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a b s t r a c t 

The Heat Balance Integral Method (HBIM) is generally applied to one-dimensional Carte- 

sian heat flow and Stefan problems. The main reason for this being that solutions in spher- 

ical and cylindrical coordinates are less accurate than in Cartesian. Consequently, in this 

paper we examine the application of the HBIM to Stefan problems in spherical and cylin- 

drical coordinates, with the aim of improving accuracy. The standard version as well as 

one designed to minimise errors will be applied on the original and transformed system. 

Results are compared against numerical and perturbation solutions. It is shown that for 

the spherical case it is possible to obtain highly accurate approximate solutions (more ac- 

curate than the first order perturbation for realistic values of the Stefan number). For the 

cylindrical problem the results are significantly less accurate. 

© 2019 Elsevier Inc. All rights reserved. 

1. Introduction 

The Heat Balance Integral Method (HBIM) is an approximate solution method primarily applied to thermal and phase 

change problems. It has become popular largely due to its simplicity. For example, when solving a single heat equation the 

method permits the governing partial differential equation to be transformed to a first order ordinary differential equation, 

which may often be solved analytically. It is particularly useful in solving Stefan problems, where there exist very few 

practically useful solutions and generally numerical methods are required. 

The HBIM was developed by Goodman [1] and is most commonly applied to problems in a Cartesian geometry. How- 

ever, there exist many situations where an approximate solution method in cylindrical or spherical coordinates is required. 

Spherical Stefan problems are described in the context of the Earth cooling in [2] , they are also important in industrial 

applications such as paint pigments, polishing materials and laser cladding [3,4] . Recently there has been great interest in 

the melting process at the nanoscale. Studies on spherical nanoparticle melting are often motivated by the development of 

new materials, although there are many important applications in medicine and drug delivery, see [6–8] . Phase change in 

cylindrical geometries is of interest in everyday applications such as icicle growth and melting, and certain thermal storage 

systems [10] . At the microscale solidification in a cylindrical geometry has been studied in the context of phase change mi- 

crovalves and cryopreservation [11,12] . At the nanoscale there exists great interest in the formation or melting of nanowires, 
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see [6,13,36] . Consequently, there is a clear need to develop solution techniques to complement this interest in thermal and 

melting problems in spherical and cylindrical geometries. 

The Cartesian version of the HBIM is described in detail in a number of texts [14–17] , while there are less published 

works dealing with the spherical or cylindrical versions [18–20] . Hill [21] summarizes techniques for analytical and series 

solutions for one-dimensional Stefan problems, including that of the HBIM in cylindrical and spherical coordinates. Ren 

[14] studies Cartesian and spherical geometries subject to a specified solidification front velocity and compares results for 

both one and two phase problems against numerics. In [34] a modified form of HBIM is applied to a spherically symmetric 

domain to determine the thermal conductivity of a nanofluid. 

Various authors use the HBIM as the basis for a numerical scheme. In a series of papers Bell looked into subdividing the 

spatial and dependent variables in planar and cylindrical geometries, see [22,23] . This is analogous to a numerical marching 

scheme on the heat balance equations whose accuracy increases with increased number of subdivisions. Caldwell and Chiu 

[26] extended this method, working with cylindrical and spherical geometries. Their solution shows some inaccuracies for 

small Stefan numbers and has non-physical oscillations for coarse grids. In a separate paper they detail the necessary starting 

solution for their scheme. In [24,25] linear profiles are employed in the subdivision. This requires an increase in the number 

of subregions to improve accuracy. Mitchell [23] uses a boundary immobilisation technique together with a standard HBIM 

profile. This leads to highly accurate solutions with a very small number of subregions. The method does not require a 

separate small time solution and can be applied to realistic boundary conditions, rather than the fixed temperature condition 

used in most studies. 

Various modifications of the HBIM have appeared in the literature, with the aim of improving the approximation. Sadoun 

[37] introduced the Refined Integral Method (RIM) which involves integrating the heat equation twice and simplifying the 

resultant integral via the standard HBIM integral. An alternative approach to the RIM, termed the ARIM, is mentioned in 

[38] where they point out that the resultant integral form may be simpler to deal with, especially when combined with a 

zero flux boundary condition. Mitchell and Myers [29,30] proposed the Combined Integral Method (CIM) which combines 

both HBIM and RIM. However (for standard boundary conditions) the most accurate formulation comes through the opTimal 

Integral Method (henceforth termed the TIM), which involves minimising the least squares error when the approximating 

function is substituted into the heat equation [27,28] . In [40,41] variations of the HBIM are investigated. 

In the following section we will specify the basic one-dimensional, one-phase Stefan problem, to be used in the remain- 

der of the paper. Studying the one-phase problem reduces the length of the expressions and so simplifies the analysis, mak- 

ing the exposition of the method clearer. We note that the one-phase formulation is known to lose energy when the phase 

change temperature is variable (such as with melting at the nanoscale or with supercooled fluids [9,31] ). In the following 

we will avoid this issue by only dealing with fixed phase change temperature but the method could easily be extended to a 

variable temperature. In Section 3 we analyse phase change due to a fixed temperature boundary condition since this is the 

basic condition studied in the majority of papers. However, in reality the fixed temperature boundary condition is physically 

unrealistic so, in Section 4 , we study the case of a Newton cooling condition. 

