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ARITHMETIC INVARIANTS FROM SATO–TATE MOMENTS

EDGAR COSTA, FRANCESC FITÉ, AND ANDREW V. SUTHERLAND

Abstract. We give some arithmetic-geometric interpretations of the mo-
ments M2[a1], M1[a2], and M1[s2] of the Sato–Tate group of an abelian variety
A defined over a number field by relating them to the ranks of the endomor-
phism ring and Néron–Severi group of A.

Let A be an abelian variety of dimension g ≥ 1 defined over a number field k.
For a rational prime ℓ, let

ρA,ℓ : Gk → Aut(Vℓ(A))

denote the ℓ-adic representation attached to A given by the action of the absolute
Galois group of Gk on the rational Tate module of A. Let Gℓ denote the Zariski
closure of the image of ρℓ,A, viewed as a subgroup scheme of GSp2g, let G1

ℓ denote
the kernel of the restriction to Gℓ of the similitude character, and fix an embedding
ι of Qℓ into C. The Sato–Tate group ST(A) of A is a maximal compact subgroup of
the C-points of the base change G1

ℓ ×Qℓ,ιC (see [FKRS12, §2] and [Ser12, Chap. 8]).
Throughout this note we shall assume that the algebraic Sato–Tate conjecture

of Banaszak and Kedlaya [BK16, Conjecture 2.3] holds for A. This conjecture is
known, for example, when g ≤ 3 (see [BK16, Thm. 6.10]), or more generally,
whenever the Mumford–Tate conjecture holds for A (see [CC]). It predicts the
existence of an algebraic reductive group AST(A) defined over Q such that

AST(A) ×Q Qℓ ≃ G1
ℓ

for every prime ℓ. In this case ST(A) can be defined as a maximal compact subgroup
of the C-points of AST(A)×Q C, which depends neither on the choice of a prime ℓ
nor on the choice of an embedding ι.

By construction ST(A) comes equipped with a faithful self-dual representation

ρ : ST(A) → GL(V ),

where V is a C vector space of dimension 2g. We call ρ the standard representation
of ST(A) and use it to view ST(A) as a compact real Lie subgroup of USp(2g).

In this note we are interested in the following three virtual characters of ST(A):

a1 = Tr
(

V
)

, a2 = Tr
(

∧2 V
)

, s2 = a21 − 2a2 .

For a nonnegative integer j, define the jth moment of a virtual character ϕ as the
virtual multiplicity of the trivial representation in ϕj . In particular, we have

M2[a1] = dimC

(

V ⊗2
)ST(A)

,(1)

M1[a2] = dimC

(

∧2V
)ST(A)

,

M1[s2] = M2[a1]− 2M1[a2].
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Let End(A) denote the ring of endomorphisms of A (defined over k).

Proposition 1. We have

M2[a1] = rkZ(End(A)) .

Proof. By Faltings isogeny theorem [Fal83], we have

rkZ(End(A)) = dimQℓ
(End(A) ⊗Qℓ) = dimQℓ

(EndGℓ
(Vℓ(A))) .

Observing that homotheties centralize Vℓ(A) ⊗ Vℓ(A)
∨ and Weyl’s unitarian trick

allows us to pass from G1
ℓ to the maximal compact subgroup ST(A), we obtain

dimQℓ

(

(Vℓ(A)⊗Vℓ(A)
∨)Gℓ

)

= dimQℓ

(

(Vℓ(A)⊗Vℓ(A)
∨)G

1

ℓ

)

= dimC

(

(V⊗V ∨)ST(A)
)

.

The proposition follows from the definition of M2[a1] and the self-duality of V . �

Let NS(A) denote the Néron–Severi group of A.

Proposition 2. We have

M1[a2] = rkZ(NS(A)) .

Proof. As explained in [Tat65, §2] (and in [Tat66, Eq. (9)] using the same argument
over finite fields), Faltings isogeny theorem provides an isomorphism

NS(A)⊗Z Qℓ ≃
(

H2
ét(AQ,Qℓ)(1)

)Gk ≃
((

∧2 Vℓ(A)
)

(−1)
)Gℓ ,

where we have denoted Tate twists in the usual way and we have used the iso-
morphism Vℓ(A) ≃ H1

ét(AQ
,Qℓ)(1). Then, as in the proof of Proposition 1, we

have

rkZ(NS(A)) = dimQℓ

((

∧2 Vℓ(A)
)

(−1)
)G1

ℓ = dimC

(

∧2 V
)ST(A)

= M1[a2],

which completes the proof. �

In order to obtain a description of M[s2], we will first relate rkZ(End(A)) with
rkZ(NS(A)). There are three division algebras over R: the quaternions H, the
complex field C, and the real field R itself. By Wedderburn’s theorem we have

(2) End(A)⊗ R ≃
∏

i

Mti(R)×
∏

i

Mni
(H)×

∏

i

Mpi
(C) ,

for some nonnegative integers ti, ni, pi, where Mn denotes the n× n matrix ring.

