
Title: HRM: Merging Hardware Event Monitors for Im-
proved Timing Analysis of Complex MPSoCs

Journal Information: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems,

Author(s): Vilardell S., Serra I., Santalla R., Mezzetti E.,
Abella J., Cazorla F.J..

Volume, pages: 39 12, DOI:[10.1109/TCAD.2020.3013051]

10.1109/TCAD.2020.3013051

3662 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

HRM: Merging Hardware Event Monitors for
Improved Timing Analysis of Complex MPSoCs

Sergi Vilardell, Isabel Serra, Roberto Santalla, Enrico Mezzetti , Member, IEEE,

Jaume Abella , Member, IEEE, and Francisco J. Cazorla , Member, IEEE

Abstract—The performance monitoring unit (PMU) in multi-
processor system-on-chips (MPSoCs) is at the heart of the latest
measurement-based timing analysis techniques in critical embed-
ded systems. In particular, hardware event monitors (HEMs) in
the PMU are used as building blocks in the process of budgeting
and verifying software timing by tracking and controlling access
counts to shared resources. While the number of HEMs in cur-
rent MPSoCs reaches hundreds, they are read via performance
monitoring counters whose number is usually limited to 4–8, thus
requiring multiple runs of each experiment in order to collect all
desired HEMs. Despite the effort of engineers in controlling the
execution conditions of each experiment, the complexity of cur-
rent MPSoCs makes it arguably impossible to completely remove
the noise affecting each run. As a result, HEMs read in differ-
ent runs are subject to different variability, and hence, those
HEMs captured in different runs cannot be “blindly” merged.
In this work, we focus on the NXP T2080 platform where we
observed up to 59% variability across different runs of the same
experiment for some relevant HEMs (e.g., processor cycles). We
develop a HEM reading and merging (HRM) approach to join
reliably HEMs across different runs as a fundamental element of
any measurement-based timing budgeting and verification tech-
nique. Our method builds on order statistics and the selection
of an anchor HEM read in all runs to derive the most plau-
sible combination of HEM readings that keep the distribution
of each HEM and their relationship with the anchor HEM
intact.

Index Terms—Computers and information processing, event
monitors, merging, MPSoC, order statistics, performance moni-
toring unit, real-time systems, statistical analysis.

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current ver-
sion October 27, 2020. This work was supported in part by the Spanish
Ministry of Science and Innovation under Grant PID2019-107255GB; in part
by the European Research Council under the European Union’s Horizon
2020 Research and Innovation Programme under Grant 772773; and in part
by the HiPEAC Network of Excellence. This article was presented in the
International Conference on Embedded Software 2020 and appears as part of
the ESWEEK-TCAD special issue. (Corresponding author: Sergi Vilardell.)

Sergi Vilardell is with the Barcelona Supercomputing Center,
Universitat Politècnica Catalunya, 08034 Barcelona, Spain (e-mail:
sergi.vilardell@bsc.es).

Isabel Serra is with the Complex Systems Group, Centre de Recerca
Matemàtica Barcelona Supercomputing Center, 08034 Barcelona, Spain
(e-mail: isabel.serra@bsc.es).

Roberto Santalla, Enrico Mezzetti, Jaume Abella, and Francisco J. Cazorla
are with the Computer Architecture-Operating Systems Group,
Barcelona Supercomputing Center, 08034 Barcelona, Spain (e-mail:
roberto.santalla@bsc.es; enrico.mezzetti@bsc.es; jaume.abella@bsc.es;
francisco.cazorla@bsc.es).

Digital Object Identifier 10.1109/TCAD.2020.3013051

I. INTRODUCTION

THE COMPLEXITY of processors in critical embedded
systems (CESs) continues to increase, with academic and

industrial efforts devoted to analyze the use of multicores as
the baseline computing solution in future CES. Multicores—
and multiprocessor system-on-chip (MPSoC) solutions in
general—provide the increasing computing performance needs
in CES domains like automotive [1] and avionics [2]. This
is, in turn, motivated by the increasing computing require-
ments in autonomous CES that manage huge amounts of data,
e.g., coming from radar, lidar, and cameras; and the imple-
mentation of compute-intensive AI algorithms [3]. The other
side of the coin is that multicores complicate software tim-
ing analysis due to the inherent complexity of cutting-edge
hardware functionalities and the difficulties in capturing the
contention in the access to hardware shared resources, which
causes tasks to affect each others’ timing behavior.

Consolidated timing analysis approaches are challenged by
the inherent complexity of multicore computing solutions
[4], [5] that are increasingly adopted in the CES domain
[1], [2]. The complexity of analysing such platforms princi-
pally emanates from the implications of multicore execution
on the increasingly richer functionalities that CES are required
to provide. This has led to a significant interest in pro-
viding industrially amenable solutions to master contention
and the entailed multicore interference. Preventing or control-
ling contention between concurrently running tasks has been
considered as a promising direction with some approaches
building on full segregation of accesses to the different blocks
of memory-like resources [6], [7], including the: 1) banks of
shared on-chip caches and 2) banks/ranks in a DDR memory
system [8]–[10], with solutions combining 1) and 2) [11].
Other works propose changes to the application to precisely
split its execution into memory and computation phases to
facilitate explicit scheduling of task phases in a way to avoid
contention [12], [13]. These approaches, while being embraced
in industrial quality solutions [14], are not always applica-
ble in practice, due to hardware characteristics or constraints
on the applications semantics. In all these cases, interference
can still arise in shared buses or shared buffers, tables, and
queues in the cache [15], and whenever altering applications’
semantics is not an option due to verification and validation
(V&V) costs. In the NXP T2080, considered for adoption by
the avionics industry [16], the number of shared components
where interference can arise is overwhelming. Just in the L2
cache, we find the back invalidate buffer, reload table, reload

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1886-2931
https://orcid.org/0000-0001-7951-4028
https://orcid.org/0000-0002-3344-376X

VILARDELL et al.: HRM: MERGING HEMs FOR IMPROVED TIMING ANALYSIS OF COMPLEX MPSoCs 3663

fold queue, castout buffer, write data buffer, reload data buffer,
and the snoop queue.

In any case, regardless of the specific scenario, an anal-
ysis approach is required to provide evidence that con-
tention is actually avoided or mitigated (i.e., its impact can
be bounded). Advanced measurement-based timing analysis
approaches building on a variably complex combination of
software and hardware profiling [17], [18] are being consid-
ered as a promising analysis solution for functionally rich and
complex multicore platforms. Measurement-based approaches
appear particularly appealing from an industrial (V&V) stand-
point [19]. In this view, the performance monitoring unit
(PMU) provides the necessary entry point for retrieving the
information required by the analysis. In fact, PMUs are becom-
ing instrumental for software timing budgeting and V&V.

As a first example, it has been shown that existing signals in
the AMBA AHB bus provide the required information to cap-
ture the contention tasks generate each other on the bus. This
information is sent to the PMU to be stored in hardware event
monitors (HEMs) that are made accessible to the software to
track and control contention [20].

Another example is the event quota budgeting, monitoring,
and enforcement mechanisms [21]–[24] to enforce budgets on
task resources utilization by means of HEMs. By controlling
task’s activities via the HEMs offered by processor’s PMUs,
the system software can suspend task’s execution when their
assigned budget is exhausted.

Empirical approaches building on the evidence collected
from HEMs, for example, are at the basis of successful certifi-
cation arguments for CES in the avionics domain [16]. Overall,
the PMU, and HEMs in particular, are at the heart of modern
solutions to track and control contention in multicores.

Problem Statement: While the number of HEMs in current
multicores is in the order of hundreds, they can only be read in
small groups of 4–8 via user-visible performance monitoring
counters (PMCs). This limitation relates to the hardware cost
of routing the HEMs via long wires and multiplexors to access
PMCs that can be accessed via software. Hence, several runs
are required to read all the HEMs of interest, which are later
“merged” off-line to analyse the program behavior and reason
about contention. For instance, to decide whether some tasks
can be scheduled concurrently, we need to budget how much
each one is expected to access each shared resource, which
requires consistent reads of a large number of HEMs.

