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DOUBLING CONDITION AT THE ORIGIN FOR

NON-NEGATIVE POSITIVE DEFINITE FUNCTIONS

DMITRY GORBACHEV AND SERGEY TIKHONOV

Abstract. We study upper and lower estimates as well as the asymptotic
behavior of the sharp constant C = Cn(U, V ) in the doubling-type condition
at the origin

1

|V |

∫
V

f(x) dx ≤ C
1

|U |

∫
U

f(x) dx,

where U, V ⊂ R
n are 0-symmetric convex bodies and f is a non-negative

positive definite function.

1. Introduction

Very recently, answering the question posed by Konyagin and Shteinikov related
to a problem from number theory [13], the first author proved [1] that for any
positive definite function f : Zq → R+ and for any n ∈ Z+ one has

∑

0≤k≤2n

f(k) ≤ C
∑

0≤k≤n

f(k),

where the positive constant C does not depend on n, f , and q. More precisely, it
was proved that C ≤ π2.

In this paper we study similar inequalities for a non-negative positive definite
function f defined on R

n, n ≥ 1, i.e.,

(1.1)

∫

|x|≤2R

f(x) dx ≤ C

∫

|x|≤R

f(x) dx, R > 0,

for some C > 1. The latter is the well-known doubling condition at the origin. The
doubling condition plays an important role in harmonic and functional analysis,
see, e.g., [14]. Note that very recently inequality (1.1) in the one-dimensional case
was studied in [3].

Definition 1. A positive definite function f : Rn → R+ is called double positive
definite function (denoted f � 0).
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As usual [11, Chap. 1], a continuous function f ∈ C(Rn) is positive definite if for
every finite sequence X ⊂ R

n and every choice of complex numbers {ca : a ∈ X},
we have ∑

a,b∈X

cacbf(a− b) ≥ 0.

By Bochner’s theorem [11, Chap. 1], f ∈ C(Rn) is positive definite if and only if
there is a non-negative finite Borel measure µ such that

(1.2) f(x) =

∫

Rn

e(ξx) dµ(ξ), ξ ∈ R
n,

where e(t) = exp (2πit). For f ∈ C(Rn) ∩ L1(Rn) it is equivalent to the fact that
the Fourier transform of f

f̂(ξ) =

∫

Rn

f(x)e(−ξx) dx

is non-negative. Note also that since any positive definite f satisfies f(−x) = f(x),
a double positive definite function is even.

Throughout the paper we assume that U, V ⊂ R
n be 0-symmetric closed convex

bodies. For any function f � 0 we study the inequality

(1.3)
1

|V |

∫

V

f(x) dx ≤ C
1

|U |

∫

U

f(x) dx,

where |A| is the volume of A or the cardinality of A if A is a finite set. By Cn(U, V )
we denote the sharp constant in (1.3), i.e.,

Cn(U, V ) := sup
f�0, f 6=0

1
|V |

∫
V
f(x) dx

1
|U|

∫
U
f(x) dx

.

The fact that Cn(U, V ) < ∞ for any U and V will follow from Theorem 1 below.
First, we list the following simple properties of Cn(U, V ).

(1) A trivial lower bound

(1.4) Cn(U, V ) ≥ 1,

since 1 � 0;
(2) The homogeneity property

(1.5) Cn(λU, λV ) = Cn(U, V ), λ > 0,

since fλ(x) = f(λx) � 0 if and only if f � 0;
(3) The homogeneity estimate

(1.6) Cn(U, λV ) ≥ λ−nCn(U, V ), λ ≥ 1,

since V ⊂ λV ;
(4) Cn(U,U) = 1 and if V ⊂ U , then

Cn(U, V ) ≤
|U |

|V |
;

(5) The multiplicative estimate

Cn(U, V ) ≤ Cn(λ
kU, V )(Cn(U, λU))k, λ ≥ 1, k ∈ Z+,
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which follows from the chain of inequalities

Cn(U, V ) ≤ Cn(λU, V )Cn(U, λU)

≤ Cn(λ
2U, V )Cn(λU, λ

2U)Cn(U, λU)

= Cn(λ
2U, V )(Cn(U, λU))2 ≤ . . .

≤ Cn(λ
kU, V )(Cn(U, λU))k;

(6) A trivial upper bound for the doubling constant: for fixed λ > 1 and any
r > λ

(1.7) Cn(U, rU) ≤ (Cn(U, λU))logλ
r.

which follows from the multiplicative estimate.