2. Mathematical modelling 

Consider a solid sphere or cylinder of initial radius R = R 0 which is at the melt temperature, T m 

. At t = 0 the outer 

boundary temperature is increased such that melting begins and progresses inwards until the whole particle has turned 

to liquid. The liquid occupies the region R ( t ) < r < R , where R ( t ) denotes the position of the melting front, and has initial 

condition R (0) = R 0 . The problem is described by the standard one-phase formulation 

ρc 
∂T 

∂t 
= 

k 

r p 
∂ 

∂r 

(
r p 

∂T 

∂r 

)
, R (t) < r < R 0 , (1) 

where ρ , c and k denote the density, specific heat and conductivity, respectively. We assume ρ is constant and equal in 

the solid and liquid phases throughout the melt process (this is not necessary for the analysis, but again we choose this 

to make the mathematics clearer). The choice p = 2 describes the heat equation in spherical coordinates. We may also 

examine Cartesian and cylindrical geometries by setting p = 0 , 1 , respectively. The position of the interface is determined 

by the Stefan condition 

ρL m 

d R 

d t 
= −k 

∂T 

∂r 

∣∣∣
r= R 

, (2) 

where L m 

denotes the latent heat. These equations are subject to the following boundary and initial conditions 

T (R, t) = T m 

, T (r, 0) = T m 

, R (0) = R 0 , 

(a) T (R 0 , t) = T H , or (b) − k 
∂T 

∂r 

∣∣∣
r= R 0 

= h (T (1 , t) − T H ) , (3) 

where at the outer boundary we will impose either a fixed temperature or Newton cooling condition. 

Introducing the nondimensional variables 

ˆ t = 

k 

ρcR 

2 
0 

t, ˆ T = 

T − T m 

�T 
, ˆ r = 

r 

R 0 

, ˆ R = 

R 

R 0 

, (4) 
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where �T = T H − T m 

, the problem (1) –(3) may be written (dropping the hat notation) as 

∂T 

∂t 
= 

1 

r p 
∂ 

∂r 

(
r p 

∂T 

∂r 

)
, R (t) < r < 1 , (5) 

subject to 

T (R, t) = 0 , T (r, 0) = 0 , R (0) = 1 , 

(a) T (1 , t) = 1 , or (b) 
∂T 

∂r 

∣∣∣
r=1 

= Nu (1 − T (1 , t)) , (6) 

where Nu = (R 0 h ) /k is the Nusselt number. The Stefan condition becomes 

β
d R 

d t 
= −∂T 

∂r 

∣∣∣
r= R 

, R (0) = 1 , (7) 

where β = L m 

/ (c�T ) is the Stefan number. 

3. Fixed temperature boundary condition 

The most commonly used boundary condition in the mathematical study of Stefan problems is that of a fixed tempera- 

ture, T (R 0 , t) = T H > T m 

. Hence in this section we will always apply Eq. 3(a) at the boundary. Physically it is unrealistic since 

it requires an infinite flux at the beginning of the melting process, however the mathematics involved is relatively simple 

so we begin our analysis with this case and subsequently move on to the more realistic case of a cooling condition. 

3.1. Spherical Stefan problem 

We begin our analysis with a study of the spherical problem in the original coordinate system, defined by Eqs. (5) –(7) 

with p = 2 , and subsequently a transformed system. Results are then compared with a numerical solution. 

3.1.1. HBIM formulation 

All heat balance methods involve choosing a simple function (usually a polynomial) to approximate the temperature over 

a finite region [38] . We choose a standard form 

T (r, t) = a (t ) 
(

r − R 

1 − R 

)
+ b(t ) 

(
r − R 

1 − R 

)n 

+ c(t ) . (8) 

To follow the original HBIM we now assume n = 2 . The boundary conditions indicate c = 0 and b = 1 − a . In the Cartesian 

case a is a constant, in spherical co-ordinates it turns out to be a function of time. Hence the expression for T involves two 

unknown functions, a ( t ) and R ( t ). The first of the two equations to determine these unknowns is found by substitution of T 

into the Stefan condition (7) . This leads to an ordinary differential equation 

β
d R 

d t 
= − a 

1 − R 

. (9) 

A second equation, termed the Heat Balance Integral (HBI), comes from integrating the heat Eq. (5) over the region r ∈ [ R , 

1], ∫ 1 

R 

r 2 
∂T 

∂t 
d r = 

∫ 1 

R 

∂ 

∂r 

(
r 2 

∂T 

∂r 

)
d r ⇒ 

d 

d t 

∫ 1 

R 

r 2 T (r, t)d r = 

∂T 

∂r 

∣∣∣
r=1 

− R 

2 ∂T 

∂r 

∣∣∣
r= R 

. (10) 

Upon substituting the approximating function (8) into this expression we obtain 

d 

d t 

[ 

( 1 − R ) 
((

24 + 

(
n 3 + 6 n 2 + 11 n − 18 

)
a 
)
R 2 + 2 ( 1 + n ) 

(
12 + 

(
n 2 + 5 n − 6 

)
a 
)
R 
)

( 2 + n ) ( 3 + n ) ( 1 + n ) 

( 1 − R ) ( 3 ( 4 + ( n − 1 ) a ) ( 1 + n ) ( 2 + n ) ) 

( 2 + n ) ( 3 + n ) ( 1 + n ) 

] 

= − aR 4 

(1 − R ) 
. (11) 

Since n = 2 is constant we may write (11) as 

d 

d t 

[ 
1 

20 

( 1 − R ) 

((
2 

3 

+ a 

)
R 

2 + 

(
4 a 

3 

+ 2 

)
R + 4 + a 

)] 
= − aR 

4 

(1 − R ) 
. (12) 

The initial condition for the melt front R (0) = 1 is known, but the condition for a is not. The classical Neumann solution for 

Cartesian phase change driven by a constant temperature boundary condition shows R ∼ √ 

t . The current problem, which 

describes spherical melting, (5) –(7) , reduces to the Neumann problem provided the melt region is small compared to the 

radius. Hence, for small times, we may approximate the moving boundary position as 

R ≈ 1 − 2 λt 1 / 2 , (13) 
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where λ is an unknown constant. For the spherical problem this form has been used in [5] . Substituting this, and the 

derivative of T into the Stefan condition (9) determines 

a ≈ βλ2 

2 

(1 − 2 λt 1 / 2 ) , (14) 

hence, 

a (0) = 

βλ2 

2 

. (15) 

To find the value for λ we substitute the small time solutions (13), (15) into the heat balance (11) , which in the limit t → 0 

gives a quadratic for λ2 

2 β(n − 1) λ4 + (2 βn + 2 + 2 βn 

2 ) λ2 − n 

2 − n = 0 . (16) 

The standard HBIM solution to the Stefan problem is now described by Eqs. (9) and (11) with n = 2 . The numerical solution 

of (9), (11) , subject to R (0) = 1 , a (0) = βλ2 / 2 can easily be found using the ODE solver ode45 in MATLAB. 