To make things worse, several runs of the same experiment
in an MPSoC can result in inevitable variations in the timing
behavior of the program, though its functional behavior is the
same. This is due to the impossibility to control the entire
hardware and software initial state in each run. In practical
terms, this translates into variability in HEM readings (as high
as 59% for processor cycles in our target system for relevant
HEMs), with no variability observed in instruction count (as
analyzed in Section II-C). The engineer is confronted with a
set of values (readings) for each HEM, that need to be merged
to allow reasoning about multicore contention. Unfortunately,
since HEM values from different runs to be merged can be
subject to different (large) noise, it is challenging to merge
them consistently so that merged HEM vectors—those where

all HEMs of interest are included—resemble the values that
would have been obtained if they could have been read all of
them simultaneously in the same run.

Contribution: The contribution of our work is threefold.
Analysis of HEM Variability: For the NXP T2080 [25],

a representative MPSoC in CES and undergoing a certifica-
tion process of multicore processing in avionics, we make
an in-depth statistical analysis of variability in HEM read-
ings. The observed variability is high enough to jeopardize the
consolidated practice of “blindly” merging different HEMs as
input for timing analysis. Moreover, the values of those HEMs
follow different distributions.

HEM-Reading Merging (HRM): We introduce an HRM
approach to guide the merging of HEM values subject to
different noise. HRM identifies an anchor HEM, and defines
groups of HEMs, each group with PMCs—1 HEMs plus the
anchor. HRM performs several runs for each group of HEMs,
ranks HEM values in each group using order statistics on
the anchor HEM, and merges those HEMs with the same
rank in different groups. Order statistics are nonparametric
and hence, can handle the different distributions of the HEM
values observed.

Analysis of the Accuracy: Since noise-free HEM values
cannot be obtained in general in complex MPSoCs, we evalu-
ate HRM comparing the correlation across HEMs merged by
HRM against their correlation when those HEMs are measured
in the same run, thus under identical noise. Our results show
that HRM captures accurately the correlation between HEMs,
as opposed to blindly merging HEMs read in different runs.

The remainder of this article is organized as follows.
Section II motivates the need of HEM merging mechanisms
and makes an in-depth analysis of HEM variability in the
T2080. Section III formalizes the problem addressed in this
work Section IV introduces our approach for HEM merging,
which we evaluate in Section V. Section VI discusses the most
relevant related works. Section VII concludes this work.

II. MOTIVATION

We show that several of the 262 HEMs in the T2080 present
significant variation (Section II-A) and follow different distri-
butions (Section II-B). We also dig down into some of the
reasons behind the observed variation (Section II-C).

A. HEM Variability

On the NXP T2080 [26] we run a four-task workload with
each task pinned to one of its e6500 cores. Each task per-
forms integer and floating operations at the core level over
several large vectors so that data operated is fetched from
main memory, causing frequent misses in all cache levels,
and thus exercising several HEMs. For this experiment, as
well as the remaining ones throughout this article, we run on
baremetal to remove potential interference coming from the
operating system (the specifics of our experimental framework
are described in Section V-A). We divide the experiment into
several subexperiments, in each of which we read six HEMs
(the total number of PMC available in the T2080). Hence,
reading all 262 HEMs requires 44 subexperiments, each of

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

3664 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 1. Observed variability for several HEMs in the T2080.

which we repeat 100 times to capture the impact of noise on
HEM readings. In all runs we focus on the HEMs for core 0.
Each run finishes when the task in core 0 finishes.

Fig. 1 shows the maximum relative variability observed for
several HEMs, i.e., var = (max − min)/ min, with bars in the
figure sorted from higher to lower. Each bar is tagged (see the
bottom part of the figure) with the order of magnitude m of
the value of each HEM in the experiment. For instance, for
m = 3, 103 ≤ hemi < 104. This information allows assessing
the potential impact of the variability on execution time, whose
magnitude for this experiments is tens of millions (107) of
cycles. So is that for the number of committed instructions.

In the NXP T2080, the maximum duration of an event trig-
gered by an instructions can be in the order of hundreds cycles
(102). Hence, HEMs below 104 arguably have low impact on
performance. This, of course, is related to events not involv-
ing the execution of system software, e.g., a TLB miss, whose
impact is not covered by multicore contention timing analysis
but instead captured by the system-level timing analysis. We
differentiate some cases for our experiments.

1) Relevant High Variability: Some HEMs present high
variability while their magnitude is relevant, 104–107.
These HEMs are the focus of our study as they can sig-
nificantly impact the timing of the application and hence,
the bounds that can be derived to it. In this category we
find PROCESSOR_CYCLES with a variability of 45%
from 3.6 ·107 to 5.2 ·107 (in other experiments the vari-
ability of this HEM reached 59%). 49 HEMs fall in this
category if we set 1% as threshold for low-variability.

2) Irrelevant or Low Variability: Other HEMs have low
variability in absolute terms, thus having little impact
on performance. There are 58 HEMs in this category,
including the three on the left of Fig. 1 whose variabil-
ity is over 180% but their value is below 300, hence,
insignificant with respect to the cycle count. Other
HEMs, 5 in total for this experiment, while exhibiting
values above 104, incurred less than 1% variability, with
limited impact on performance.

3) Not Exercised: Finally, other HEMs, 150 in our case,
were not exercised by the program under analysis mak-
ing both the minimum and maximum value be zero. As
the set of HEMs exercised can change across differ-
ent experiments, the particular nonexercised HEMs will
like vary. In fact, this is the motivation behind having
different benchmarks in the experimental evaluation.

The observed HEM variability does not depend on the
particular subset of HEMs that are enable/disabled when

Fig. 2. Histogram and empirical CDF (ECDF) types. (a) Normal.
(b) Concave. (c) Convex. (d) Clustered. (e) Hard-to-fit.

collecting observations. Interestingly, the “low variability” cat-
egory comprises HEMs presenting no variablity. Those are
related to the functional execution of the program captur-
ing the number of completed instructions including SFX,
CFX, store, load, stores, taken, and nontaken branches.
For instance, the total number of executed instructions
(INSTRUCTIONS_CMPLTD) of the first task is exactly the
same in all runs (15 646 749). This leads us to conclude that
the observed variability does not come from the software that
always performs the same function (e.g., it traverses always
the same execution path), and instead the variability is induced
by the hardware.

B. Distribution

Focusing on the relevant high variability HEMs, we iden-
tified their variable behavior falls into five main classes of
distribution. These types are depicted in Fig. 2 that shows the
histogram (bars) and the cumulative distribution function or
CDF (line) of observed values for one HEM in each category
for illustrative purposes. The x-axis shows HEM value, the
left y-axis the frequency of occurrence for the histogram (for
a 500 observations sample), and the right y-axis the fraction
of observations for the CDF.

1) Normal: HEMs in this category show a symmetric
behavior that resembles a normal distribution.

2) Concave: The distribution resembles a uniform with
leaning toward the smallest values, which gives a con-
cave cumulative distribution function.

3) Convex: Distribution with the probability mass concen-
trated on the highest values of the distribution, giving a
convex cumulative distribution function.

4) Clustered: HEMs in this category show a clustered
behavior around two values or more values. Distributions
with more than one clear mode also fall into this
category.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

VILARDELL et al.: HRM: MERGING HEMs FOR IMPROVED TIMING ANALYSIS OF COMPLEX MPSoCs 3665

5) Hard to Fit: Finally, some distributions follow no
obvious distribution (hard to fit category) apparently
characterized by having two modes and a long tail.

