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Abstract Angiogenesis is the formation of new blood vessels from pre-existing ones
in response to chemical signals secreted by, for example, a wound or a tumour. In
this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which
processes that include proliferation and cell movement are considered as stochastic
events. By studying the dependence of the model on the lattice spacing and the number
of cells involved, we are able to derive the deterministic continuum limit of our equa-
tions and compare it to similar existing models of angiogenesis. We further identify
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conditions under which the use of continuum models is justified, and others for which
stochastic or discrete effects dominate. We also compare different stochastic models
for the movement of endothelial tip cells which have the same macroscopic, deter-
ministic behaviour, but lead to markedly different behaviour in terms of production of
new vessel cells.

Keywords Angiogenesis · Stochastic models · Master equation · Mesoscopic
models · Reaction–diffusion system

Mathematics Subject Classification (2000) 92C17 Cell movement (chemotaxis,
etc.) · 60J70 Applications of Brownian motions · 35Q92 PDEs in connection with
biology and other natural sciences

1 Introduction

Continuum models are widespread in biology, where their use, as in other sciences,
is typically justified when the length scale of the problem of interest is considerably
larger than the length scale of the underlying microscopic elements of the model, and
when the averaged microscopic elements form well defined, continuous functions on
the macroscale. For example, when studying the invasion of a tumour, which contains
billions of cells, one may justify modelling the tumour in terms of a macroscopic, con-
tinuously varying cell density function (see the reviews Moreira and Deutsch 2002;
Araujo and McElwain 2004; Roose et al. 2007; Byrne 2010). Typically, cell prolif-
eration and death rates depend on nutrients such as oxygen, as well as signalling
molecules, and these are typically modelled as continuous concentrations, evolving
according to partial differential equations (PDEs) of reaction–diffusion type.

A hallmark of cancer is its ability to stimulate angiogenesis, which is the forma-
tion of new blood vessels from pre-existing ones (Folkman 1995; Carmeliet and Jain
2000; Hanahan and Weinberg 2000, 2011). If the tumour cannot incorporate existing
vasculature, as well as growing new vessels, the size of the tumour would be limited
by the diffusion range of nutrients. The diffusion range of oxygen is about 100 µm to
several mm (Folkman 1990), restricting the avascular tumour size to be of the order
of a few millimetres. Due to its importance in tumour growth, targeting angiogenesis
is an active area of cancer research. The initial aim was to prevent angiogenesis, and
hence reduce the delivery of nutrients and thus stop the growth of the tumour (Folk-
man 1971). Even though a number of anti-angiogenic molecules have been identified,
treatment with only these molecules does not necessarily improve tumour prognosis,
and may even lead to a worse prognosis by selecting for more aggressive phenotypes
(Norden et al. 2009; Ebos and Kerbel 2011). Therapeutic effects have, however, been
observed when anti-angiogenic compounds are combined with other treatments, such
as chemotherapy. In such situations, the angiogenic inhibitors act to transiently nor-
malise the notoriously leaky tumour vasculature and thereby to improve the delivery
of blood-borne drugs to the tumour (Jain 2005; Goel et al. 2011; Potente et al. 2011;
Carmeliet and Jain 2011).

In order to understand angiogenesis and its interaction with drugs, huge efforts have
been undertaken by the biological and medical community in recent decades (see the
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(a) (b)

Fig. 1 A tumour acts as a source for an angiogenic factor (AF) on the left boundary (x = 0), leading to tip
migration from a parent vessel on the right boundary (x = 1) to the left and proliferation of tip and vessel
cells. These profiles were obtained by solving the partial differential equations (45) numerically using the
parameter values stated in Sect. 5 and based on Byrne and Chaplain (1995); Mantzaris et al. (2004). a
Spatial tip profile evolving in time, b spatial vessel profile evolving in time

reviews Risau 1997; Carmeliet 2000; Potente et al. 2011). Angiogenesis is initiated
typically by hypoxic cells, which secrete a range of angiogenic factors (AFs) such
as vascular endothelial growth factor (VEGF) (Carmeliet and Jain 2011). These AFs
diffuse through the tissue and stimulate endothelial cells to become migratory tip cells.
These tip cells secrete proteases which break down the basement membrane enabling
them to migrate via chemotaxis up spatial gradients of AFs. Stalk cells located behind
the tip cells proliferate. Once tip cells encounter other tip cells or a vessel, loops can
form via a process called anastomosis. The stalk cells can then form lumen through
which blood may flow. The tip and stalk cells then mature, which is itself a complex
process, involving other vessel cells such as pericytes and smooth vessel cells.

