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Sharp Remez inequality
S. Tikhonov and P. Yuditskii

Abstract. Let an algebraic polynomial Pn(ζ) of degree n be such that |Pn(ζ)| 6 1
for ζ ∈ E ⊂ T and |E| > 2π − s. We prove the sharp Remez inequality

sup
ζ∈T
|Pn(ζ)| 6 Tn

(
sec

s

4

)
,

where Tn is the Chebyshev polynomial of degree n. The equality holds if and only if

Pn(e
iz) = ei(nz/2+c1)Tn

(
sec

s

4
cos

z − c0
2

)
, c0, c1 ∈ R.

This gives the solution of the long-standing problem on the sharp constant in the
Remez inequality for trigonometric polynomials.

1. Introduction

Let Tn(x) be the Chebyshev polynomial of degree n, i.e.,

Tn(x) =
1

2

((
x+
√
x2 − 1

)n
+
(
x−
√
x2 − 1

)n)
for every x ∈ R and |B| denote the Lebesgue measure of a measurable set B.

The Remez inequality [22] for algebraic polynomials Pn asserts that

max
x∈[−1,1]

|Pn(x)| 6 Tn

(
2 + s

2− s

)
,

for every Pn satisfying∣∣∣{x : [−1, 1] : |Pn(x)| 6 1}
∣∣∣ > 2− s, 0 < s < 2.

Moreover, the equality holds if and only if

Pn(x) = ±Tn
(
±2x+ s

2− s

)
.

The Remez inequality plays an important role in many problems in approximation
theory, harmonic and functional analysis (see, for example, [3, 4, 5, 25] and references
therein).
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2 S. TIKHONOV AND P. YUDITSKII

A similar question for trigonometric polynomials is a widely studied and open prob-
lem. In more detail, consider the space of (complex) trigonometric polynomials of
degree at most n ∈ N, i.e.,

Nn =
{
Qn : Qn(x) =

∑
|k|6n

cke
ikx, ck ∈ C, x ∈ [0, 2π)

}
.

Problem A. How large can ‖Qn‖L∞([0,2π)) be if

(1.1)
∣∣∣{x ∈ [0, 2π) : |Qn(x)| 6 1

}∣∣∣ > 2π − s

holds for some 0 < s < 2π?

In other words, we study the best constant in the Remez inequality

(1.2) ‖Qn‖C[0,2π) 6 C(n, s)‖Qn‖C([0,2π)\B), Qn ∈ Nn, |B| = s.

The problem of finding the sharp constant in the Remez inequality, or at least of
obtaining some suitable bounds on this constant, has been extensively studied starting
from the 1990s (see, e.g., [1, 2, 3, 8, 9, 11, 13, 14, 15, 20]) but some estimates were
established much earlier [24, 26].

The sharp constant in (1.2) is known only in the case of an interval, that is, (see,
e.g., [8])

(1.3) ‖Qn‖C[0,2π) 6 T2n

(
csc

a

2

)
‖Qn‖C[−a,a], [−a, a] ⊂ [−π, π].

In the general case the problem remains open. Erdélyi [8] proved that

C(n, s) 6 exp(4ns), s 6
π

2
.

Later on, this result was slightly improved in [13] as follows C(n, s) 6 exp(2ns).
Moreover, it is known [20] that, for a fixed n,

C(n, s) = 1 +
(ns)2

8
+O(s4) as s→ 0.

Several papers studied the behavior of the constant C(n, s) in (1.2) for B with large
measure (|B| = s > π

2
), see [9, 13, 18]. In this case, we have

C(n, |B|) 6
(

A

2π − s

)2n

,

where A is an absolute constant which can be taken as 17.
The solution of the aforementioned Problem A is given as follows.

Theorem 1.1. Let Q ∈ Nn be such that (1.1) holds for some 0 < s < 2π. Then

(1.4) ‖Q‖C[0,2π) 6 T2n

(
sec

s

4

)
.

Moreover the equality holds if and only if

Q(x) = eic1T2n

(
sec

s

4
cos

x− c0

2

)
, c0, c1 ∈ R.
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Estimate (1.4) confirms a conjecture by Erdélyi [9], also stated in [13].
The proof of Theorem 1.1 is based on a solution of the following more general

problem.