Out of the 37 relevant HEMs in our experiment, their distri-
bution is as follows: 2 (5.4%) Normal, 13 (35.1%) concave, 19
(51.4%) convex, 1 (2.7%) clustered, and 2 (5.4%) hard-to-fit.
The case of the HEM PROCESSOR_CYCLES is particularly
relevant for a twofold reason. It is the main HEM used in tim-
ing analysis for making predictions, and it presents a hard to fit
distribution [see Fig. 2(e)]. This HEM presents 59% variability
from around 2.0 · 107 to 3.2 · 107.

C. Reasons Behind the Observed Variability

The T2080 implements a complex architecture with an
aggressive core (the e6500), so some form of hardware-
induced HEM variability is therefore expected. We have
observed that the HEMs with relevant high variability cap-
ture the activity in a wide range of hardware units, from the
(on-core) integer issue queue to the internal queues of the L2
cache. High variability can be due to the complex nature of
the T2080 and its sources of multicore interference: specific
hardware scheduling choices in the multiple shared queues and
buffers in the core-to-L2 interconnect, internal to the L2, the
CoreNet coherence fabric (CCF), and the memory controller,
may lead to variable latencies for specific requests. Specific
and controlled execution scenarios allow narrowing down the
sources of execution time variability. As an example, we have
performed some bare-metal experiments where all cores hit
L2 cache sustainedly, with a task τ overlapping its full exe-
cution with the others. The intent is that interference occurs
solely in the L2 cache. Variability observed across executions
(up to more than 40%) could be attributed to minor initial
processor state differences causing slight time shifts between
L2 accesses across runs, and leading to cascade effects in L2
queues. In general, however, the limited information about the
internal functioning of some of these resources, e.g., CCF,
simply prevents identifying some of the reasons behind the
observed variability. Also, as the programs used in this study
typically perform the same activities repeatedly, contention for
requests of a given core can stay repeatedly low or repeatedly
high, leading to cumulatively high variability. Further, such
systematic patterns may inadvertently switch from low to high
contention scenarios (or vice versa) due to several reasons,
such as the effects of loop control instructions in a program,
which might alter systematic behavior inside the loop, as well
as the impact of DRAM refresh operations, just to name some
examples.

Weaver et al. [27] performed a hardware analysis of several
Intel architectures and formulate several hypotheses on the rea-
sons behind various forms of under and over counting affecting
some HEMs (retired instructions, branches, load/stores, float-
ing point, etc.). Extending this to modern MPSoCs confronts
with the inclusion of large hardware IP blocks with limited
description and the increasing number of HEMs monitor-
ing events highly sensitive to such variability. Also, note
that knowing the reasons behind such variability would help
assessing whether the device allows some configurations under

which the variability reduces. However, if the behavior caus-
ing the variability is intrinsic to the complexity/functioning of
the device, a solution like HRM is still needed—whether or
not the root can be explained.

D. Disproportion Between the Number of HEMs and PMCs

As the complexity of MPSoCs in modern CES platforms in
domains like avionics and automotive continues to increase, so
will do the number of HEMs. In fact, current MPSoCs, already
comprise hundreds of HEMs. For instance, the ARMv8(-A)
architecture defines over 280 micro-architectural events [28].
This architecture is implemented by a set of processors,
such as A53 (used by the NXP LayerScape family and the
Xilinx ZynqUltraScale MPSoC), A57, A72, and NVIDIA’s
Carmel processor. Each processor implements a subset of those
HEMs. For instance, A53 implements 63, while more mod-
ern A57/A72 implement 92/85, respectively. We see a similar
increasing trend in the NXP eXXX family with 180 HEMs in
the e500mc and 262 in the e6500.

Despite the increase in number and specialization of HEMs,
their observability and accessibility in reference CES platforms
is typically constrained by the availability of a relatively (but
consistently) lower number of PMCs. The latter represent, in
fact, the most natural way of making HEM information avail-
able to the user. The number of PMCs available in modern
MPSoCs typically ranges between 4 and 8 per core, which
inherently clashes with the number of HEMs an analysis would
need to track. In the case of Arm A53/A57/A71 cores, the
number of PMCs is 6, which also matches the number of
PMCs in NXP cores e500mc/e6500. To further constrain the
observability of HEMs, some platforms also enforce limita-
tions on how PMCs can be configured and mapped to HEMs.
In the Infineon AURIX TriCore family of microcontrollers,
reference computing solution in the automotive domain, the
number of available PMCs is limited to 3 per core, as com-
pared to 14 HEMs (2 fixed and 12 configurable), but only
specific groups of HEMs can be tracked at the same time [29].
For example, it is not possible to track both instruction and
data cache related HEMs within the same experiment. Overall,
the clear unbalance between the large number of HEMs and
available PMCs calls for approaches that reliably merge HEM
readings across different experiments.

It is also worth mentioning that MPSoCs also include an
increasing number of complex shared resources. This will
naturally result into more HEMs tracked by timing analysis
techniques to capture the effect of contention. While the partic-
ular multicore timing analysis solution determines the number
of HEMs to track, as an illustrative example we show that
getting a “snapshot” of the usage of the L2 cache made by
a task in the T2080, requires tracking dozens of HEMs. The
resources involved are the instruction cache, data cache, and
L2 MMU, whose misses go to L2; the core-cluster interface
(CCI) that connects cores to the L2, the L2 itself, and the bus
interface unit (BIU) that connects the L2 to the CCF. A (sim-
ple) analysis can focus on retrieving access counts to these
resources, without analyzing their effect propagation to the
core, which would require tracking more HEMs. Such analysis

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

3666 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

might need to track 53 HEMs: instruction cache misses (3),
data cache misses (4), L2 MMU misses (3), CCI accesses (5),
L2 activity (32), and BIU accesses (6).

III. PROBLEM FORMALIZATION

We are interested in collecting the values of a set of relevant
HEMs, H � {h1, h2, . . . , hnh}, whilst a given program executes
on the target platform in response to a given input (the main
terms used in this article are listed in Table I).

In an ideal scenario, all nh HEMs are collected at once on
a single program execution without incurring the uncontrolled
(platform or system level) jitter or variability that may arise
across executions. Under such favorable conditions, we obtain
a set of measurements (values) for each HEM in hi ∈ {H} that
cumulatively capture the activity performed by the program.
This is referred to as Scenario 1 in Fig. 3, in which the row
shows the single execution, columns the HEMs, and the cell
their respective values.

In a more realistic scenario, program executions on the tar-
get platform are subject to noise so that in each execution the
measured values for a given HEM hi can potentially vary. Note
that we use the term “noise” to generically refer to the varying
execution conditions across experiments, either due to differ-
ent initial hardware and system software state (in this respect,
our experiments are executed baremetal reducing the variabil-
ity due to system software). We are not after quantifying such
noise, but we just recognize that it is in general uncontrol-
lable, beyond the measures we take in order to reduce it as
shown in Section V-A. To capture the impact of noise, several
runs of each experiment need to be performed. The noise of
the different runs is represented as different levels of grey in
Fig. 3 (Scenario 2). In this scenario, noise can occur but at
least all HEMs can be read at once, so all HEMs in each run
are exposed to the same noise. This makes possible to reason
about their relationships for statistical inference.

In general, however, it is not possible to read all nh HEMs at
once in a single execution as the number of HEMs that can be
tracked simultaneously is determined by the number of avail-
able PMCs. Assuming our platform support np configurable
PMCs1 typically comparatively small with respect to the
number of supported HEMs, with np << nh. For this rea-
son, HEMs are necessarily collected in groups of at most np
elements. Hence, to measure all HEMs for a given program
we must perform a set of at least nb ≥ �nh/np� subexperiment
(b1, . . . , bj, . . . , bnb), each capturing the values of at most np
distinct HEMs and cumulatively covering all HEMs.

