2 R}} N_{c} \varphi_{\varepsilon}(x+c)
$$

where

$$
N_{c}=\sum_{a-b=c} 1=\sum_{a \in \Lambda_{R} \cap\left(\Lambda_{R}+c\right)} 1=\left|\Lambda_{R} \cap\left(\Lambda_{R}+c\right)\right|
$$

Since Λ is a lattice, we have $\Lambda=\Lambda+c$ for any $c \in \Lambda$. Hence, $N_{0}=\left|\Lambda_{R}\right|$ and $N_{c} \geq\left|\Lambda_{R-r}\right|$ for $|c| \leq r$, provided $\Lambda_{R-r} \subset \Lambda_{R} \cap\left(\Lambda_{R}+c\right)$.

On the one hand, since $2 H=U$ and $c \notin \operatorname{int} U$ if $c \in \Lambda \backslash\{0\}$, we have

$$
\int_{(1-\varepsilon) U} f(x) d x=N_{0}=\left|\Lambda_{R}\right|
$$

On the other hand, since $V \subset B_{r}$, we obtain

$$
\int_{(1+\varepsilon) V} f(x) d x \geq \sum_{c \in \Lambda_{2 R} \cap V} N_{c} \geq\left|\Lambda_{R-r}\right||\Lambda \cap V|
$$

Therefore,

$$
C_{n}((1-\varepsilon) U,(1+\varepsilon) V) \geq \frac{(1-\varepsilon)^{n}}{(1+\varepsilon)^{n}} \frac{\left|\Lambda_{R-r}\right|}{\left|\Lambda_{R}\right|} \frac{|\Lambda \cap V||U|}{|V|}
$$

Replacing V by $\frac{1-\varepsilon}{1+\varepsilon} V$ and using (1.5) and (1.6) as above, we arrive at

$$
C_{n}(U, V) \geq \frac{\left|\Lambda_{R-r}\right|}{\left|\Lambda_{R}\right|} \frac{\left|\Lambda \cap \frac{1-\varepsilon}{1+\varepsilon} V\right||U|}{|V|}
$$

Letting $R \rightarrow \infty$ and $\varepsilon \rightarrow 0$ concludes the proof of (3.14).
Inequality (3.15) follows easily from (3.14) and the definition of $\delta_{L}(H)$.
Example 3. We consider the balls $U=B_{1}$ and $V=B_{r}, r>1$. It is known that

$$
\delta_{L}\left(B_{1}\right) \geq c_{n} 2^{-n}
$$

where $c_{n} \geq 1$ is the Minkowski constant. It was recently proved in [15] that $c_{n}>$ $65963 n$ for every sufficiently large n and there exist infinitely many dimensions n for which $c_{n} \geq 0.5 n \ln \ln n$.

Corollary 3. Let $n \in \mathbb{N}$. We have

$$
\begin{equation*}
C_{n}\left(B_{1}, B_{r}\right) \geq c_{n}(1+o(1)) \quad \text { as } \quad r \rightarrow \infty \tag{3.16}
\end{equation*}
$$

Comparing (2.13) and (3.16) for fixed n and $r \rightarrow \infty$, one observes the exponential gap between the upper and lower estimates of $C_{n}\left(B_{1}, B_{r}\right)$ with respect to n. Let us give examples of U for which the upper and lower estimates of $C_{n}(U, V)$ coincide.

Example 4. Let H be a convex body and Λ be a lattice. The set $H+\Lambda$ is lattice tiling if it is both a packing and a covering [6, Sect. 32]. In this case H is a tile and $\delta_{L}(H)=\theta_{L}(H)=1$, where $\theta_{L}(H)$ is the lattice covering density, cf. (2.10). To define $\theta_{L}(H)$, we take the infimum in (2.10) over all lattices $\Lambda \subset \mathbb{R}^{n}$ of rank n. Note that $\theta(H) \leq \theta_{L}(H)$.

For example, the Voronoi polytop

$$
V(\Lambda)=\left\{x \in \mathbb{R}^{n}:|x| \leq|x-a|, \forall a \in \Lambda\right\}
$$

of a lattice Λ is a tile. In particular, $V\left(\mathbb{Z}^{n}\right)$ is the cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$.
From Corollary 1 and Theorem 3, we have
Theorem 4. Let $n \in \mathbb{N}$ and U be a tile. We have

$$
C_{n}(U, V)=2^{n}(1+o(1)) \quad \text { as } \quad|V| \rightarrow \infty
$$

4. Final Remarks

1. The inequality

$$
\frac{1}{|V|} \int_{V} f(x) d x \leq C_{n}(U, V) \frac{1}{|U|} \int_{U} f(x) d x
$$

holds for any 1-periodic function $f \succeq 0$. In this case we assume that $U, V \subseteq \mathbb{T}^{n}$, where $\mathbb{T}=\mathbb{R} / \mathbb{Z}$.