Problem B. Let

Pn(ζ) = A0 + A1ζ + · · ·+ Anζ
n, ζ = eiz,

and
Pn(E) :=

{
Pn(ζ) : |Pn(ζ)| 6 1, ζ ∈ E

}
,

where E ⊂ T is a measurable set. For a fixed s ∈ (0, 2π) find

sup{ max
Pn∈Pn(E)
c∈[0,2π)

|Pn(eic)| : |E| > 2π − s}.

Since for a trigonometric polynomial Qn(x) =
∑
−n6k6n cke

ikx one has Qn(x)einx =

P2n(eix) with ‖Qn‖C = ‖P2n‖C and |Qn(x0)| = |P2n(eix0)|, where
max

Pn∈Pn(E)
c∈[0,2π)

|P2n(eic)| = |P2n(eix0)|,

Theorem 1.1 will follow from the corresponding solution of Problem B for even-degree
polynomials. For the partial case of even trigonometric polynomials, i.e., having the
form Pn(cos t), see also the recent preprint [10]. We point out that we solve Problem
B for all integer n.

Now we can state our main result.

Theorem 1.2. Let Pn(ζ) be an algebraic polynomial of degree n bounded by one on
a subset E of the unit circle T. If |E| > 2π − s for some 0 < s < 2π, then

(1.5) sup
ζ∈T
|Pn(ζ)| 6 Tn

(
sec

s

4

)
.

Moreover, the equality holds if and only if

(1.6) Pn(eiz) = ei(nz/2+c1)Tn

(
sec

s

4
cos

z − c0

2

)
, c0, c1 ∈ R.

We reduce Problem B to Problems C and D below.

Problem C. Let E be a closed proper subset of T,

(1.7) E = T\
g⋃
j=0

(eiaj , eibj), 0 6 g 6∞.

Let
Pn(ζ) = A0 + A1ζ + · · ·+ Anζ

n, ζ = eiz,

and
Pn(E) :=

{
Pn(ζ) : |Pn(ζ)| 6 1, ζ ∈ E

}
.

Find
max

Pn∈Pn(E)
c∈(a0,b0)

|Pn(eic)|.
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Problem D. Let E and Pn(E) be given as in Problem C. Find

max
Pn∈Pn(E)

|Pn(eic)|, c ∈ (a0, b0), c is fixed.

In the next Section we reveal the structure of extremal polynomials in Problem D.
We describe them by means of certain conformal mappings on the comb domains, see
Theorem 2.1. Particularly, this allows us to define the so-called n-regular extension for
a given set E and to give a relation between the solutions of Problems C and D. In
Section 3 we prove our main theorem. First, in Lemma 3.1 we show that an extremal
configuration of a set E for Problem B belongs to the class of n-regular sets (a set
which coincides with its n-regular extension). Second, in Lemma 3.2 we prove that
among these sets a single-arc set is extremal. Finally, we obtain an explicit formula for
extremal polynomials using some elementary conformal mappings.

2. Comb domains and solutions of Problems D and C

Comb-domains and the corresponding conformal mappings were introduced by
Akhiezer and Levin, see [16]. Nowadays they are actively used in spectral theory
(see, e.g., [17]) and approximation theory (see, e.g., [23]). For a modern presentation,
see [12]. In this paper we will employ only the periodic n-regular comb domains.

Definition 1. Let g ∈ N and {hk}gk=0 be a collection of positive numbers. The
periodic n-regular comb domain is of the form

Π(h0, · · · , hg) = Π(h0, · · · , hg;ω0, · · · , ωg)

= C+\
g⋃

k=0

⋃
m∈Z

{
z = ωk + 2πm+ iy (0 < y 6 hk)

}
,

where ωk = 2π jk
n
, 0 6 jk < n; see Fig. 1.

Figure 1. Comb domain and graph of the function cos n
2
θ(z) on the period

For Π = Π(h0, · · · , hg), consider the conformal mapping θ defined as follows:

(2.1) θ : C+ −→ Π, θ(iy) ∼ iy as y →∞.
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We say that a set E is n-regular if

E =
{
eiz : z ∈ θ−1(R)

}
,

where θ is given by (2.1). Note that in this case the endpoints of the gaps in (1.7) are
given by

ak = θ−1(ωk − 0), 0 6 k 6 g;

bk = θ−1(ωk + 0), 0 6 k 6 g.