To capture the variability in measured values, several runs
of the same subexperiment bj are carried out, see Scenario 3
in Fig. 3, with crosses showing the HEMs not read in a given
run. In this case, we assume only two HEMs can be read in
each run. Also, as shown at the bottom of Scenario 3, naively
merging HEMs (from the first run and kth run in this case)

1Without lack of generality, we assume there are no constraints on which
specific HEM can be read from each PMC. Some processors exhibit such
constraints, due to hierarchy of multiplexors to route HEM readings to a
specific PMC. This scenario would just restrict which HEMs can be read in
the same run, but would not affect HRM, as some HEMs (e.g., processor
cycles) can be read along with any other group of HEMs

TABLE I
MAIN TERMS USED IN THIS WORK

Fig. 3. Scenarios in HEM reading.

results in merging HEMs values obtained under different noise
levels, potentially resulting in inconsistent values that cannot
be reliably used.

In this article, we address the challenge of merging the read-
ings (measurements) for all hi ∈ H, each one measured several
times in a different subexperiment (Scenario 3) to obtain
noise-consistent measurements for all HEMS (Scenario 2),
preserving their relationships with execution time to favor tim-
ing analysis. Note that, noise-free HEM values (Scenario 1)
are arguably hard to achieve, if at all possible, in MPSoCs.
In particular, we aim at obtaining vectors with values for all
HEMs under similar noise, as if all of them could have been
read simultaneously in every single run.

IV. HRM: TECHNIQUE TO MERGE HEMS

Table II introduces an example with the main inputs and
outputs to be generated by any HEM merging approach. In
particular, it shows the measurements made when the number
of HEMs is nh = 12 and the number of PMCs is np = 3,
hence being required nb = 4 subexperiments. In the example,
nr = 5 runs are performed per subexperiment. On the left, it
is reported the subexperiment and run id. In the top part, the
HEM id. We use rj,k to refer to the run k of subexperiment bj.
We refer to measured value of HEM hi in bj and run k as mi

j,k.
In terms of outputs, a HEM merging mechanism must aim at
producing a list of nr all-HEM readings (vectors) where each
vector includes all HEMs. Each of the nr measurements of
each HEM is placed exactly in one of those nr vectors. This
is illustrated at the bottom of Table II, where each run of each
subexperiment is merged with another run from each other

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

VILARDELL et al.: HRM: MERGING HEMs FOR IMPROVED TIMING ANALYSIS OF COMPLEX MPSoCs 3667

TABLE II
EXAMPLE WITH nh = 12, np = 3, nb = 4, AND nr = 5

subexperiment so that each run is represented exactly once in
the merged result. For instance, in the example, the first run
of the first subexperiment (m1

1,1, m2
1,1, m3

1,1) is merged with
the x′th run of the fourth subexperiment, and with one run of
each other subexperiment represented as the xth run of the jth
subexperiment.

A. Approach

Our approach, HRM, builds on nonparametric order statis-
tics, which allows relating random variables based on the order
of the sampled values of the variables, regardless of their dis-
tributions. In particular, HRM aims at merging the HEM mea-
surements from different subexperiments in such a way that the
noise experienced by the different measurements is as similar
as possible. HRM must also allow merging HEMs regardless
of the distribution of the data to be merged. Non-parametric
order statistics, which resort to the order of data regardless
of their distribution, allow relating runs across measurements
through the use of an “anchor” HEM, referred to as ha, mea-
sured in all subexperiments. HRM derives the relation between
HEMs in different subexperiments via their relation to ha.

This is illustrated in the left side of Fig. 4 that shows how the
individual readings of hi and hj (mi and mj, respectively) from
different subexperiments are related to those of the ha in each
subexperiment referred to as. HRM provides the following
properties. First, it preserves the distribution of each indi-
vidual HEM. It also preserves the joint distribution between
each HEM, hi, and the anchor HEM, ha (recall that the joint

Fig. 4. Introduction to the HRM approach.

distribution between the HEMs read in the same subexperi-
ment is maintained). Finally, HRM estimates the most reliable
joint distribution across HEMs in different subexperiments.
Next we detail the procedure followed by HRM to provide
those properties, followed by the mathematical foundation of
the approach.

B. Procedure

The application process of HRM includes four main steps.
Step 1: HRM starts by selecting the anchor HEM, ha,

that will be read in all subexperiments. In each subexperi-
ment np − 1 PMCs are used to read different HEM. That
is, from all available np PMC, HRM uses one of them in
each subexperiment bj for the anchor, and the other np − 1
PMCs for other HEM. HRM approximates unobserved HEM
relationships via their individual (observed) relationship with
ha. Thus, the selection of ha is critically important as it
determines how effective is HRM to merge HEMs for the
problem under study. As the problem at hand relates to
timing analysis, we chose ha to be as relevant as possi-
ble to timing. In the case of the T2080, execution time is
measured via the HEM PROCESSOR_CYCLES, and hence
ha =“PROCESSOR_CYCLES”.

STEP 2: After performing nr runs of each subexperiment,
HRM sorts the runs of each subexperiment by ha, from lowest
to highest. As a result, each element in the sorted list for
each subexperiment will indicate an order statistic, with the
kth order statistic of a sample being its kth-lowest value.

Each subexperiment is characterized by a small fixed set
of HEMs, limited by the number of PMCs available, np. Each
subexperiment in {bj}j=1,...,nb is represented by a set of nr runs
of dimension np

rj,k :
(

ma
j,k, m(np−1)(j−1)+1

j,k , . . . , m(np−1)(j−1)+(np−1)

j,k

)

The selection of nr should be based on prior knowledge of
ha random variable behavior. Without such knowledge, one
must resort to nr ≥ 30, as this is the minimum size to esti-
mate the main properties of a distribution through the central
limit theorem. Runs in each subexperiment and across them,
should be designed to ensure that they are independent and
identically distributed to enable the probabilistic reasoning on
which HRM builds. To achieve this property, we empty the
processor state between runs (see Section V-A). We assess it by
performing statistical independence and identical distribution
tests (see Section V-C).

STEP 3: Once all subexperiments are sorted based on ha, we
merge the different subexperiments so that the kth measure-
ment in the list for hi in a given subexperiment is merged with

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

3668 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

the kth measurement of hj in another subexperiment. Naturally,
HEM measurements in the same run of the same subexperi-
ment remain at exactly the same position in the sorted list, so
they remain together upon merging.

Let srj,l be the run of subexperiment bj with the lth low-
est value of ha. srj,l is defined as srj,l = rj,k where ma

j,k
is the l-lowest value in the set {ma

j,k}k=1,...,nr. Finally, the
concatenation produces a vector with completed represen-
tation of HEMs SRl = (sr1,l, . . . , srj,l, . . . , srnb,l) for each
l = 1, . . . , nr. Since the l-lowest value of ma

j,k is well-defined,
we can assume that for each j = 1, . . . , nb, ma

j,k ≤ ma
j,k+1

for all k = 1, . . . , (nr − 1). Therefore, ma
j,k is the (k:nr)-order

statistic of the sample of size nr, {ma
j,k}k=1,...,nr. HRM merges

the values read in the same ordered run across all subexperi-
ments, referred to as SMl. For each SMl, HRM produces one
reading for each HEM and nb readings for ha.

STEP 4: After merging, we compute the summarized order
statistics for ha. In particular, we compute the quantiles of the
distribution of all values of ha across all subexperiments so that
we obtain exactly nr quantiles, i.e., one for each row of our
merged list of HEM values. The resulting array yields m̂a =
quantile(0, . . . , k/(nr − 1), . . . , 1), where k = 0, . . . , (nr − 1).
HRM estimates the nr equal spaced quantiles of ha using the
sample of size (nr · nb) obtained from joining all ha values.