Bellow we will obtain the upper bound for the constantCn(U, rU), which depends
only on n.

We will use the following notation. Let A+ B be the Minkowski sum of sets A
and B, λA be the product of A and the number λ, and BR := {x ∈ R

n : |x| ≤ R}
be the Euclidean ball.

2. The upper estimates

In what follows, we set

H := 1
2U and K := V +H.

Theorem 1. Let X ⊂ R
n be a finite set of points such that

(2.8) K ⊆ H +X.

Then

Cn(U, V ) ≤
|X | |U |

|V |
.

From the geometric point of view, condition (2.8) means that the translates
{H + a : a ∈ X} of the set H covers the set K.

Example 1 ([3]). If n = 1 and r ∈ N, then

C1(r) := C1([−1, 1], [−r, r]) ≤ 2 +
1

r
.

Indeed, take H = [− 1
2 ,

1
2 ], X = {−r,−r+1, . . . , r−1, r}, and K = [−r− 1

2 , r+
1
2 ] =

H +X .

Let n ∈ N. There holds ([10, (6)])

(2.9) N(K,H) ≤
|K −H |

|H |
θ(H).

Here N(K,H) denotes the smallest number of translates of H required to cover K
and

(2.10) θ(H) = inf
X⊂Rn

θ(H,X),

where θ(H,X) is the covering density of Rn by translates of H [9, p.16]. In other
words, for a discrete set X such that R

n ⊆ H + X one has |X ∩ A| |H |/|A| =
θ(H,X)(1 + o(1)) for a convex body A such that |A| → ∞.
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From (2.9), taking into account that H = −H , K −H = V + 2H = V +U , and
|U | = 2n|H |, we obtain that

N(K,H) ≤ 2n
|V + U |

|U |
θ(H).

Moreover, it is clear that the best possible result in Theorem 1 is when X is such
that |X | = N(K,H). Therefore, we have

Corollary 1. For n ≥ 1 and any U and V , we have

Cn(U, V ) ≤ 2n
|V + U |

|V |
θ(H).

In particular, for r ≥ 1

(2.11) Cn(U, rU) ≤ 2n(1 + r−1)nθ(H).

Estimate (2.11) substantially improves (1.7). For n = 1 and r ≥ 1, we have
that θ([− 1

2 ,
1
2 ]) = 1 and C1(r) ≤ 2(1 + r−1), which is similar to the estimate from

Example 1.
Note that Rogers [8] proved that

(2.12) θ(H) ≤ n lnn+ n ln lnn+ 5n, n ≥ 2.

Estimate (2.12) was slightly improved in [4] as follows

θ(H) ≤ n lnn+ n ln lnn+ n+ o(n) as n → ∞.

Therefore, we obtain

Corollary 2. We have

Cn(U, V ) ≤ 2n(n lnn+ n ln lnn+ n+ o(n))
|V + U |

|V |
as n → ∞.

In particular, taking V = rU , r ≥ 1, we arrive at the following example.

Example 2. We have

(2.13) Cn(U, rU) ≤ 2n(n lnn+ n ln lnn+ n+ o(n))(1 + r−1)n as n → ∞.

Proof of Theorem 1. Consider the function

ϕ := ϕH = |H |−1 · χH ∗ χH ,

where χH is the characteristic function of H and (f ∗ g)(x) =
∫
Rn f(x − y)g(y) dy

is the convolution of f and g.
Since ϕ � 0, suppϕ ⊂ U , and ϕ ≤ ϕ(0) = 1, we have for any f � 0

I :=

∫

Rn

f(x)ϕ(x) dx =

∫

U

f(x)ϕ(x) dx ≤

∫

U

f(x) dx.

Let X ⊂ R
n be a finite set and

S(x) =
1

|X |

∑

a∈X

ϕ(x − a).