Since a positive definite f is such that $f(-x)=\overline{f(x)}$, then $|f|^{p} \succeq 0$ for any $p=2 k, k \in \mathbb{N}$. Hence, we obtain the following L^{p}-analogue:

$$
\frac{1}{|V|} \int_{V}|f(x)|^{p} d x \leq C_{n}(U, V) \frac{1}{|U|} \int_{U}|f(x)|^{p} d x
$$

For $U \subset V=\mathbb{T}^{n}$, this inequality is the well-known Wiener estimate for positive definite periodic functions (see [12, 7, 2]):

$$
\begin{equation*}
\int_{\mathbb{T}^{n}}|f(x)|^{p} d x \leq W_{n, p}(U) \frac{1}{|U|} \int_{U}|f(x)|^{p} d x \tag{4.17}
\end{equation*}
$$

which is valid only for $p=2 k, k \in \mathbb{N}$. Here, $W_{n, p}(U)$ is a sharp constant in (4.17). It is clear that

$$
W_{n, 2 k}(U) \leq C_{n}\left(U, \mathbb{T}^{n}\right)
$$

It is interesting to compare the known upper bounds of $W_{n, 2 k}(U)$ and $C_{n}\left(U, \mathbb{T}^{n}\right)$. In [2] it was shown that

$$
W_{n, 2 k}\left(r B_{1}\right) \leq 2^{(0.401 \ldots+o(1)) n}, \quad r \in(0,1 / 2)
$$

On the other hand, by Corollary 2, we obtain that

$$
C_{n}\left(r B_{1}, \mathbb{T}^{n}\right) \leq 2^{n(1+o(1))}(1+2 r)^{n}
$$

The exponential gap in the last two bounds is related to the restriction to the class of functions under consideration.
2. If $f \succeq 0$, then $f^{p} \succeq 0$ for any $p \in \mathbb{N}$. This gives

$$
\frac{1}{|V|} \int_{V}(f(x))^{p} d x \leq C_{n}(U, V) \frac{1}{|U|} \int_{U}(f(x))^{p} d x, \quad p \in \mathbb{N}
$$

It would be of interest to investigate this inequality for any positive p; see in this direction the paper [5].
3. As we showed above, any function $f \succeq 0$ satisfies the doubling property at the origin (1.1). However, taking any nontrivial function $f \succeq 0$ such that $\left.f\right|_{A}=0$, where A is a ball, we can see that the doubling property may fail outside the origin.

References

[1] D. V. Gorbachev, Certain inequalities for discrete, nonnengative, positive definite functions (in Russian), Izv. Tul. Gos. Univ. Est. nauki (2015), no. 2, 5-12.
[2] D. V. Gorbachev, S. Yu. Tikhonov, Wiener's problem for positive definite functions, arXiv:1604.01302
[3] A. Efimov, M. Gaal, Sz. Gy. Revesz, On integral estimates of non-negative positive definite functions, arXiv:1612.00235.
[4] G. Fejes Tóth, A note on covering by convex bodies, Canad. Math. Bull. 52 (2009), no. 3, 361-365.
[5] C. FitzGerald, R. Horn, On fractional Hadamard powers of positive definite matrices, J. Math. Anal. Appl. 61 (1977), no. 3, 633-642.
[6] P. M. Gruber, Convex and Discrete Geometry, Grundlehren der Mathematischen Wissenschaften, vol. 336, Springer-Verlag, Berlin, 2007.
[7] E. Hlawka, Anwendung einer Zahlengeometrischen Methode von C. L. Siegel auf Probleme der Analysis, Comment Math. Helvetici 56 (1981), 66-82.
[8] C. A. Rogers, A note on coverings, Mathematika 4 (1957), 1-6.
[9] C. A. Rogers, Packing and Covering, Cambridge University Press, 1964.
[10] C. A. Rogers, C. Zong, Covering convex bodies by translates of convex bodies, Mathematika 44 (1997), 215-218.
[11] W. Rudin, Fourier analysis on groups, Interscience Publ., New York, 1962.
[12] H. S. Shapiro, Majorant problems for Fourier coefficients, Quart. J. Math. Oxford Ser. (2) 26 (1975), 9-18.
[13] Yu. N. Shteinikov, On the set of joint representatives of two congruence Classes, Proceedings of the Steklov Institute of Mathematics 290 (2015), no. 1, 189-196.
[14] E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, 1993.
[15] A. Venkatesh, A note on sphere packings in high dimension, Int. Math. Res. Notices (2013), no. 7, 1628-1642.
D. Gorbachev, Tula State University, Department of Applied Mathematics and Computer Science, 300012 Tula, Russia

E-mail address: dvgmail@mail.ru
S. Tikhonov, Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C 08193 Bellaterra (Barcelona), Spain; ICREA, PG. Lluís Companys 23, 08010 Barcelona, Spain, and Universitat Autònoma de Barcelona.

E-mail address: stikhonov@crm.cat

[^0]: Date: March 8, 2018.
 1991 Mathematics Subject Classification. 42A82, 42A38.
 Key words and phrases. non-negative positive definite functions, doubling property, Wiener property.

 The first author was partially supported by the RFBR (no. 16-01-00308) and the Ministry of Education and Science of the Russian Federation (no. 5414GZ). The second author was partially supported by MTM 2014-59174-P and 2014 SGR 289.