Theorem 2.1. For an extremizer Tn(eiz, eic0 , E) of Problem D, c0 ∈ (a0, b0), there
exists the representation

(2.2) Tn(eiz) = e
inz
2 cos

n

2
θ(z),

where θ is a conformal mapping C+ → Π with the normalization

θ(iy) ∼ iy as y →∞.(2.3)

Moreover,

θ(a0) = 0−, θ(b0) = 0 + .(2.4)

Consequently, the extremizer does not depend on a position of c0 in the given gap
(a0, b0).

Proof. The proof is based on Markov’s method of correction of an extremal func-
tion [23, Chapter 7], see also [7, Theorem 3.2].

Let c0 ∈ (a0, b0) and Tn(eiz) = Tn(eiz, eic0 , E) be an extremizer in Problem D. We
write it as follows

Tn(eiz) = ei
zn
2 F (z),

where F is an entire function such that F (z + 2π) = (−1)nF (z). Without loss of
generality we assume that F (c0) > 0. Noting that the function ei

zn
2 (F (z) + F (z))/2 is

also an extremizer in Problem D, we may suppose that F (z) ∈ R whenever z ∈ R. We
divide the rest of the proof into 6 steps.

Step 1. We show that F has no complex zeros. Assume that F (z0) = 0, Im z0 > 0,
which gives that F (z0) = 0. Define the Markov correction function (δ > 0)

Q(ζ) = Tn(ζ)

(
1− δ (ζ − eic0)(1− ζe−ic0)

(ζ − eiz0)(1− ζe−iz0)

)
,

which is a polynomial of degree at most n satisfying Tn(eic0) = Q(eic0). Since the
expression in the brackets is equal to

1− δ
∣∣∣ζ − eic0
ζ − eiz0

∣∣∣2
whenever ζ ∈ T, we have maxζ∈E |Tn(ζ)| > maxζ∈E |Q(ζ)| for small enough δ. This
contradicts that Tn is an extremizer.
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Step 2. We prove that zeros of F are simple. Here we use the similar correction
function (δ > 0)

Q(ζ) = Tn(ζ)

(
1− δ (ζ − eic0)(1− ζe−ic0)

(ζ − eiz0)(1− ζe−iz0)

)
and follow the proof of the previous step.

Step 3. Let us show that between two consecutive zeros of F (take, for example,
F (z1) = F (z2) = 0) there is y such that |F (y)| = 1 and eiy ∈ E. Assume the reverse:

(i) {eiy : y ∈ (z1, z2)} ∩ E = ∅ or (ii) max
y∈(z1,z2)

|F (y)| < 1.

Then we define the correction function (δ > 0)

Q(ζ) = ei
nz
2 G(ζ), G(ζ) = F (ζ)

(
1− δ

sin2 z−c0
2

sin z−z1
2

sin z−z2
2

)
.

On the set I1 = (z1−ε, z1 +ε)∪(z2−ε, z2 +ε) taking sufficiently small ε and δ, we have
|G(z)| < 1. In the case (i) the function |G(z)| on the set I2 = (z1 + ε, z2 − ε), should
not be restricted. In the case (ii) since maxz∈I2 |F (z)| has a fixed value less then one,
for sufficiently small δ we obtain |G(z)| < 1. Finally, on the set I3 = [−π, π]\(I1 ∪ I2)
we always have maxz∈I3 |G(z)| < 1. Then maxζ∈E |Tn(ζ)| > maxζ∈E |Q(ζ)| gives a
contradiction.

Step 4. The following condition holds: F (a0) = F (b0) = 1. In our normalization
this corresponds to (2.4). Here we assume that F (b0) < 1 and take the first zero
F (ξ) = 0, ξ > b0. Considering the function (δ > 0)

G(ζ) = F (ζ)

(
1− δ

sin z−c0
2

sin z−ξ
2

)
implies a contradiction.