3.1.2. TIM formulation 

The standard HBIM of Goodman [1] simply imposed n = 2 , as in the previous section, although there are many other 

possibilities, often chosen through knowledge of an exact solution, see [29] . The opTimal Integral Method (TIM) was de- 

veloped so that n is chosen to improve the accuracy of the standard method without the need for an exact or numerical 

solution [27,28] . This involves minimising a least-squares error. Thus a third equation is introduced 

E n (r, t) = 

∫ 1 

R 

(
∂T 

∂t 
− 2 

r 

∂T 

∂r 
− ∂ 2 T 

∂r 2 

)2 

d r. (17) 

This approach has a number of advantages, the most obvious is that it significantly improves accuracy, for certain boundary 

conditions by orders of magnitude [27,28] . It also provides a measure of the error without knowledge of an exact solution. 

The algebra involved in the integral may be complex, which has been quoted as a drawback [3] . However, it is unnecessary 

to carry out the algebra every time the method is used. For standard Cartesian thermal problems in a fixed domain: for a 

constant temperature boundary condition the appropriate value is n = 2 . 235 , while for constant flux and Newton cooling 

boundary conditions n = 3 . 584 , see [28] . The Stefan problem with a fixed temperature boundary condition gives n = 1 . 79 ; 

with constant flux or a Newton cooling condition, n = 3 . 48 . 

The TIM formulation is fully specified by Eqs. (9) , (11) and (17) for the 3 unknowns a , n , R , subject to the temperature 

profile (8) . 

As in the standard HBIM we solve (9) and (11) numerically, but now for a range of n . The error E n is then calculated to 

determine the minimum value and corresponding value of n . It turns out that the optimal n varies with β . For β ∈ [1, 10] 

we find n ∈ [1.73, 1.77]. As we will see later, the average value is accurate over a wide range of β , so effectively with a fixed 

temperature condition the TIM requires solving the two ODEs (9), (11) with n = 1 . 75 . 

3.1.3. Perturbation solution 

Perhaps the most popular method for finding approximate solutions to Stefan problems is via the large Stefan number 

perturbation. This involves assuming that β 	 1, although this limit is not always of practical interest: in [ 32 , Chap 2.1] 

typical parameter values for the phase change of water, copper, paraffin wax and silicon dioxide are provided, these show 

β ∈ [2 × 10 −3 , 8 . 3] (note their Stefan number St = 1 /β). 

The β 	 1 limit corresponds to slow melting and requires time to be rescaled such as τ = εt, where ε = 1 /β . Now the 

problem statement becomes 

ε
∂T 

∂τ
= 

1 

r 2 
∂ 

∂r 

(
r 2 

∂ 2 T 

∂r 2 

)
, R (τ ) < r < 1 , (18) 

T (R, τ ) = 0 , T (1 , τ ) = 1 , (19) 

d R 

d τ
= −∂T 

∂r 

∣∣∣
r= R 

. (20) 

We then approximate the solution for T by a power series in the small parameter ε, T (r, τ ) = T 0 + εT 1 + O 

(
ε2 

)
. Applying 

this expansion to the governing Eq. (18) and grouping terms with the same power of ε we find the leading and first order 

temperatures to be 

T 0 = 

r − R 

(1 − R ) 
, (21) 
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T 1 = − (r − 1)(R − 2 + r)(R − r) 

6(1 − R ) 2 
d R 

d τ
. (22) 

Substituting the first order approximation of T into the Stefan condition (20) gives 

d R 

d τ
= − 3 

(1 − R )(3 R + ε) 
. (23) 

Eq. (23) can easily be solved via MATLAB’s ode45 , with initial condition R (0) = 1 . We may also easily integrate this expres- 

sion to find an implicit solution for R (a cubic equation in R ), but when solving the cubic numerically there is a jump in 

roots so we prefer to use the ODE solver. 

3.1.4. Approximate solutions in the transformed system 

The equations for the transformed system come from making the change u = T r. The problem then becomes 

∂u 

∂t 
= 

∂ 2 u 

∂r 2 
, R < r < 1 , (24) 

u (R, t) = 0 = u (r, 0) , u (1 , t) = 1 R (0) = 1 (25) 

βR 

d R 

d t 
= −∂u 

∂r 

∣∣∣
r= R 

. (26) 

To approximate the temperature over a finite region we choose the standard form of Eq. (8) , and replace T by u . The 

boundary conditions again determine c = 0 and b = 1 − a . As before we use the Stefan condition and the HBI to define 

equations for R and a . The Stefan condition gives 

βR 

d R 

d t 
= − a 

1 − R 

. (27) 

The heat balance integral is ∫ 1 

R 

∂u 

∂t 
d r = 

∫ 1 

R 

∂ 2 u 

∂r 2 
d r ⇒ 

d 

d t 

∫ 1 

R 

u (r, t)d r = 

∂u 

∂r 

∣∣∣
r=1 

− ∂u 

∂r 

∣∣∣
r= R 

. (28) 

Upon substituting the approximating function u into this expression and assuming constant n , we obtain 

(n − 1)(1 − R ) 2 
d a 

d t 
− (1 − R )[(n − 1) a + 2] 

d R 

d t 
= 2 n (n + 1)(1 − a ) . (29) 

To find λ we again let t → 0 and substitute into the HBIM (28) . The solution to the Stefan problem is now described by 

Eqs. (27) and (29) subject to initial conditions R (0) = 1 , a (0) = 2 βλ2 . 