To assist in understanding the complexities of angiogenesis, and to predict the
growth of the vasculature and the impact of changes of external conditions, such as the
growth of a tumour or the application of drugs, a large number of mathematical models
of angiogenesis have been developed (see the reviews by Chaplain 2000; Mantzaris et
al. 2004; Chaplain et al. 2006; Peirce 2008). Early models describe the evolution of tip
cell densities, proliferating stalk or vessel cells and concentrations of AFs by systems
of coupled PDEs (Balding and McElwain 1985; Chaplain and Stuart 1993; Byrne
and Chaplain 1995), and were motivated by similar models describing the growth
of fungal networks (Edelstein 1982). The tip cells evolve via a reaction-advection-
diffusion equation, the advection term modelling the chemotactic migration of the
tip cells up the gradient of the AF. The evolution of the stalk or vessel cell densities
is driven by a term proportional to the flux of tip cells, a phenomenon termed the
“snail-trail”. The typical behaviour of such a snail-trail model (Byrne and Chaplain
1995), is shown in Fig. 1, where angiogenesis in a corneal assay was modelled. In
these assays, a tumour is implanted into the cornea of an animal such as a rabbit or a
mouse. Due to the transparency of the cornea, the growing blood vessels can hence be
easily observed. The tumour in this model is considered as a source for an AF on the
left boundary, and a parent vessel acts as a source for tip and vessel cells at the right

123



488 F. Spill et al.

boundary. Figure 1a shows tips migrating with increasing density towards the tumour.
Vascularisation occurs behind the evolving tips, as shown in Fig. 1b.

Whereas PDE models treat populations of cells as continua, individual-based mod-
els distinguish single cells. In Stokes and Lauffenburger (1991), the movement of
an individual tip cell was modelled by a stochastic differential equation (SDE),
with a deterministic part modelling chemotaxis, and a stochastic part modelling ran-
dom motion. Other examples of stochastic models of angiogenesis can be found in
Plank and Sleeman (2003, 2004), Capasso and Morale (2009), Das et al. (2010).
In Anderson and Chaplain (1998), both deterministic continuum and stochastic dis-
crete models of angiogenesis were studied (see also Chaplain 2000). The authors
discretised a continuum model to obtain a stochastic model of cell movement on a
lattice.

Other approaches that have been used to model angiogenesis include cellular Potts
models, where individual cells occupy subdomains on a regular lattice (Bauer et al.
2007), phase-field models (Travasso et al. 2011), models with mechanical interactions
(Holmes and Sleeman 2000; Tosin et al. 2006) and models including further biochem-
ical effects (Sleeman and Levine 2001; Levine et al. 2001a,b; Mac Gabhann and Popel
2004; Mac Gabhann et al. 2006; Qutub and Mac Gabhann 2009; Jackson and Zheng
2010). Some models of angiogenesis couple angiogenesis with tumour growth (Bre-
ward et al. 2003; Orme and Chaplain 1996; Chaplain 1996; Hahnfeldt et al. 1999;
Alarcón et al. 2005; Owen et al. 2009; Macklin et al. 2009; Frieboes et al. 2010; Per-
fahl et al. 2011). In such models, the tumour can grow and release AFs, which, in turn,
induce angiogenesis. Models which couple tumour growth with angiogenesis can then
be used to investigate treatment strategies (Sachs et al. 2001; McDougall et al. 2002,
2006; d’Onofrio and Gandolfi 1999; Billy et al. 2009; Jackson and Byrne 2000).

With such a variety of approaches available to model angiogenesis, it may be dif-
ficult to know which one to choose. While a multiscale model may account for many
biological effects, it may also contain many unknown parameters, and be computa-
tionally expensive. In practice, in a stochastic model, individual vessels might grow
differently when an experiment or simulation is repeated. Even so, the resulting vascu-
latures might yield similar distributions of nutrients. The question is then whether one
needs to know when and where a new blood vessel forms. A simple continuum model,
which predicts how much vasculature forms after angiogenesis is induced, might yield
sufficient information to determine the resulting oxygen distribution. One problem is
that it is not easy to relate continuum models and complex multiscale models. One can
simulate both models and compare the resulting vasculatures. However, for a detailed
mathematical analysis, it is necessary to know how to relate the parameters that appear
in each model.