Step 5. Let {zk}nk=1 be zeros of the function F (z) in a period, respectively, {eizk}nk=1

are zeros of Tn(ζ). Between each two of them (including the pair (zn, zn+1), with the
agreement zn+1 := z1 + 2π) there is at least one critical point yk such that F ′(yk) = 0.
Since

F ′(z) = ei(−n/2)z
(
iζT ′n(ζ)− in

2
Tn(ζ)

)
,

the total number of these points in a period is at most n. Thus all critical points
of the function F (z) are real. Also, by step 3, in each interval (zk, zk+1) there is a
point xk, eixk ∈ E, such that |F (xk)| = 1. Therefore at the critical point we have
|F (yk)| > 1. An example of such a function is shown in Fig. 1. According to the
Marchenko–Ostrovskii theorem, see, e.g., [23, Section 7.3], the function F (z) possesses
the comb representation F (z) = cos n

2
θ(z) with θ(z) normalized by (2.3). Since F (z)

is periodic, F (z+ 2π) = (−1)nF (z), the corresponding comb domain is periodic. That
is, (2.2) is proved.

Step 6. We prove the last assertion of the theorem. Let c be an arbitrary point in
(a0, b0). We will show that

(2.5) |Pn(eic)| 6 |Tn(eic)|, ∀Pn(ζ) ∈ Pn(E).
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First we note that there is a polynomial Qn(ζ) ∈ Pn(E) of the form

Qn(eiz) = einz/2G(z), G(z) = G(z)

such that |Qn(eic)| = |Pn(eic)|. For an arbitrary positive ε consider the function

Hε(z) = (1 + ε)F (z)−G(z).

This function attains positive and negative values at points {xk}nk=1, since F (xk) = ±1,
see step 5. Therefore each interval (xk, xk+1) (with our agreement xn+1 := x1 + 2π)
contains at most one zero of Hε(z). In particular, the interval (a0, b0) may have at
most one zero of this function. But, due to step 4,

Hε(a0) = (1 + ε)−G(a0) > 0 and Hε(b0) = (1 + ε)−G(a0) > 0.

Thus, for all ε > 0, Hε(z) is positive on this interval and we obtain

|Pn(eic)| = |Qn(eic)| = |G(eic)| 6 F (eic) = |Tn(eic)|,

that is, (2.5) holds.
�

Remark 2.2. In fact, we proved that

Tn(eic, eic0 , E) = einc/2 sup
Pn∈Pn(E)

|Pn(eic)|, ∀c ∈ (a0, b0),

which also implies the uniqueness of the extremal polynomial. Since the extremizer does
not depend on the position of c0 ∈ (a0, b0), in what follows we write Tn(ζ, (a0, b0), E)
instead of Tn(ζ, eic0 , E).

Moreover, from the proof we see that a polynomial of the presented form (2.2) is
extremal on every set Ẽ, which contains at least one of possibly two different points
eiθ
−1(2πk/n±0) for k = 1, · · · , n − 1, together with the endpoints eia0 and eib0. Such

collections of points form the so-called maximal Chebyshev sets [23, Section 7.2] for
the given extremal function. Note also the fact that every periodic comb generates a
periodic function is shown in [6, Appendix A].

Definition 2. Let E be a closed proper subset of T. Let Tn(ζ, (a0, b0), E) be the
extremizer associated to the gap (a0, b0) presented in the form (2.2). We will call

Ê =
{
eiz : z ∈ θ−1(R)

}
the n-regular extension of the set E associated to the gap (a0, b0). This is the maximal
possible set on which Tn(ζ, (a0, b0), E) remains extremal in the sense of Problem D.

Remark 2.3. Since the n-regular extension does not depend on c ∈ (a0, b0) we
obtain a connection between the solutions of Problems C and D. Let c∗ = θ−1(ih0).
Then

max
Pn∈Pn(E)
c∈(a0,b0)

|Pn(eic)| = max
Pn∈Pn(E)

|Pn(eic∗)| = |Tn(eic∗ , (a0, b0), Ê)| = cosh
n

2
h0.
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Without loss of generality, we will assume that c∗ = 0 and impose the third normaliza-
tion condition for θ (see (2.3)) given by

(2.6) θ(0) = ih0.

3. Proof of Theorem 1.2

We start with the following two lemmas.