Lemma 3. With the notation of equation (2), we have

rkZ(End(A)) − 2 · rkZ(NS(A)) = 2
∑

i

ni −
∑

i

ti .

In particular, we have the following inequality

(3) 2 · rkZ(NS(A)) − g ≤ rkZ(End(A)) ≤ 2 · rkZ(NS(A)) + g .

Proof. Let † denote the Rosati involution of End(A)⊗R. As explained in [Mum70,
p. 190], we have rkZ(NS(A)) = dimR((End(A) ⊗ R)†). For the first part of the
lemma, it thus suffices to prove

(4) dimR(End(A)⊗ R)− 2 · dimR

(

(End(A)⊗ R)†
)

= 2
∑

i

ni −
∑

i

ti .

We say that an abelian variety defined over k is isotypic if it is isogenous (over k)
to the power of a simple abelian variety. Since both the left-hand and right-hand



ARITHMETIC INVARIANTS FROM SATO–TATE MOMENTS 3

sides of (4) are additive in the isotypic components of A, we may reduce to the case
that A is isotypic. We thus may assume that A is the rth power of a simple abelian
variety B. By Albert’s classification of division algebras with a positive involution
[Mum70, Thm. 2, §21], there are four possibilities for End(A)⊗Z R, namely

(I) Mr(R
e) , (II) Mr(M2(R)

e) , (III) Mr(H
e) , (IV) Mr(Md(C)

e) ,

where e and d are nonnegative integers. The action of the Rosati involution † on
End(A) ⊗Z R is also described in [Mum70, Thm. 2, §21], and the dimension of its
fixed subspace can be easily read from the parameter η listed on [Mum70, Table
on p. 202]. The first part of the lemma then follows from the computations listed
in Table 1.

For the second part of the lemma we need to show that
∣

∣

∣

∣

∣

2
∑

i

ni −
∑

i

ti

∣

∣

∣

∣

∣

≤ g.

This is immediate from Table 1 once we take into account that e ≤ dim(B) for type
(I), and 2e ≤ dim(B) for types (II) and (III) (see [Mum70, Table on p. 202]). �

Table 1. R-algebra dimensions for isotypic A by Albert type.

Type dimR(End(A)⊗ R) dimR

(

(End(A)⊗ R)†
)

2
∑

i ni −
∑

i ti

(I) er2 er(r + 1)/2 −er

(II) 4er2 e(r + 2r2) −2er

(III) 4er2 e(−r + 2r2) 2er

(IV) 2er2d2 er2d2 0

As an immediate consequence of Proposition 1, Proposition 2, and Lemma 3, we
obtain the following corollary.

Corollary 4. With the notation of equation (2), we have

M1[s2] = 2
∑

i

ni −
∑

i

ti .

Remark 5. The moment M1[s2] can also be interpreted as a Frobenius–Schur in-
dicator, which allows us to give an alternative proof of (4), conditional on the
Mumford–Tate conjecture, that does not make use of Albert’s classification. Recall
that ρ : ST(A) → GL(V ) denotes the standard representation of ST(A) and let
Ψ2(ρ) be the central function defined as Ψ2(ρ)(g) = ρ(g2) for every g ∈ ST(A);
note that s2 is simply TrΨ2(ρ). Thus the moment M1[s2] is the Frobenius–Schur
indicator µ(ρ) of the standard representation ρ, which is just the multiplicity of
the trivial representation in Ψ2(ρ). Inequality (4) simply asserts that the trivial
bound |µ(ρ)| ≤ 2g can be improved to the sharper bound |µ(ρ)| ≤ g. Recall that
the Frobenius–Schur indicator of an irreducible representation can only take the
values 1, −1, and 0 depending on whether the representation is realizable over R,
has real trace but it is not realizable over R, or has trace taking some value in
C \ R, respectively (see [Ser77, p. 108]). To obtain the sharper bound, it suffices
to show that any irreducible constituent σ of the standard representation ρ having
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real trace must have dimension at least 2. This follows from our assumption that
the Mumford–Tate conjecture holds for A.

The results in this note explain, in particular, certain redundancies in Table 8
of [FKRS12] that Seoyoung Kim used to prove Proposition 1 in the case where A
is an abelian surface [Kim, Proof of Thm. 3.4].
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