In the transformed system the TIM solution requires finding the value for n that minimises the error 

E n (n, t) = 

∫ 1 

R 

(
∂u 

∂t 
− ∂ 2 u 

∂r 2 

)2 

d r. (30) 

As before we simply solve the ODEs (26), (29) numerically for a range of n and then determine the value that minimises 

(30) . We find that for β ∈ [1, 10], n ∈ [1.55, 1.65], so in general we choose n = 1 . 6 . 

The leading and first order perturbation solutions are 

u 0 = rT 0 , u 1 = rT 1 (31) 

where T 0 , T 1 are given by (21), (22) , and the melt front is described by (23) . That is, the perturbation solution in the 

transformed system is identical to that of the original system. 

3.1.5. Numerical solution 

To ascertain the accuracy of the various solutions we will now formulate a numerical solution. To do this, we employ a 

finite difference scheme, following the work of Font et al. [5] . There are two key steps: the first one consists of changing 

the temperature variable to u = rT ; the second involves introducing a new coordinate to immobilise the boundary, η = 

(r − R ) / (1 − R ) . This transforms the problem to 

(1 − R ) 2 
∂u 

∂t 
= (1 − R )(1 − η) 

∂u 

∂η
R t + 

∂ 2 u 

∂η2 
, 0 < r < 1 , (32) 

u (0 , t) = 0 , u (1 , t) = 1 , (33) 
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βR 

d R 

d t 
= − 1 

1 − R 

∂u 

∂η

∣∣∣
η=0 

. (34) 

In the equations above, both R and R t are evaluated at the n -th time step. We find R n t via Eq. (34) and approximate the 

partial derivative of the temperature at the boundary η = 0 via a three-point forward difference [39] . We use standard finite 

differences to approximate the temperature derivatives, 

∂u 

∂t 
= 

u 

n +1 
i 

− u 

n 
i 

�t 
, 

∂u 

∂η
= 

u 

n +1 
i +1 

− u 

n +1 
i −1 

2�η
, 

∂ 2 u 

∂η2 
= 

u 

n +1 
i +1 

− 2 u 

n +1 
i 

+ u 

n +1 
i −1 

�η2 
, (35) 

where i = 1 , . . . , J and n = 1 , . . . , N. Hence we may write 

u 

n +1 
i 

= 0 , i = 1 , (36) 

a n i u 

n +1 
i −1 

+ b n i u 

n +1 
i 

+ c n i u 

n +1 
i +1 

= d n u 

n 
i , i = 2 , . . . , J − 1 , (37) 

u 

n +1 
i 

= 1 , i = J, (38) 

which allows us to write down a matrix system that we solve at every time step n . We determine the position of the melt 

front via the Stefan condition (34) using a three-point backward difference for the partial derivative, and taking the time 

derivative to be 

d R 

d t 
= 

R 

n +1 − R 

n 

�t 
. (39) 

Small time analysis 

A common difficulty when solving Stefan problems numerically is that the liquid phase does not exist at t = 0 , however a 

numerical solution demands initial values. To overcome this difficulty we look for a small time solution to provide an initial 

guess within the numerical scheme. As stated earlier, at small times R = 1 − 2 λt 1 / 2 , substituting this into Eq. (32) and letting 

t → 0 gives 

∂ 2 u 

∂η2 
≈ 0 . (40) 

Applying the boundary condition (33) yields u (η, t) = η. Substituting this expression into the Stefan condition (34) allows 

us to find λ = 

√ 

1 / (2 β) . So we start our scheme at some time t = t 0 
 1 , with u (η, t 0 ) = η and R (t 0 ) = 1 −
√ 

(2 t 0 ) /β . 

3.1.6. Comparison of results 

The most important variable in the Stefan problem is the position of the melt front R ( t ): the main reason for solving 

the heat equation is to find the temperature gradient which then drives the phase change. Consequently, in Fig. 1 we show 

a comparison of the melt front predictions of the numerical solution (solid line) and the approximate solutions in the 

original domain for β = 1 , 10 . The TIM, the HBIM with n = 2 and perturbation solutions are shown as dashed, dash-dotted 

and dotted lines, respectively. For β = 1 all solutions are inaccurate. When β = 10 the perturbation solution is very close 

to the numerical solution while the other solutions are again inaccurate. In Fig. 2 we show the equivalent results, but now 

calculated in the transformed system. For β = 1 the TIM shows reasonable agreement, with a final melt time some 7% larger 

than the numerical prediction. The HBIM and perturbation solutions are highly inaccurate. For β = 10 we expect the large 

β perturbation to be accurate, and indeed it is much closer to the numerical solution now. However, as is clear from the 

inset, the TIM is significantly more accurate. This is in keeping with the results of [30] where it is shown that for β ∈ [0.1, 

10] their heat balance method is more accurate than the second order small and large β perturbation solutions. For β > 10 

both their heat balance solution and the perturbation are highly accurate, with errors below 0.01%. From these two figures 

we can conclude that in spherical co-ordinates the most accurate solution is generally obtained via the TIM, that is with 

n = 1 . 6 , in the transformed system. 

In Fig. 3 (a) we show temperature profiles for different times as a function of r for β = 1 for the different methods 

presented, in the transformed system. We observe that for early times the temperatures for all different methods are very 

similar, but as time increases the agreement diminishes considerably. There are two main factors that contribute to this. 

The first one, of course, is the difference in the expressions that define the temperatures. But the most important factor 

is the fact that at later times, as can be seen in Fig. 2 (a), the difference in the R increases, and thus the temperature 

profiles become even more different. To illustrate this, we plot in Fig. 3 (b) the temperature profiles for the different methods 

using the same value (from the numerical solution) for R at the different times. We see, that despite there are still some 

differences, they have decreased substantially. 
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Fig. 1. Melting front evolution of a spherical particle in the original system for HBIM (dash-dotted), TIM (dashed), perturbation (dotted) and numerical 

(solid) solutions for β = 1 , 10 . 