In this paper, we develop a stochastic, lattice-based model of angiogenesis. As in
Anderson and Chaplain (1998), we can relate our model to a continuum one and in
this way compare simulations of the continuum and stochastic models, using directly
related parameters. Hence, we can study situations in which the continuum model is
a good approximation of the stochastic model, and when stochastic or discrete effects
become important. In contrast to Anderson and Chaplain (1998), we state explicit
expressions for terms modelling anastomosis, sprouting and vessel regression, both in
the stochastic and the continuum model. To include these effects in a stochastic model,
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we chose a mesoscopic compartment approach for our model, similar to compartment
models used to model diffusing and reacting chemicals (see the review by Erban et
al. 2007). Events such as the emergence of a new tip cell, or the migration of a tip
cell, are based on individual cells. However, within each box of our lattice, we count
only the number of cells of a certain type. This makes it easier to derive explicitly
the deterministic continuum limit of the stochastic model. Furthermore, by focusing
on tip migration alone, we demonstrate that different stochastic lattice models can
generate the same continuum equations. However, the behaviour of the associated
vessel densities may be dependent on the underlying stochastic model. Finally, we
note that when using lattice-based models, the choice of the lattice spacing appears as
a model parameter, but is not related to any naturally measurable parameter. Hence, it
is important to understand how the model scales with the lattice constant. Furthermore,
understanding this scaling behaviour is also crucial in taking a consistent continuum
limit. For these reasons, we study the scaling of the model with the lattice constant in
detail.

We begin the paper by presenting a mesoscopic, stochastic lattice model in Sect. 2.
In the associated subsections, we consider the different effects modelled, such as
sprouting of a new vessel, tip cell migration, anastomosis or vessel regression. When
considering cell migration, we discuss several possible modelling choices. In Sect. 3
we derive the mean field equations of the stochastic model of Sect. 2, and study
the scaling behaviour and the continuum limit of the model. In particular, we show
that existing PDE models of angiogenesis can only be recovered from the stochastic
model when a novel approach to random cell movement, as discussed in Sect. 2.1, is
employed. In Sect. 4, we compare different approaches to modelling tip cell movement
and the production of new vessels. We also compare these stochastic models to their
continuum counterparts, and investigate the dependence of the models on the lattice
constant. Then, in Sect. 5, the full stochastic model is compared to existing PDE
models as derived in Balding and McElwain (1985); Byrne and Chaplain (1995).

2 Mesoscopic stochastic model

In this section, we develop a stochastic, lattice-based model of angiogenesis, for-
mulated on the mesoscale. We distinguish between two inter-related types of cells,
static vessel cells and motile tip cells. When tip cells move, new static vessel cells
form behind them. New tips can sprout from existing vessels, and when tip cells
encounter another tip or a vessel, anastomosis can occur and the associated tips disap-
pear. Finally, static vessel cells can regress and are removed from the system. These
effects are incorporated into the model via different transition rates T , which influ-
ence the master equation that defines the time evolution of the probability density
function P for the distribution of tip and vessel cells. The transition rates can depend
on the concentration of an AF, whose evolution is determined by a reaction–diffusion
equation.

For simplicity, we formulate the model using a one-dimensional, Cartesian geom-
etry, decomposing the domain x ∈ [0, L] into kmax equally sized boxes of length h so
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Table 1 Transition rates
associated with angiogenesis
model

Process Transition rate

Tip migration and
vessel production

TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl
l = k ± 1

Tip birth due to sprouting TNk+1|Nk

Tip-vessel anastomosis TNk−1|Nk

Tip-tip anastomosis TNk−2|Nk

Vessel regression TRk−1|Rk

that kmax h = L .1 We denote by Nk and Rk the number of tip and vessel cells, respec-
tively, in box k. We assume that h is considerably larger than a typical cell size, so
that each box typically contains several cells. Furthermore, within each box, we only
count the number of cells of each type, and do not track the movement of individual
cells within a box. We remark that the generalisation of our model to higher spatial
dimensions is straightforward, see Appendix B.

The cell numbers Nk(t) and Rk(t) are stochastic processes whose evolution is
determined by the joint probability density function P = P({{N j }, {R j }}, t). Here,
{N j } = {N1, . . . , Nkmax } denotes the set of tip cell numbers in all boxes, and likewise
{R j } = {R1, . . . , Rkmax } for the vessel cells. We usually drop the t dependence in
Nk(t) and Rk(t), so that {{N j }, {R j }} specifies a state in our stochastic model, and
P({{N j }, {R j }}, t) is the probability that at time t the system is in this state. If we
assume that the system is Markovian, then the time evolution of the joint probability
density function is described by a master equation (see Van Kampen 1992), which can
be written in general form as

d

dt
P({{N j }, {R j }}, t) =

∑

{Nk },{Rk }

(
T{N j },{R j }|{Nk },{Rk } P({{Nk}, {Rk}}, t)

− T{Nk },{Rk }|{N j },{R j } P({{N j }, {R j }}, t)
)
. (1)

In (1) we sum over the entire state space, and T{Nk },{Rk }|{N j },{R j } denotes the tran-
sition rate from state {{N j }, {R j }} to a state {{Nk}, {Rk}}. Intuitively, this means that
if the system is in state {{N j }, {R j }} at a given time t , then T{Nk },{Rk }|{N j },{R j }dt is the
probability that the system switches to state {{Nk}, {Rk}} at time t + dt , where dt is
an infinitesimal time interval.