C. Quantile Estimation

Several methods for quantile estimation can be consid-
ered. Let {x(k)}k=1,...,n be an ordered sample of size n. In
general, a method for quantile estimation corresponds to
weighted averages of consecutive order statistics. Given fixed
values for a function γ and a constant m, the p-quantile is
defined by q(p) = (1 − γ (j, m))x(j) + γ (j, m)x(j+1), where
(j−m)/n ≤ p < (j−m+1)/n, x(j) is the (j : n)−order statistic.
We consider a continuous representation of quantile estimation
with γ (j, m) = p · n + m − j and m = 1 − p, which is equiv-
alent to do linear interpolation between the points {(pk, x(k))}
where pk attempts to estimate the mode of F(x(k)). Then q(p)

is a continuous function of p and p(k) = (k − 1)/(n − 1). We
refer the interested reader to [30] for a review of programming
quantile estimation.

D. Correlation Boundary

HRM produces a solution that preserves the observed
information and reliably builds unobserved information by
preserving joint distributions. That is, HRM preserves the cor-
relation across HEMs. In particular, HRM describes the rela-
tionship between the expected value of a target HEM, the
anchor ha, and the values observed for a different HEM hi.
The relationship across different HEMs, namely, hi and hj, not
observed together, is built therefore through ha. HRM builds
such relationship by estimating the covariance matrix across
all HEMs. The covariance matrix can be used because each
hi is a random variable with at least four finite moments.
In our case, each HEM has infinite finite moments since
all HEM values are bounded, i.e., they count finite events
per cycle during a finite interval, since the measurement
starts until the measured value is collected. Therefore, each

HEM value is a bounded number, thus guaranteeing the exis-
tence of infinite finite moments. By being random variables
with finite moments, we can describe the relationship across
expected values of HEMs through a multivariate normal dis-
tribution based on the central limit theorem, which ultimately
ensures the existence of the covariance matrix that character-
izes the relationship between the expected values of HEMs
asymptotically.

In particular, correlation across HEMs is based on Pearson
correlation coefficient [31]. It can be obtained via a least-
squares fit, where a value 1 represents a perfect positive
relationship, −1 a perfect negative relationship, and 0 the
absence of any relationship across variables. Let X and Y be
random variables, and denote by cor(X, Y) the Pearson cor-
relation, obtained as ([cov(X, Y)]/[σxσy]), where σ and cor
describe the variances and covariance, respectively.

Lemma: Let (Y, X1, X2) be a random vector with multi-
variate standardized normal distribution. Then, the correlation
between X1 and X2 is in the interval

ρ1ρ2 ±
√

1 − ρ2
1

√
1 − ρ2

2

where ρi = cor(Y, Xi) for i = 1, 2.

Proof: Let � be the covariance matrix the joint distribu-
tion between the random variables, Y , X1 and X2. � can be
described as the correlation matrix⎛

⎝
1 ρ1 ρ2
ρ1 1 ρ

ρ2 ρ 1

⎞
⎠ (1)

where ρ cannot be arbitrarily set between [−1, 1], since the
matrix must be positive semidefinite. A Hermitian matrix is
positive semidefinite if and only if all principal minors are non-
negative. Building on Silvester’s criterium, only the minors
defined by submatrices starting from the upper left corner need
being checked. The 2-by-2 submatrix, (

1 ρ1
ρ1 1), is trivial, and

the 3-by-3 matrix produces the result to prove.
Note that, by operating the result of the multivariate stan-

dardized normal distribution with the corresponding μ and σ

of the random variables of the HEMs whose joint distribu-
tion we are studying, we can directly obtain the result for the
multivariate nonstandardized normal distribution. Moreover,
since the random variables studied (the HEMs) have four finite
moments (in fact they have infinite moments), and based on
the central limit theorem, the Lemma guarantees that observed
values converge asymptotically to the expected values.

Building on the Lemma, we can prove that HRM guarantees
the three properties described in Section IV-A.

Theorem: Let H be the joint distribution of all HEMs,
and assume the set of ordered subexperiments as shown in
the example in Table II. Let be {m̂a

k}k=1,...,nr the set of nr
equal spaced quantiles of ha from the sample {ma

j,k}j,k of size
(nb, ·, nr). Consider the complete (merged) vector with all
HEMs defined as(

m̂a
k, m1

1,k, . . . , m(np−1)

1,k , . . .

m(np−1)(j−1)+1
j,k , . . . , m(np−1)(j−1)+(np−1)

j,k , . . .

m(np−1)(nb−1)+1
nb,k , . . . , m(np−1)(nb−1)+(np−1)

nb,k

)

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

VILARDELL et al.: HRM: MERGING HEMs FOR IMPROVED TIMING ANALYSIS OF COMPLEX MPSoCs 3669

for each k = 1, . . . , nr. Then, the empirical joint distribution
described by the complete vectors complies the (formalized)
properties of HRM.

1) Property 1: Preserves the marginal distribution of H for
all HEMs.

2) Property 2: Preserves the joint distribution across HEMs
in the same subexperiment.

3) Property 3: Estimates, with minimum error on correla-
tion, the joint distribution between HEMs in different
subexperiments.

Proof (Property 1): The marginal distribution of all HEMs
but ha is preserved, since no modifications are produced in the
observed values of those HEMs—they are just sorted. Only
ha is modified, since it is replaced by the order statistics.
As its distribution has infinite moments, replacing ha by its
order statistics of a larger sample, leads to a higher amount of
information (i.e., nb · nr values instead of nr), improving the
sample and hence, preserving the marginal distribution of ha.

Property 2: The reordering procedure preserves measure-
ments of different HEMs in the same subexperiment together.
Therefore, their joint distribution is preserved identical.

Property 3: Regarding the joint distribution of HEMs in dif-
ferent subexperiments, HRM estimates such joint distribution
for each pair of HEMs. Note that, since those pairs of HEMs
are never observed in the same subexperiment, data collected
provides no information about their joint distribution. The only
relation across subexperiments is had through ha, which is
observed in all of them, so the joint distribution to be esti-
mated needs to preserve this common relation. Based on the
Lemma, such relation is preserved if the estimated correlation
for describing the real joint distribution of two HEMs in differ-

ent subexperiments is in the interval ρ1ρ2 ±
√

1 − ρ2
1

√
1 − ρ2

2 ,
where ρ1 and ρ2 are the correlation between each of those
two HEMs and ha. Since there is no additional information
about the actual correlation between those two HEM, any
value in the interval is equally probable. Thus, the correla-
tion value proposed by HRM is ρ1ρ2, since this is the value
that minimizes the absolute error with respect to the real
value.

E. Matrix Completion Techniques

HRM aims at merging actual observations rather than fill-
ing missing values with synthetic data. The latter, which may
be realized with matrix completion (MC) methods [32], [33],
as discussed later in Section VI, is not appropriate in our case.
This is so because MC requires that values in each row and
column belong to a different distribution, which is not our
case, since each column is a different HEM with its own
distribution. As a consequence, the use of MC methods for
our problem leads to inadequate value distributions where, for
instance, the mean and standard distribution of the synthetic
data for all HEMs is extremely different from those for actual
observations. For instance, in our experiments, the mean for
synthetic data is ≈ 20x smaller than that of real data, whereas
the standard deviation is between 0.36x and 5x that of real
data.

Fig. 5. Block diagram of the T2080.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We target an NXP T2080 Reference Board [26], [34]
increasingly considered in the avionics domain, with Rockwell
Collins pursuing the certification of multicore processing on
this board [16]. The T2080 equips 4 e6500 cores (see Fig. 5),
each comprising private instruction and data cache as well
as a private MMU. A second level cache is shared between
all the cores. A “CoreNet” coherence fabric provides access
to the memory controller as well as other peripherals present
in the board. Some features are deactivated in our setup for
predictability reasons, such as SMT (Hyperthreading in Intel
terminology) and the CoreNet Platform Cache (CPC).