Then S ≥ 0 and Ŝ = ϕ̂D, where

D(ξ) =
1

|X |

∑

a∈X

e(aξ)

is the Dirichlet kernel with respect to X .
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Let us estimate the integral I from below. Using f(x) = f(−x), we get
∫

V

f(x)S(x) dx ≤

∫

Rn

f(x)S(x) dx =

∫

Rn

f(x)S0(x) dx := I1,

where S0(x) = 2−1(S(x) + S(−x)). Taking into account that

Ŝ0(ξ) = ϕ̂(ξ)
D(ξ) +D(−ξ)

2
= ϕ̂(ξ)

1

|X |

∑

a∈X

cos (2πaξ) ≤ ϕ̂(ξ), ξ ∈ R
n,

and using (1.2), we obtain

I1 =

∫

Rn

Ŝ0(ξ) dµ(ξ) ≤

∫

Rn

ϕ̂(ξ) dµ(ξ) =

∫

Rn

f(x)ϕ(x) dx = I,

provided that f and ϕ are even.
Let K = V +H ⊆ H +X . This means that for any points x ∈ V and y ∈ H

there is a ∈ X such that x+ y ∈ H + a. Hence,
∑

a∈X

χH(x + y − a) ≥ 1.

Using H = −H , we have

ϕ(x) =
1

|H |

∫

H

χH(x+ y) dy.

Therefore, for any x ∈ V

S(x) =
1

|X |

∑

a∈X

1

|H |

∫

H

χH(x− a+ y) dy

≥
1

|X ||H |

∫

H

∑

a∈X

χH(x− a+ y) dy

≥
1

|X ||H |

∫

H

dy =
1

|X |
.

Thus, combining the estimates above, we arrive at the inequality

1

|X |

∫

V

f(x) dx ≤

∫

V

f(x)S(x) dx ≤ I ≤

∫

U

f(x) dx,

which is the desired result. �

3. The lower estimates

Our goal is to improve the trivial lower estimate (1.4). The idea is to consider
the functions

∑
a,b∈X∩BR

δ(x+a− b), where X is a packing of Rn by H and R ≫ 1

(see also [2, 3]).
First we consider the one-dimensional result, partially given in Example 1.

Theorem 2 ([3]). For r ∈ N, we have

2−
1

r
≤ C1(r) ≤ 2 +

1

r
,

and limr→∞ C1(r) = 2.



6 DMITRY GORBACHEV AND SERGEY TIKHONOV

This is one of the main results of the paper [3]. The upper bound is given
in Example 1. The lower bound follows from Theorem 3 below for U = [−1, 1],
V = [−r, r], and Λ = Z. The fact that limr→∞ C1(r) = 2 follows from estimates of
C1(r) for integers r and (1.6).

Now we consider the general case n ≥ 1. Our aim is to improve the trivial lower
bound (1.4) respect to n.

Let

δL(H) = sup
Λ⊂Rn

δ(H,Λ),

where δ(H,Λ) is the packing density of Rn by lattice translates of H [9, Intr.]. In
other words, Λ = MZ

n ⊂ R
n is a lattice of rank n (M ∈ R

n×n is a generator
matrix of Λ, detM 6= 0) such that a − b /∈ int (2H) for any a, b ∈ Λ, a 6= b, and
|Λ ∩A| |H |/|A| = δ(H,Λ)(1 + o(1)) for a convex body A such that |A| → ∞. Note
that in this case H+Λ is a lattice packing of H [6, Sect. 30.1]. Recall that H = 1

2U .

Theorem 3. Let H + Λ be a lattice packing of H. Then

(3.14) Cn(U, V ) ≥
|Λ ∩ intV | |U |

|V |
.

In particular,

(3.15) Cn(U, V ) ≥ 2nδL(H)(1 + o(1)) as |V | → ∞.

Proof of Theorem 3. Let Λ be an lattice with the packing density δ(H,Λ). Denote
ΛN = Λ ∩ BN for N > 0. Let Br be the smallest ball that contained V . Assume
that R ≥ r is sufficiently large number and ε is sufficiently small. Define ϕε = ϕBε

.
We consider the function

f(x) =
∑

a,b∈ΛR

ϕε(x+ a− b).

It is easy to see that

f(x) =
∑

c∈Λ2R

Ncϕε(x+ c),

where

Nc =
∑

a−b=c

1 =
∑

a∈ΛR∩(ΛR+c)

1 = |ΛR ∩ (ΛR + c)|.

Since Λ is a lattice, we have Λ = Λ + c for any c ∈ Λ. Hence, N0 = |ΛR| and
Nc ≥ |ΛR−r| for |c| ≤ r, provided ΛR−r ⊂ ΛR ∩ (ΛR + c).

On the one hand, since 2H = U and c /∈ intU if c ∈ Λ \ {0}, we have
∫

(1−ε)U

f(x) dx = N0 = |ΛR|.

On the other hand, since V ⊂ Br, we obtain
∫

(1+ε)V

f(x) dx ≥
∑

c∈Λ2R∩V

Nc ≥ |ΛR−r| |Λ ∩ V |.