Fig. 2. Melting front evolution of a spherical particle in the transformed system for HBIM (dash-dotted), TIM (dashed), perturbation (dotted) and numerical 

(solid) solutions for various β . 

3.2. Cylindrical Stefan problem 

In this section we focus on the cylindrical Stefan problem. We will follow the methods outlined in the previous section 

and so will omit much of the detail. Again we first solve the problem in the original system, Eqs. (5) –(7) taking p = 1 , and 

later on provide approximate solutions for a transformed system. 
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Fig. 3. Temperature profile of a spherical particle using the solutions in the transformed system for HBIM (dash-dotted), TIM (dashed), perturbation (dot- 

ted) and numerical (solid) solutions. β = 1 . 

3.2.1. Approximate solutions in the original cylindrical coordinates 

We assume a temperature profile of the form (8) where c = 0 and b = 1 − a . The heat balance integral may now be 

expressed as 

d 

d t 

∫ 1 

R 

rT d r = 

∂T 

∂r 

∣∣∣
r=1 

− R 

∂T 

∂r 

∣∣∣
r= R 

. (41) 

Substituting for T leads to a rather long expression for the ODE, similar to (11) , so we omit it in this section. 

We close the system by inserting the assumed temperature profile (8) into the Stefan condition (7) , to reproduce (9) . For 

small times, for a sufficiently thin melt region the governing equations are equivalent to the Cartesian system so again we 

may write R ≈ 1 − 2 λt 1 / 2 , a ≈βλ2 /2. In the limit t → 0 the HBI provides an equation for λ, 

n 

2 

− 1 

2 

λβn = 

λ

8(n + 1)(4 + βλ2 (n − 1)) 
. (42) 

For the standard HBIM we substitute n = 2 to determine λ( β). For the TIM, n is chosen to minimise the error function 

(calculated using MATLAB) 

E(n, t) = 

∫ 1 

R 

(
∂T 

∂t 
− 1 

r 

∂T 

∂r 
− ∂ 2 T 

∂r 2 

)2 

d r. (43) 

Numerical integration of the above gives n ∈ [1.404, 1.6869] as the optimal choice for β ∈ [1, 10]. 

For the perturbation solution we rescale time and expand the temperature in powers of ε to find the leading and first 

order solutions 

T 0 (r, t) = 1 − ln (r) 

ln (R ) 
, (44) 

T 1 (r, t) = 

((R 

2 − r 2 ) ln (r ) + r 2 − 1) ln (R ) + (1 − R 

2 ) ln (r) 

4 R ln (R ) 3 
d R 

d t 
. (45) 

Upon substitution into the Stefan condition, the melt front satisfies 

d R 

d t 
= − 4 βR ln (R ) 2 

4 βR 

2 ln (R ) 3 + 2 R 

2 ln (R ) 2 − 2 R 

2 ln (R ) + (R 

2 − 1) 
, (46) 

with R (0) = 1 . 

3.2.2. Approximate solutions in a transformed system 

The transformation u = rT does not help in this case. Instead we follow [21,33] and use the following boundary fixing 

transformation, 
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ρ = 

ln (r) 

ln (R ) 
, τ = ln (R ) , T (r, t) = u (ρ, τ ) . (47) 

The cylindrical problem becomes 

e −2 τρ ∂ 2 u 

∂ρ2 
= τ

d τ

d t 

(
τ

∂u 

∂τ
− ρ

∂u 

∂ρ

)
, ρ ∈ [0 , 1] , τ < 0 (48) 

u (1 , τ ) = 1 , (a) u (0 , τ ) = 1 τ (0) = 0 , (49) 

∂u 

∂ρ

∣∣∣∣
ρ=1 

= −βe 2 τ τ
d τ

d t 
. (50) 

To remove the t dependence in Eq. (48) we may substitute for τ t from the Stefan condition. 

This transformation complicates the heat equation, with the result that if we leave n unknown the HBI cannot be inte- 

grated analytically, hence we cannot specify one of the ODEs for the TIM solution. However, we may still make progress for 

the particular case n = 2 . 

The quadratic polynomial satisfying boundary conditions (49) is 

u (ρ, τ ) = 1 − (1 + a ) ρ + aρ2 . (51) 

where a = a (τ ) . The HBI is obtained by integrating the heat Eq. (48) over the domain ρ ∈ [0, 1], after removing the t depen- 

dence via the Stefan condition. This leads to ∫ 1 

0 

β
∂ 2 u 

∂ρ2 
d ρ = 

∫ 1 

0 

e 2 τ (ρ−1) (a − 1) 

[
ρ

∂u 

∂ρ
− τ

∂u 

∂τ

]
d ρ. (52) 

Applying u from (51) leads to the ODE for a ( τ ), 

d a 

d τ
= 

e −2 τ
(
a 2 (τ + 2) − 2 a − τ

)
+ 8 βaτ 3 − 2 τ 2 (a − 1) 2 + (1 + 3 a 2 − 4 a ) τ + 2 a (1 − a ) 

τ (a − 1)((τ + 1) e −2 τ + τ − 1) 
. (53) 

Note, unlike in previous examples we now only have a single equation to solve for a ( τ ), although again we do not know 

the initial condition. To find the value of a (0) we apply the small time solution τ = ln (R ) = ln (1 − 2 λt 1 / 2 ) to the Stefan 

condition (50) . Taking the limit t → 0 gives 

a (0) = 1 − 2 λ2 β. (54) 

Substituting for a , τ into (53) leads to a quadratic for λ, 

1 

3 

λ4 β2 + 

(
β

3 

+ 2 β2 

)
λ2 − β = 0 . (55) 

Now we simply have to solve (53) numerically over the range τ ∈ [0 , −∞ ] subject to (54) . With this transformation the 

melt front is at R = e τ . Once a is known we can convert from τ to t by solving the Stefan condition (50) 

d τ

d t 
= −a − 1 

β
e 2 τ (56) 

In practice we calculate t via the discretisation 

t i = t i −1 −
βτi −1 e 

2 τi −1 

a i −1 − 1 

( τi − τi −1 ) (57) 

where t 0 = 0 . 