We have run our tests in a bare-metal setup, using the SDK
provided by the board manufacturer (NXP) to configure the
platform and load images to it through a JTAG debugging
interface. In the bare-metal setup, we access PMCs directly
without the use of a specific library, e.g., PAPI, to minimize
the impact of readings.

In each experiment, we run one benchmark per core. The
task in core0 is the reference task on which we perform
the analysis. The analysis for the tasks in the other cores
would be performed analogously. In each run of every experi-
ment, we collect measurements when the task in core0 finishes
its execution. We consider single-path benchmarks to iso-
late platform-level variability, so that in all runs the number
of instructions executed (INSTRUCTIONS_COMPLETED) in
core0 is exactly the same. Across any two runs of an experi-
ment, we reset the state of caches, TLBs, and Branch Target
Buffer. To that end, we execute a micro-benchmark that
generates a massive number of misses in all those stateful
blocks. While ISA-specific solutions exist that allow obtain-
ing the same effect with specific instructions, we considered
the micro-benchmark solution to be more platform agnostic.

In general, programs can have built-in sources of nonde-
terminism (e.g., time- or input-dependent values). Also, they
may easily be subject to variability due to minimal varia-
tions in the operating system [27]. In order to reduce these
sources of variability, we construct specific test-cases, which
also aim at triggering a wide set of HEMs. To that end,
we have created different benchmarks comprising different
core and cache (memory) patterns. At core level, we create

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

3670 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE III
WORKLOADS ON THE T2080 FOR VALIDATION PURPOSES

three benchmarks using intensively the integer pipeline, using
integer (I) and long (L) operands, and the floating point (F)
pipeline. We use short latency addition (ADD) operations and
long-latency multiplication (MUL) operations. At the cache
hierarchy level, benchmarks operate on a vector whose size we
vary so most load/store operations hit in the data cache (DL1),
the L2 (UL2), or memory (MEM). From these 18 bench-
marks (I, L, F)x(ADD, MUL)x(DL1, UL2, MEM), we have
generated 16 workloads, as shown in Table III.

B. Validation Methodology

The validation of any HEM merging methodology is com-
plex on real hardware as we do not have the noise-free value
for each HEM (hi), as explained in Section III. This prevents
us from directly comparing the estimated value for each HEM
with its corresponding noise-free value. Thus, we can only
evaluate HRM comparing the correlation for the HEM merged
with HRM against the real—measured—correlation.

In order to evaluate estimated and real correlations, first,
for each workload, we perform 100 runs for each of the 53 =
261/5 subexperiments. Hence, we collect readings for all 262
HEMs with five HEMs plus ha read in each subexperiment,2

except the last group (subexperiment) that only includes one
HEM and the ha.

We validate HRM for 15 HEMs having high relevant vari-
ability, see Fig. 6. To that end, we on purpose place those
HEMs in different groups so that their mutual correlation is
not observed in the data used for HRM.

For each of the 120 pairs3 of HEMs we estimate their cor-
relation ρ̂i,j, after merging them with HRM. We also collect
100 runs for a set of experiments in which those 15 HEMs
and the anchor are observed in the same group. Thus, for each
pair of HEMs (hi and hj), as well as ha, we obtain their actual
correlation ρi,j from those measurements. This allows us com-
paring their real correlation ρi,j with the estimated correlation
after merging with HRM ρ̂i,j. In particular we measure the
absolute distance (difference) between |ρi,j − ρ̂i,j|, so that the
maximum difference obtained for a pair of HEMs is 2. This

2For the sake of convenience, we refer to the HEM read in the same
subexperiment as being in the same (HEM) group.

3All possible pairs with the 16 HEMs analyzed (the 15 relevant and ha).

Fig. 6. HEMs with observed relevant variability.

happens when the estimated correlation is 1 (or −1) and the
real one is −1 (or 1).

C. Independence and Identical Distribution

HRM builds on these statistical properties for ha,
PROCESSOR_CYCLES, to apply order statistics. In practice,
this holds since all values of ha have been collected from the
repeated execution of the same workload, with the same inputs,
and enforcing the same hardware and software state as much
as it can be controlled. We have further evaluated these prop-
erties quantitatively. We performed an ANOVA test [35] to
assess identical distribution of PROCESSOR_CYCLES across
subexperiments. The result of the test is a p-value p = 0.57,
so the test is not rejected comparing the law on the expected
value of PROCESSOR_CYCLES, and tells us that the noise
is identically distributed across subexperiments. We assess
independence within each subexperiment with a Ljung-Box
test [36] with lag = 10. With a significance level α = 0.05,
independence is not rejected in 96% of the subexperiments,
so measurements can be regarded as independent since the
expectation is that the test is not rejected by a fraction of the
tests matching 1 − α. Hence, we can use the order statistics
for PROCESSOR_CYCLES after the merge as part of HRM
because the noise is the same across subexperiments and there
is no dependence across values read.

D. Correlation Between HEMs

In order to have reliable correlation estimates, we use the
percentile bootstrap method [37] with the following method-
ology. We first compute bootstrap samples of size n = 50
for all subexperiments; we compute the correlation between
all pairs of HEMs; we then repeat p = 100 times those two
steps and store the estimates of the correlation; for each pair
of HEMs we have 100 estimates and we take the mean of
those 100 values, which will be our reference estimation. We
can also obtain the confidence interval for those 100 values
for completeness.

For reference, we consider two other merging methods,
referred to as unsorted and sorted, respectively. The unsorted
method simply concatenates results of different subexperi-
ments in the very same order they are collected, without
analyzing any type of relationship between HEMs. The sorted

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

VILARDELL et al.: HRM: MERGING HEMs FOR IMPROVED TIMING ANALYSIS OF COMPLEX MPSoCs 3671

Fig. 7. Correlation Difference for each HEMs pair for workload 1 (top-left),
workload 2 (top-right), workload 5 (bottom-left), and workload 10 (bottom-
right).

method, instead, sorts the values collected for each HEM from
lowest to highest merging in the same vector those in the same
relative position for each HEM, so the lowest value for each
HEM form a vector, the second lowest for each HEM another
vector, and so on and so forth.

We have chosen workloads 1, 2, 5, and 10 due to their high
variability and different spectra of measured values and cor-
relations between HEMs in order to provide a representative
set of cases. Fig. 7 shows the correlation distance for the cho-
sen workloads. Each point represents the absolute difference
between the estimated correlation for each method and the
real correlation obtained measuring those HEMs in the same
group. We order all HEM pairs for each method from lowest
to highest correlation difference. As shown, the differences
between the observed and estimated correlation for HRM is
consistently lower than for the other methods, thus reflect-
ing its higher accuracy. While the input data for all methods
does not include direct observations of the real correlation and
hence, such information is missing in statistical terms, HRM
successfully recovers part of this information through their
individual correlations with ha, which is effectively observed.

The (naive) unsorted method is obviously poor and achieves
good correlation only in some cases by chance.

The sorted method performs very well for those pairs of
HEMs where both HEMs have strong positive correlation,
since sorting them precisely joints correlated values. However,
in many cases such correlation is either indirect or weak, which
makes the sorted method particularly inaccurate leading to the
highest discrepancies with respect to real correlations.

In the case of HRM, correlation is precisely estimated for
those HEMs with significant correlation with ha, since their
mutual correlation is preserved with a probability matching the
product of their individual correlations with ha. However, if
their individual correlation with ha is weak at least for one of

TABLE IV
MSE OF THE MERGING METHODS

the HEM, their mutual correlation will be mostly lost, and the
estimated correlation will approach 0. However, despite that, a
key advantage of HRM is that joint correlation across HEMs
is lost if and only if at least one of them is not meaningfully
correlated with ha. Instead, those correlations that matter for
timing in our case, are preserved, as opposed to the other
methods (unsorted and sorted), which preserve correlation for
arbitrary pairs of HEM, not for those necessarily correlated
with timing (i.e., ha).