Lemma 3.1. For any

E = T\
g⋃
j=0

(eiaj , eibj), 1 6 g 6∞

there is an n-regular set

E∗ = T\
g∗⋃
j=0

(eia
∗
j , eib

∗
j ), 1 6 g∗ <∞,

such that |E∗| = |E| and moreover,

max
c∈(a0,b0)

|Tn(eic, (a0, b0), E)| = |Tn(1, (a0, b0), E)| 6 |Tn(1, (a∗0, b
∗
0), E∗)|.

Proof. In the proof we deal with the gap corresponding to j = 0, so the depen-
dence of (a0, b0) will be dropped.

Let E be not n-regular. Consider Ê. Since the extension is proper, we have
|Ê| > |E| and moreover, Tn(ζ, E) = Tn(ζ, Ê). Note that Ê has a finite number of
gaps, i.e., ĝ < ∞. This is because a number of critical points (where the derivative
of e−

inz
2 Tn(eiz) is zero) on a period is finite and each gap contains a critical point, see

Fig. 1.
Let Π = Π(h0, h1, · · · , hĝ) be the comb associated to the extremal polynomial

Tn(eiz, Ê). Let also Πh = Π(h0 +h, h1, · · · , hĝ) with h > 0 and θ̂h be the corresponding
conformal mapping normalized exactly as (2.3), (2.6) and respectively Tn(eiz, Êh) =

cos n
2
θ̂h(z)e

inz
2 (by Theorem 2.1).

We will show that |Êh| is decreasing with h and tends to zero as h → ∞. In the
same time, Tn(1, Êh) = cosh n

2
(h+ h0), increasing with h. Therefore, for some h∗ > 0,

we will have |Êh∗| = |E| and cosh n
2
(h∗ + h0) > cosh n

2
h0. Thus, one can set E∗ = Êh∗ .

It is left to verify that |Êh| is decreasing with h and that |Êh| → 0 as h→∞. First,
define wh(ζ) = eiθ̂h(z), ζ = eiz. Since θ̂h(z) is 2π-periodic this map is well-defined. This
is a conformal mapping of the unit disk on the radial slit domain (the unit disk with
the system of radial slits), that is,

wh : D→ D\
ĝ⋃

k=0

{
w = eiωk−y, 0 < y 6 h+ h0, 0 < y 6 hk, 1 6 k 6 ĝ

}
=: Ωh.
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According to the principle of harmonic measure [19, Chapter 3], the harmonic measure
ω(0,T,Ωh) is monotonic with h. On the other hand, since Êh = w−1

h (T) and wh(0) = 0,
we have

1

2π
|Êh| = ω(0, Êh,D) = ω(0,T,Ωh).

Second, consider the conformal mapping θ̃h : C+ → Πh, which satisfies another
normalization

θ̃h(−1) = 0, θ̃h(1) = 2π, θ̃h(∞) =∞.
We define

−C−(h) := θ̃h
−1

(i(h+ h0)), C+(h) := θ̃h
−1

(2π + i(h+ h0)).

By Carathéodory kernel convergence theorem [21, p. 28], in this normalization the
sequence of conformal mappings has a limit, and limh→∞C±(h) = ∞. Comparing θ
and θ̃, we obtain

1

2π
|Êh| 6

2

C−(h) + C+(h)
−→ 0 as h −→∞.

�

Lemma 3.2. Let

E = T\
g⋃
j=0

(eiaj , eibj), 1 6 g <∞

be an n-regular set. Then there exists

Ê = T\
g−1⋃
j=0

(eiâj , eîbj)

such that |Ê| = |E| and |Tn(1, E)| 6 |Tn(1, Ê)|.

Proof. Let Π = Π(h0, h1, · · · , hg). Using again the principle of harmonic measure
with respect to the length of the slit hg for the set Eȟg associated to the comb

Πȟg
= Π(h0, h1, · · · , hg−1, ȟg), ȟg < hg,

we have that |Eȟg | > |E| and

|Tn(1, E)| = cosh
n

2
h0 = |Tn(1, Eȟg)|.

In this way, decreasing ȟg, we can delete one of the gaps, i.e., to obtain ȟg = 0 and,
respectively, the set Ě := E0. Thus, the number of gaps is now one less.