With a large Stefan number we rescale time scale to obtain 

ετ
d τ

d t 

(
τ

∂u 

∂τ
− ρ

∂u 

∂ρ

)
= e −2 τρ ∂ 2 u 

∂ρ2 
, 0 < ρ < 1 , (58) 

∂u 

∂ρ

∣∣∣
ρ=1 

= −e 2 τ τ
dτ

dt 
. (59) 

subject to (49) . This leads to 

u 0 = 1 − ρ, (60) 

u 1 = − (1 − ρτ ) e 2 ρτ + ρe 2 τ (τ − 1) − 1 + ρ

4 τ 2 

d τ

d t 
. (61) 

Finally, we find that the melt front is given by the same expression as in (46) . 
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Fig. 4. Melting front evolution of a cylindrical particle in the original system for HBIM (dash-dotted), TIM (dashed), perturbation (dotted) and numerical 

(solid) solutions for various β . 

3.2.3. Numerical solution 

To solve the cylindrical problem numerically we immobilise the boundary as in the spherical case via the coordinate 

η = (r − R ) / (1 − R ) . The governing Eqs. (5) –(7) transform to 

(1 − R ) 2 
∂T 

∂t 
= 

(
(1 − η)(1 − R ) 

d R 

d t 
+ 

1 − R 

η(1 − R ) + R 

)
∂T 

∂η
+ 

∂ 2 T 

∂η2 
, (62) 

T (0 , t) = 0 , T (1 , t) = 1 , (63) 

β(1 − R ) 
d R 

d t 
= −∂T 

∂η

∣∣∣
η=0 

. (64) 

We use standard finite differences to approximate the temperature derivatives as in (35) . As in the spherical case, we can 

now write 

T n +1 
i 

= 0 , i = 1 , (65) 

ˆ a n i T 
n +1 

i −1 
+ ̂

 b n i T 
n +1 

i 
+ 

ˆ c n i T 
n +1 

i +1 
= 

ˆ d n T n i , i = 2 , . . . , J − 1 , (66) 

T n +1 
i 

= 1 , i = J, (67) 

which allows us to write down a matrix system that we solve at every time step n . We are able to determine the position 

of the melt front via the Stefan condition (64) using a three-point backward difference for the partial derivative, and taking 

the time derivative to be (39) . The small time analysis leads to R ≈ 1 − 2 λt 1 / 2 , with λ = 

√ 

1 / (2 β) . 

3.2.4. Comparison of results 

In Fig. 4 we present the numerical and approximate solutions in the original domain for β = 1 , 10 . In this case all the 

heat balance methods are inaccurate for approximately R < 0.3. As expected the perturbation solution is poor for β = 1 and 

much more accurate when β = 10 . In both cases the TIM is more accurate than the standard HBIM but neither is sufficiently 

accurate to justify their use. 

In Fig. 5 we show a comparison of the melt front predictions of the numerical solution (solid line) and the approximate 

solutions in the transformed domain for various β . The HBIM with n = 2 and perturbation solutions are shown as dash- 

dotted and dotted lines, respectively. At small times all solutions agree well, however as R decreases they begin to diverge. 
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Fig. 5. Melting front evolution of a cylindrical particle in the transformed system for HBIM (dash-dotted), perturbation (dotted) and numerical (solid) 

solutions for various β . 

For the case where β = 1 , shown in Fig. 5 (a), we see that the HBIM and perturbation both present errors of about 10%. In 

Fig. 5 (b) we present results for β = 10 . Now the solutions are more accurate, with the same error of about 3.5%. 

4. Newton cooling boundary condition 

In practice a fixed temperature boundary condition is difficult to maintain; a fixed flux or Newton cooling condition is 

more physically realistic [35] . We now focus on the Newton cooling condition, which means using boundary condition ( 3 b). 

Again, since we follow the methods of the previous section we omit most details. 

4.1. Spherical problem 

The problem is specified by (5) and (6) , with p = 2 , and the Newton cooling boundary condition (b). The polynomial to 

approximate the temperature T is given by (8) , but now c = 0 and b = 

Nu (1 −R )(a −1)+ aR 
(1 −Nu )(1 −R ) −n 

. The heat balance integral is given by 

(11) , which upon substituting for T from (8) , with the corresponding c and b yields 

d 

d t 

[
a 

1 − R 

(
1 

2 

− R 

)
+ 

1 − R 

n + 1 

(
[ −Nu − a (1 − Nu )](1 − R ) + a 

(1 − Nu )(1 − R ) − n 

)
+ 

aR 

2 

2(1 − R ) 

]

= 

n 

1 − R 

(
[ −Nu − a (1 − Nu )](1 − R ) + a 

(1 − Nu )(1 − R ) − n 

)
. (68) 

The second ODE is simply the Stefan condition (9) . 

Small time analysis 

At small times R takes the form R ≈ 1 − λt, see [35] . Substituting this into the Stefan condition determines the initial 

condition for a ≈βλ2 t . To determine the initial conditions for the numerical solution we substitute both these small time 

solutions into Eq. (32) , and upon letting t → 0, we may write u ηη ≈ 0. Applying the appropriate boundary conditions yields 

the small time form for u , 

u (η, t) = − 1 − R 

(1 − R )(1 − Nu ) − 1 

η. (69) 

Substituting the above expression for u ( η, t ) into the Stefan condition (34) determines λ = Nu /β . 