For the rest of the 12 workloads we cannot show such
detailed results as for workloads 1 and 2. Instead we present
a summarized analysis of the three methods for all workloads
is shown in Table IV, in the form of the mean squared error
(MSE). The MSE is the average of the squared errors, it is
specifically computed as (1/N)

∑i>j
i,j=1,...,nrh(ρ

i,j−ρ̂i,j)2, where
nrh is the number of relevant HEMs, and N is the number of
pairs

(nrh
2

)
. As it can be seen, HRM shows to be the most

accurate method sustainedly, and its accuracy is only rela-
tively lower for Workload 4 since correlations with ha in this
workload are relatively weak in general.

Correlation With the Anchor: As stated, HRM aims at
preserving the relationship between each HEM and the anchor.
While such correlation is highly preserved by observing each
HEM with ha, HRM reduces the number of observations of
ha in each merged vector (nb, one for each run of each subex-
periment merged) by applying order statistics. Thus, only one
HEM out of the np − 1 in each merged vector preserves the
actual value observed for ha in its run, whereas the other
np−2 have a different ha value, which may have an effect on
the correlation between HEMs and ha. However, this effect is
expected to be tiny. We assess this quantitatively in Fig. 8 for
workloads 1 and 2, where we show the estimated correlation
(blue lines), the 95% confidence interval (red lines) and the
real correlation (black dots). As expected, correlation is esti-
mated with very high precision. We have observed this very
same effect for all workloads and all pairs of HEMs, so we
omit those data due to lack of further insights and of space.

E. Overheads

The HRM algorithm has very low computation require-
ments. To process the data of the experiments we performed in
the T2080, the R implementation of HRM required less than
38 milliseconds on a Dell latitude e7490 laptop.

HRM requires nr runs for each of the nb subexperiments, so
a total of nb·nr runs. For instance, to read all 262 HEM, HRM
required 53 subexperiments to collect five different HEMs and
ha in each subexperiment. Each subexperiment was executed
nr = 100 runs, thus above the minimum number of 30. Values

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

3672 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 8. Correlation between relevant HEMs and PROCESSOR_CYCLES
before and after merging for workload 1 (top-left), workload 2 (top-right),
workload 5 (bottom-left), and workload 10 (bottom-right).

for each workload were obtained in around ten min. Note that,
given that real-time programs usually last in the order of mil-
liseconds, so few thousands of runs may only take up to a few
minutes in general.

VI. RELATED WORKS

In the real-time domain, several works build on
HEMs for the estimation of bounds to software timing.
Nowotsch et al. [21] created an analysis and runtime
monitoring solution for limiting task contention in multi-
cores by tracking and controlling HEM. In the same vein,
Díaz et al. [38] built on HEM to produce an ILP-based
contention model for an AURIX automotive microcon-
troller. Likewise, Guet et al. [39] built on the HEM of a
multicore system to derive probabilistic WCET estimates.
Griffin et al. [40] derived a method to select the HEM with
highest contribution to software timing and predict execution
time under unseen configurations.

More recently, information from HEMs has been exploited
as the cornerstone of industrial-quality approaches [16], [41]
for providing the necessary evidence for supporting the certi-
fication of multicore CES, in conformance with the require-
ments from domain-specific certification authorities [42].

Several works in the mainstream (high-performance)
domain reason on the sources of variability in HEM values
when executing several times the same piece of software. This
covers from the operating system noise [43], application vari-
ability [44], [45], and the particular HEM-reading library, to
the complexity of the hardware [46]. For instance, [43] focuses
on the cycle count HEM and shows that its variability is often
related to the executable layout and operating system issues.
Also, at software level, [46] assesses the accuracy of various

high-level counter APIs with focus on cycle count and total
retired instruction HEMs. In our work, we use no operating
system and access directly, with no library, the HEMs (via
the PMCs) so they are not subject to software-induced vari-
ability. Neill et al. [45] focused on task-parallel programs in
high-performance environments with highly dynamic execu-
tion conditions, including dynamic task scheduling, that cause
tasks to execute in different orders, and in different cores
across executions. Authors propose techniques to determine
which HEM readings belong to each task and hence, combine
them to derive all HEMs for a task. Interestingly, the reading
of each group of nP HEMs is performed once, so authors do
not assess the impact of variability in HEM readings due to
hardware and software related variability. We, instead, focus
in much more predictable environments, as needed for CES
and consider the variability of HEM readings.

HEM sampling or multiplexing consists in time-sharing
the PMCs over a set of HEMs: at each interval boundary,
whose duration is a configuration parameter, the PMCs are
reprogrammed to read a different set of HEMs. HEM sam-
pling is, for instance, adopted by the Linux kernel’s perf
event subsystem. The potential inaccuracies introduced by the
interpolation made by sampling techniques have been stud-
ied elsewhere [47], [48]. In this article, we do not perform
any multiplexing of HEMs as it causes having phases of the
program in which particular HEMs are not read, resorting to
interpolation methods. Instead, HRM builds upon HEM values
from the observation of the full program execution, without
any kind of interpolation.

At hardware level, other works [27] focus on specific
HEMs (e.g., retired instructions, branches, and loads/stores)
and develop low-level hardware hypotheses on the reasons
behind some of these HEMs suffering from various forms of
under and over count. The authors do several recommendations
on the hardware design to reduce the observed variability. Our
goal, instead, is managing at software level HEM variability
and limitations to read HEMs on existing boards (e.g., NXP
T2080).

Incomplete sets of data have been considered with MC
methods [32], [33]. There are fundamental differences between
HRM and MC. HRM aims at merging only observed data, with
no assumption on the distribution of the input data to merge.
Conversely, 1) MC requires input data be a random matrix,
where values in all rows and columns belong to one measure
with its own distribution for each value, which does not hold
for the problem at hand (e.g., the outcome of a HEM mea-
sure is a column, thus with its own distribution) and 2) MC
aims at producing synthetic data to complete missing data, thus
bringing risks due to inferring the distribution of real data to
produce new data, which may match some characteristics of
real input data but miss others. In fact, since input data (HEM
values) do not match requirement 1), and the fraction of miss-
ing values is large (np observed values out of nh HEMs, where
np << nh), MC populates the data array with values whose
mean and standard deviation differs drastically from those for
real (observed) data. Overall, MC does not fit the needs of the
problem at hand by construction since its prerequisites are not
met.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

VILARDELL et al.: HRM: MERGING HEMs FOR IMPROVED TIMING ANALYSIS OF COMPLEX MPSoCs 3673

VII. CONCLUSION

Measurement-based timing analysis methods increasingly
build on HEMs to measure and estimate the timing behavior of
time-critical applications running on MPSoCs. Unfortunately,
in complex MPSoCs HEM values are subject to some unavoid-
able noise, and they can only be read in small subsets, thus
allowing end users only to collect partial snapshots (i.e.,
including only a subset of HEMs) subject to different and
unknown noise. Therefore, end users address the challenge
of combining all HEM values, as a naive merging could
lead to inconsistent joint values. This article presents HRM,
a flexible method to merge HEM values across runs that
allows preserving precisely their correlation with timing and
preserving, to a good extent, their joint correlation. HRM
achieves its goals by building on 1) nonparametric statistics,
which do not pose any constraint on the distributions observed
for different HEMs in the T2080 and 2) the use of an anchor
HEM to relate measurements from different HEMs. Our eval-
uation on a complex MPSoC—the NXP T2080—targeting
commercial avionics systems validates HRM, showing that it
outperforms other approaches to merge HEM values.