Therefore,

Cn

(
(1− ε)U, (1 + ε)V

)
≥

(1 − ε)n

(1 + ε)n
|ΛR−r|

|ΛR|

|Λ ∩ V | |U |

|V |
.
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Replacing V by 1−ε
1+ε

V and using (1.5) and (1.6) as above, we arrive at

Cn(U, V ) ≥
|ΛR−r|

|ΛR|

|Λ ∩ 1−ε
1+ε

V | |U |

|V |
.

Letting R → ∞ and ε → 0 concludes the proof of (3.14).
Inequality (3.15) follows easily from (3.14) and the definition of δL(H). �

Example 3. We consider the balls U = B1 and V = Br, r > 1. It is known that

δL(B1) ≥ cn2
−n,

where cn ≥ 1 is the Minkowski constant. It was recently proved in [15] that cn >
65963n for every sufficiently large n and there exist infinitely many dimensions n
for which cn ≥ 0.5n ln lnn.

Corollary 3. Let n ∈ N. We have

(3.16) Cn(B1, Br) ≥ cn(1 + o(1)) as r → ∞.

Comparing (2.13) and (3.16) for fixed n and r → ∞, one observes the exponential
gap between the upper and lower estimates of Cn(B1, Br) with respect to n. Let us
give examples of U for which the upper and lower estimates of Cn(U, V ) coincide.

Example 4. Let H be a convex body and Λ be a lattice. The set H + Λ is lattice
tiling if it is both a packing and a covering [6, Sect. 32]. In this case H is a tile

and δL(H) = θL(H) = 1, where θL(H) is the lattice covering density, cf. (2.10).
To define θL(H), we take the infimum in (2.10) over all lattices Λ ⊂ R

n of rank n.
Note that θ(H) ≤ θL(H).

For example, the Voronoi polytop

V (Λ) = {x ∈ R
n : |x| ≤ |x− a|, ∀ a ∈ Λ}

of a lattice Λ is a tile. In particular, V (Zn) is the cube [− 1
2 ,

1
2 ]

n.
From Corollary 1 and Theorem 3, we have

Theorem 4. Let n ∈ N and U be a tile. We have

Cn(U, V ) = 2n(1 + o(1)) as |V | → ∞.

4. Final remarks

1. The inequality

1

|V |

∫

V

f(x) dx ≤ Cn(U, V )
1

|U |

∫

U

f(x) dx

holds for any 1-periodic function f � 0. In this case we assume that U, V ⊆ T
n,

where T = R/Z.

Since a positive definite f is such that f(−x) = f(x), then |f |p � 0 for any
p = 2k, k ∈ N. Hence, we obtain the following Lp-analogue:

1

|V |

∫

V

|f(x)|p dx ≤ Cn(U, V )
1

|U |

∫

U

|f(x)|p dx.

For U ⊂ V = T
n, this inequality is the well-known Wiener estimate for positive

definite periodic functions (see [12, 7, 2]):

(4.17)

∫

Tn

|f(x)|p dx ≤ Wn,p(U)
1

|U |

∫

U

|f(x)|p dx,



8 DMITRY GORBACHEV AND SERGEY TIKHONOV

which is valid only for p = 2k, k ∈ N. Here, Wn,p(U) is a sharp constant in (4.17).
It is clear that

Wn,2k(U) ≤ Cn(U,T
n).

It is interesting to compare the known upper bounds of Wn,2k(U) and Cn(U,T
n).

In [2] it was shown that

Wn,2k(rB1) ≤ 2(0.401...+o(1))n, r ∈ (0, 1/2).

On the other hand, by Corollary 2, we obtain that

Cn(rB1,T
n) ≤ 2n(1+o(1))(1 + 2r)n.

The exponential gap in the last two bounds is related to the restriction to the class
of functions under consideration.

2. If f � 0, then fp � 0 for any p ∈ N. This gives

1

|V |

∫

V

(f(x))p dx ≤ Cn(U, V )
1

|U |

∫

U

(f(x))p dx, p ∈ N.

It would be of interest to investigate this inequality for any positive p; see in this
direction the paper [5].

3. As we showed above, any function f � 0 satisfies the doubling property at
the origin (1.1). However, taking any nontrivial function f � 0 such that f |A = 0,
where A is a ball, we can see that the doubling property may fail outside the origin.
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