In contrast to the previous solutions, since Nu = R 0 h/k there is a dependence on the initial size. The solution by the TIM 

shows that for Nu = 15 and β ∈ [1, 10], the optimal n ∈ [2.7, 3.55]. For Nu = 1 there is a similarly large variation in n . 
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Table 1 

TIM exponent for different β and Nu in 

the transformed system. 

TIM exponent 

Nu = 1 . 5 β = 1 1.95 

β = 10 1.89 

Nu = 15 β = 1 1.68 

β = 10 1.63 

The leading and first order solutions for the perturbation are 

T 0 = 

F 1 
r 

+ F 2 , (70) 

T 1 = 

r 2 

6 

d F 1 
d t 

+ 

r 

2 

d F 2 
d t 

+ F 3 + 

F 4 
r 

, (71) 

where 

F 1 = 

Nu 

R (1 − Nu ) + Nu 

, (72) 

F 2 = − Nu R 

R (1 − Nu ) + Nu 

, (73) 

F 3 = 

1 − Nu 

Nu 

[
1 

6 

d F 1 
d t 

+ 

1 

2 

d F 2 
d t 

+ F 4 

]
− 1 

2 Nu 

d F 1 
d t 

− 1 

Nu 

d F 2 
d t 

, (74) 

F 4 = − R 

6 R (1 − Nu ) + 6 Nu 

[
( Nu R 

2 − 2 − Nu ) 
d F 1 
d t 

+ 3(R Nu − 1 − Nu ) 
d F 2 
d t 

]
. (75) 

Substituting the first order approximation for T into the Stefan condition leads to 

d R 

d t 
= − 3 Nu [ ( Nu − 1) R − Nu ] 

2 [
3 Nu [ ( Nu − 1) R − Nu ] 

3 − εNu (1 − R ) 
(
1 + Nu + Nu 

2 + (1 + Nu − 2 Nu 

2 ) R + ( Nu − 1) 2 R 

2 
)] . (76) 

Eq. (76) can be solved via MATLAB’s ode45 . 
For the transformed system, with u = T r, the polynomial approximation is given by (8) , with c = 0 and b = 

Nu (1 −R )(a −1)+ aR 
(1 −Nu )(1 −R ) −n 

and the heat balance integral is given by Eq. (28) . The HBIM solution to the Stefan problem is now de- 

scribed by Eq. (27) for R , and substituting u into (28) we obtain an ODE for a . These two equations are subject to the 

initial conditions stated in the small time analysis. The TIM yields values for n that vary with β and Nu, n ∈ [1.63, 1.95] (see 

Table 1 ). 

The perturbation solution is the same in the transformed system as in the original. For the numerical solution we 

employ the same scheme defined in Section 3.1.5 , the only difference is due to the boundary condition, so that for i = J, 

( 1 − (1 − Nu )(1 − R n )�η) u n +1 
i 

− u n +1 
i −1 

= Nu (1 − R n )�η. 

In Fig. 6 we show two results for R ( t ) in the original system. As in the previous case we observe that for small β no 

approximation method is suitable. For β = 10 the perturbation solution provides reasonable accuracy, which obviously will 

improve as β increases. In Fig. 7 we show results in the transformed system. Now the integral methods are clearly superior, 

providing good agreement in all examples. Interestingly, for the case β = 1 , Nu = 1 . 5 we can see from the inset that the 

standard HBIM with n = 2 is more accurate than the TIM, with n = 1 . 95 , although both are obviously good approximations. 

The reason behind this is that the TIM is based on a global minimisation of the error in the temperature. This does not 

guarantee the most accurate temperature gradient at r = R . It seems that in this case the standard HBIM better approximates 

the gradient, T r ( R , t ), (at least as R → 0) better than the TIM. However, as may be seen from the other three figures, in general 

the TIM is most accurate. Approximate values for n are provided in Table 1 . Note, as Nu → ∞ the Newton cooling condition 

tends to the fixed boundary temperature boundary condition and so n ≈ 1.6 (as predicted previously). For small Nu, n ≈ 1.92. 

For simplicity we could take n = 1 . 76 for any Nu, β and find a good approximation. For better accuracy we could derive a 

function which moves smoothly between the limits (1.6, 1.95) as Nu moves between 0 and ∞ . 

4.2. Cylindrical problem 

Here we follow the method of Section 3.2 . In the original coordinate system we assume that the temperature profile 

has the form (8) , with c = 0 and b = 

(1+ Nu −Nu R ) a −Nu (1 −R ) 
Nu R −Nu −n 

. The heat balance integral may be expressed as (41) . We close the 
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Fig. 6. Melting front evolution of a spherical particle in the original system for HBIM (dash-dotted), TIM (dashed), perturbation (dotted) and numerical 

(solid) solutions for various β and Nu. 

system by applying (8) to the Stefan condition. Assuming R ≈ 1 − λt at small times, the Stefan condition leads to a (0) ≈βλ2 t , 

and taking the limit t → 0 in the HBI yields λ = Nu /β . Finally, the best n is chosen to minimise the error function (43) at 

the final times. This gives n ∈ [2.19, 2.62] as the optimal choice for β = 1 , 10 , Nu = 15 . 