REFERENCES

[1] (2020). Xilinx. [Online]. Available: https://www.nvidia.com/en-us/self-
driving-cars/drive-platform/hardware/

[2] Xilinx. (2019). Rockwell Collins Uses Zynq UltraScale+ RFSoC Devices
in Revolutionizing How Arrays are Produced and Fielded: Powered
by Xilinx. [Online]. Available: https://www.xilinx.com/video/corporate/
rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.html

[3] S. Grigorescu et al., “A survey of deep learning techniques for
autonomous driving,” 2019. [Online]. Available: arXiv.abs/1910.07738.

[4] R. Wilhelm and J. Reineke, “Embedded systems: Many cores—many
problems,” in Proc. SIES, 2012, pp. 469–485.

[5] J. Reineke, “Challenges for timing analysis of multi-core architectures,”
in Proc. Workshop Found. Pract. Aspects Resource Anal., 2017, pp. 4–5.

[6] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-core
architectures,” in Proc. RTAS, 2013, pp. 45–54.

[7] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna, “Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems,” in Proc. IEEE RTAS, 2019,
pp. 1–14.

[8] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software
memory partition approach for eliminating bank-level interference in
multicore systems,” in Proc. PACT, 2012, pp. 367–376.

[9] H. Yun et al., “PALLOC: DRAM bank-aware memory allocator for
performance isolation on multicore platforms,” in Proc. RTAS, 2014,
pp. 155–166.

[10] X. Pan and F. Mueller, “Controller-aware memory coloring for multicore
real-time systems,” in Proc. ACM SAC, 2018, pp. 584–592.

[11] N. Suzuki et al., “Coordinated bank and cache coloring for temporal
protection of memory accesses,” in Proc. CSE, 2013, pp. 685–692.

[12] R. Pellizzoni et al., “A predictable execution model for cots-based
embedded systems,” in Proc. RTAS, 2011, pp. 269–279.

[13] A. Biondi and M. D. Natale, “Achieving predictable multicore execution
of automotive applications using the LET paradigm,” in Proc. RTAS,
2018, pp. 240–250.

[14] DDC-I. (2020). Patent Details for Managing Cache. [Online]. Available:
https://www.ddci.com/manage_cache_patent/

[15] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in Proc. RTAS, 2016,
pp. 161–172.

[16] D. Radack et al., Civil Certification of Multi-core Processing Systems in
Commercial Avionics, Rockwell Collins, Cedar Rapids, IA, USA, 2018.

[17] B. Dreyer, C. Hochberger, A. Lange, S. Wegener, and A. Weiss,
“Continuous non-intrusive hybrid WCET estimation using waypoint
graphs,” in WCET workshop, 2016, pp. 1–11.

[18] A. Betts, N. Merriam, and G. Bernat, “Hybrid measurement-based
WCET analysis at the source level using object-level traces,” in Proc.
WCET Workshop, 2010, pp. 54–63.

[19] K. Schmidtet al., Non-Intrusive Tracing at First Instruction, SAE Int.,
Washington, DC, USA, Apr. 2015.

[20] J. Jalle, J. Abella, E. Quiñones, L. Fossati, M. Zulianello, and
F. J. Cazorla, “AHRB: A high-performance time-composable AMBA
AHB bus,” in Proc. RTAS, 2014, pp. 225–236.

[21] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive WCET analysis lever-
aging runtime resource capacity enforcement,” in Proc. ECRTS, 2014,
pp. 109–118.

[22] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms,” in RTAS, 2013, pp. 55–64.

[23] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele,
“Worst case delay analysis for memory interference in multicore
systems,” in Proc. Design Autom. Test Europe (DATE), 2010,
pp. 741–746.

[24] D. Dasari, B. Andersson, V. Nélis, S. M. Petters, A. Easwaran, and
J. Lee, “Response time analysis of cots-based multicores considering
the contention on the shared memory bus,” in Proc. TrustCom, 2011,
pp. 1068–1075.

[25] QorIQ–T2080 and T2081 Multicore Communications Processors, NXP,
Eindhoven, The Netherlands, 2010.

[26] QorIQ T2080 Reference Manual, Freescale Semicond., Austin, TX,
USA, 2016.

[27] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and over-
count on modern hardware performance counter implementations,” in
Proc. ISPASS, 2013, pp. 215–224.

[28] ARM Architecture Reference Manual. Armv8, for Armv8-A architecture
profile, Freescale Semicond., Austin, TX, USA, Jul. 2020.

[29] AURIX—TC29x B-Step 32-Bit Single-Chip Microcontroller—User’s
Manual V1.3 2014–12, Infineon, Neubiberg, Germany, 2019.

[30] R. Hyndman and Y. Fan, “Sample quantiles in statistical packages,”
Amer. Stat., vol. 50, no. 4, pp. 361–365, 1996.

[31] D. Freedman et al., Statistics: Fourth International Student Edition.
London, U.K.: W.W. Norton & Company, 2007.

[32] B. Recht, “A simpler approach to matrix completion,” J. Mach. Learn.
Res., vol. 12, pp. 3413–3430, Dec. 2011.

[33] T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh, “Matrix completion
and low-rank SVD via fast alternating least squares,” J. Mach. Learn.
Res., vol. 16, no. 1, pp. 3367–3402, Jan. 2015.

[34] Freescale Semicondutor. (2014). e6500 Core Reference Manual.
[Online]. Available: https://www.nxp.com/docs/en/reference-
manual/E6500RM.pdf

[35] R. A. Fisher, “XV—The correlation between relatives on the supposition
of mendelian inheritance,” Trans. Roy. Soc. Edinburgh, vol. 52, no. 2,
pp. 399–433, 1919.

[36] G. M. Ljung and G. E. P. Box, “On a measure of lack of fit in time
series models,” Biometrika, vol. 65, no. 2, pp. 297–303, Aug. 1978.

[37] A. C. Davison and D. V. Hinkley, Bootstrap Methods and
their Application, (Cambridge Series in Statistical and Probabilistic
Mathematics). Cambridge, U.K.: Cambridge Univ. Press, 1997.

[38] E. Díaz, E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla,
“Modelling multicore contention on the Aurix TC27X,” in Proc. DAC,
2018, pp. 1–6.

[39] F. Guet, L. Santinelli, and J. Morio, “Probabilistic analysis of cache
memories and cache memories impacts on multi-core embedded
systems,” in Proc. SIES, 2016, pp. 131–140.

[40] D. Griffin, B. Lesage, I. Bate, F. Soboczenski, and R. I. Davis, “Forecast-
based interference: Modelling multicore interference from observable
factors,” in Proc. RTNS, 2017, pp. 198–207.

[41] S. H. VanderLeest and C. Evripidou, An Approach to Verification of
Interference Concerns for Multicore Systems (CAST-32A), SAE Int.,
Warrendale, PA, USA, 2020.

[42] CAST-32A Multi-Core Processors, Fed. Aviation Admin., Washington,
DC, USA, 2016.

[43] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong!” in Proc. ASPLOS,
2009, pp. 265–276.

[44] A. R. Alameldeen and D. A. Wood, “Variability in architectural simu-
lations of multi-threaded workloads,” in Proc. HPCA, 2003, pp. 7–18.

[45] R. Neill, A. Drebes, and A. Pop, “Fuse: Accurate multiplexing of hard-
ware performance counters across executions,” ACM Trans. Archit. Code
Optim., vol. 14, no. 4, pp. 1–26, 2017.

[46] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in Proc. ISPASS, 2009, pp. 23–32.

[47] R. V. Lim, “Computationally efficient multiplexing of events on hard-
ware counters,” in Proc. Linux Symp., 2014, pp. 1–2.

[48] H. Xu, Q. Wang, S. Song, L. K. John, and X. Liu, “Can we trust
profiling results? Understanding and fixing the inaccuracy in mod-
ern profilers,” in Proc. ACM Int. Conf. Supercomput. (ICS), 2019,
pp. 284–295.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 24,2021 at 14:32:32 UTC from IEEE Xplore. Restrictions apply.