Repeating the proof of Lemma 3.1 with respect to Ě, we increase the value of h
in Π(h0 + h, h1, · · · , hg−1). Then, finally, we obtain for some h∗ > 0 the comb Π̂ :=

Π(h0 +h∗, h1, · · · , hg−1) and the set Ê such that |Ê| = |E| and |Tn(1, E)| 6 |Tn(1, Ê)|.
�
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Proof of Theorem 1.2. In light of Lemma 3.1 the extremal configuration cor-
responds to a regular set E. In Lemma 3.2 we proved that the extremal configuration
corresponds to the case of a single gap, i.e., to the set of the form

Es = T \ (e−is/2, eis/2),

which corresponds to the comb Π = Π(h0). Due to the extremality, we can claim that
for an arbitrary polynomial Pn(ζ) such that∣∣{x ∈ [0, 2π) : |Pn(eix)| 6 1

}∣∣ > 2π − s,
we have

(3.1) sup
ζ∈T
|Pn(ζ)| 6 |Tn(1, Es)| = coshn

h0

2
.

It remains to find the relation between the value h0 and the length of the gap s.
In term of the variables

w(ζ) = eiθ(z), ζ = eiz,

we have a conformal mapping of the unit disk D on the domain

Ω = D \ {w = u : u ∈ (e−h0 , 1)}
such that w(0) = 0 and, by symmetry, w(ζ) is real for real ζ. We point out that the
preimage of the radial slit is the arc (e−is/2, eis/2).

By a standard change of variables

(3.2) λ = i
1− ζ
1 + ζ

, µ(λ) = i
1− w(ζ)

1 + w(ζ)
,

we pass to a conformal mapping of the upper half-plane C+ to the upper half plane
with a cut along a single vertical interval

C+ \ {µ = iη : η ∈ (0, κ)},
where

(3.3) κ =
1− e−h0
1 + e−h0

= tanh
h0

2
.

Respectively, the preimage of this vertical interval is the interval (−λ0, λ0) ⊂ R, where

(3.4) λ0 = i
1− eis/2

1 + eis/2
= tan

s

4
.

It is well known (and easy to check directly) that this conformal mapping is of the form

µ(λ) = C
√
λ2 − λ2

0, C > 0.

To find C, we use the normalization condition µ(i) = i. We have

µ(λ) =

√
λ2 − λ2

0√
1 + λ2

0

and particularly µ(0) = i
λ0√

1 + λ2
0

= iκ.
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By (3.3) and (3.4) we have
tan s

4√
1 + tan2 s

4

= sin
s

4
= tanh

h0

2
,

or cosh h0
2

= sec s
4
. We substitute this value of h0 in (3.1), as the result we obtain (1.5).

Further, since
µ2 + 1 = (λ2 + 1) cos2 s

4
,

using (3.2), we obtain
4w

(1 + w)2
=

4ζ

(1 + ζ)2
cos2 s

4
.

Thus
w1/2 + w−1/2

2
= sec

s

4

ζ1/2 + ζ−1/2

2
= sec

s

4
cos

z

2
and, finally,

Tn(ζ, Es) = einz/2
(w1/2)n + (w−1/2)n

2
= einz/2Tn

(
sec

s

4
cos

z

2

)
.

Due to the fixed normalizations c∗ = 0 and Tn(1, Es) > 0, this extremal polynomial is
unique, see Remarks 2.2 and 2.3. Generally, we can choose an arbitrary normalization
point c∗ = c0 ∈ [0, 2π) and multiply the extremal polynomial by a unimodular constant.
Thus, we obtain (1.6). �
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Spain, and Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona), Spain

E-mail address: stikhonov@crm.cat

P. Yuditskii, Abteilung für Dynamische Systeme und Approximationstheorie, Jo-
hannes Kepler Universität Linz, A-4040 Linz, Austria

E-mail address: Petro.Yudytskiy@jku.at

http://arxiv.org/abs/1809.07466
http://www.math.technion.ac.il/hat/fpapers/remezppr.pdf

	1. Introduction
	2. Comb domains and solutions of Problems D and C
	3. Proof of Theorem ??
	Acknowledgment
	References