The leading and first order perturbation solutions are 

T 0 (r, t) = F 1 (t) + F 2 (t) ln (r) , (77) 

T 1 (r, t) = F 3 (t) ln (r ) + 

r 2 

4 

d F 1 
d t 

+ 

r 2 

4 

d F 2 
d t 

ln (r ) − r 2 

4 

d F 2 
d t 

+ F 4 , (78) 

where 

F 1 (t) = 

Nu ln (R ) 

Nu ln (R ) − 1 

, (79) 

F 2 (t) = 

Nu 

1 − Nu ln (R ) 
, (80) 

F 3 (t) = −1 

4 

(
R 

2 ln ( R ) Nu 

2 + 

(
−Nu − Nu 

2 
)
R 

2 + 2 Nu + Nu 

2 + 2 

)
Nu 

R ( −1 + Nu ln ( R ) ) 
3 

d R 

d t 
, (81) 

F 4 (t) = 

1 

4 

Nu 

((
2 + 2 Nu + Nu R 

2 + Nu 

2 
)

ln ( R ) − R 

2 ( 1 + Nu ) 
)

R ( −1 + Nu ln ( R ) ) 
3 

d R 

d t 
. (82) 

The melting front is given by 

d R 

d t 
= 

4 Nu ( ln ( R ) Nu − 1 ) 
2 (

4 Nu 

3 ln ( R ) 
3 − 12 Nu 

2 ln ( R ) 
2 + ( +12 Nu ) ln ( R ) − 4 

)
R 

. (83) 

For the transformed system, given by the change of coordinates (47) , the outer boundary condition is ∂u 
∂ρ

∣∣∣
ρ=0 

= τλ(1 −
u (0 , τ )) . The polynomial approximation is given by 
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Fig. 7. Melting front evolution of a spherical particle in the transformed system for HBIM (dash-dotted), TIM (dashed), perturbation (dotted) and numerical 

(solid) solutions for various β and Nu. 

u (ρ, τ ) = c + τNu (1 − c) ρ − ( c + τNu (1 − c) ) ρ2 . (84) 

Then the heat balance integral yields 

d c 

d τ
= 

−2 ( τNu (c − 1) − 2 c ) 
2 
e −2 τ

(
1 / 2 + τ 2 − τ

)
e 2 τ + ( ( τNu − 2 ) c − τ Nu ) 

2 e −2 τ + 8 βτ 3 ( τNu (c − 1) − c ) 

( −τNu + τNu c − 2 c ) 
((

1 + τ 2 Nu + ( −2 − Nu ) τ
)
e 2 τ − 1 + ( 2 + Nu ) τ 2 + τNu 

)
e −2 τ τ

. (85) 

The small time solution is c(0) = 1 − 2 βλ2 . Now (85) is solved numerically using an ODE solver in MATLAB over the range 

[0 , −∞ ] . The corresponding melt front is simply R = e τ . We use (57) to convert the interval from τ back to t . For the 

perturbation solution, we find that the melt front is given by (83) . 
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Fig. 8. Melting front evolution of a cylindrical particle for HBIM in the transformed system (dash-dotted), TIM in the original system (dashed), perturbation 

(dotted) and numerical (solid) solutions for various β and Nu = 15 . 

The numerical scheme is the one described in Section 3.2.3 but Eq. (67) becomes 

T n +1 
J = ( Nu (1 − R 

n )�η + 1 ) T n +1 
i 

− T n +1 
i −1 

= Nu (1 − R 

n )�η. (86) 

5. Conclusion 

The goal of this paper was to improve the accuracy of the HBIM applied to Stefan problems in spherical and cylindrical 

geometries. To do this we analysed the standard form and the optimised form (TIM), in the original and a transformed 

co-ordinate system, subject to fixed temperature and Newton cooling boundary conditions. The large Stefan number per- 

turbation solution was also calculated to first order since this is the most common way to approximate solutions to Stefan 

problems. The accuracy was determined by comparison of the predicted melt front position with a numerical solution for 

two values of the Stefan number β = 1 , 10 . The upper limit for β was chosen since it is a typical maximum value for 

practical melting problems [32] . 

First we considered melting due to a fixed temperature boundary condition. For the spherical problem all solutions in the 

original domain were inaccurate for small β . For large β only the perturbation solution was accurate. However, when the 

temperature variable was changed to u = rT the solutions improved in accuracy. In particular the TIM gave the most accurate 

solutions for the β values tested. Even when β = 10 , when we expect the perturbation solution to have an accuracy of 

O (10 −2 ) % the TIM was significantly more accurate. The expression for the temperature with the fixed temperature boundary 

condition takes the form 

u = a 

(
r − R 

1 − R 

)
+ b 

(
r − R 

1 − R 

)n 

, (87) 

where b = 1 − a . For the standard HBIM n = 2 . For the TIM n ∈ [1.55, 1.65] varies slightly with β . However, choosing the 

average value n = 1 . 6 provides more accurate solutions than the other methods. Consequently when studying spherical 

Stefan problems, with a fixed temperature boundary condition we recommend transforming the temperature variable T = 

u/r where u is given by (87) and n = 1 . 6 . 

With a Newton cooling condition the conclusions are similar. Firstly, the temperature must be transformed to u = rT . The 

relation between a and b is more complex and with the TIM the exponent varies with both β and Nu = hR 0 /k . For small 

Nu we found good accuracy with the average n = 1 . 92 . For larger Nu (here we tested Nu = 15 ) we found a smaller value 

n = 1 . 65 , which is obviously tending to the fixed temperature limit n = 1 . 6 (corresponding to Nu → ∞ ). 

In the case of cylindrical symmetry the results were not so satisfactory. Firstly, the temperature transformation was of no 

use, instead we used a boundary fixing transformation, which complicated the governing heat equation. Secondly, the TIM 

proved too complex to be of practical use or appeal. Thirdly, in general accuracy was poor for both boundary conditions. 
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From this part of the study it is difficult to make a conclusive statement. When β = 1 , for a fixed temperature boundary 

condition the TIM works best in the original system, for the cooling condition it is more accurate than the HBIM and 

perturbation calculated in the transformed system. For large β it is the worst, while the perturbation is reasonably accurate 

for the values of Nu examined. 

In conclusion then, it appears that the TIM can be used with great accuracy in spherically symmetric melting problems, 

provided the temperature transformation u = rT is employed. In the cylindrical problem the results are less conclusive and 

different methods work better for different parameter values. In this case it is hard to make a single recommendation. How- 

ever, it is possible that a different transformation, either of the temperature or co-ordinates, could change this conclusion. 
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