Equation (1) is the general form for a master equation with two spatially varying
species N and R. Our model of angiogenesis is formulated by specifying the non-zero
transition rates in Table 1, each of which represents a different biological process. The
precise functional form of these transition rates will be discussed below. For concision,
when specifying the transition rates, we state only those variables which are involved
in the transition. For example, a transition rate TNk+1|Nk , which describes the birth of

1 We choose the coordinates such that x = kh corresponds to the midpoint of box k. The precise location of
the box midpoint is not essential for the stochastic model, but subtleties arise when combining the stochastic
model with PDEs, see Sect. 2.2, and when choosing boundary conditions, see Appendix E.
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a tip in box k, is an abbreviation for

TNk+1|Nk = T{N1,...,Nk+1,...,Nkmax },{R1,...,Rkmax }|{N1,...,Nk ,...,Nkmax },{R1,...,Rkmax }.

The number of vessel cells Rl is unchanged by this process, as is the number of tip
cells in boxes k = 1, . . . , k − 1, k + 1, . . . , kmax . Hence, these indices are omitted
from the subscript of the transition rate.

Let f (N1, R1 . . . , Nk, Rk, . . . , Nkmax , Rkmax ) be an arbitrary function of the state
variable Rk, Nk . Then, we define the shift operators Eα

Nk
, Eα

Rk
as follows:

Eα
Nk

f (N1, R1, . . . , Nk, Rk, . . . , Nkmax , Rkmax )

:= f (N1, R1 . . . , Nk + α, Rk, . . . , Nkmax , Rkmax ),

Eα
Rk

f (N1, R1 . . . , Nk, Rk, . . . , Nkmax , Rkmax )

:= f (N1, R1 . . . , Nk, Rk + α, . . . , Nkmax , Rkmax ). (2)

Hence, Eα
Nk

shifts Nk by α. For positive integers, we have Eα
Nk

= (E+1
Nk

)α , and

E−1
Nk

= (E+1
Nk

)−1 is the inverse operator.2 Substituting the transition rates specified in
Table 1 into the general form of the master equation (1), we arrive at the following
master equation for the angiogenesis model:

d P({{N j }, {R j }}, t)

dt

=
∑

k,l∈〈k〉

(
E+1

Nk
E−1

Nl
E−δR

Rk
− 1

)
TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl P

(tip cell movement)

+
∑

k

(
E−1

Nk
− 1

)
TNk+1|Nk P (sprouting)

+
∑

k

(
E+1

Nk
− 1

)
TNk−1|Nk P (tip-vessel anastomosis)

+
∑

k

(
E+2

Nk
− 1

)
TNk−2|Nk P (tip-tip anastomosis)

+
∑

k

(
E+1

Rk
− 1

)
TNk+1|Nk P (vessel regression), (3)

where we drop the arguments of P for concision. Expanding, for example, the last
term, we have

2 Note that there are subtleties involved with the space on which the operator acts. In this paper, we are
interested in functions depending on the number of cells in the boxes, which is clearly non-negative, so care
has to be taken when acting with E−1

Nk
on functions with Nk = 0.
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∑

k

(
E+1

Rk
− 1

)
TNk+1|Nk P(N1, . . . , Nk, . . . , Nkmax , R1, . . . , Rkmax )

=
∑

k

(
TNk |Nk−1 P(N1, . . . , Nk − 1, . . . , Nkmax , R1, . . . , Rkmax )

− TNk+1|Nk P(N1, . . . , Nk, . . . , Nkmax , R1, . . . , Rkmax )
)
, (4)

which is clearly of the form of the terms in (1).
In the transition rate which describes tip movement and the associated production

of new vessel cells, δR = δR(h) denotes the number of vessel cells produced behind a
moving tip. This depends on the choice of the precise definition of the transition rate
and on the lattice constant h in a way discussed in Sect. 3. We remark that tip birth,
anastomosis and vessel pruning are assumed to be local terms, increasing or decreasing
the cell number in a particular box. This requires the boxes to be reasonably large,
so boundary effects such as anastomosis between vessels in neighbouring boxes are
negligible. At the same time, h should not be too large. Otherwise the cells would not
be well mixed within a box, and we would need to account for the movement of a tip
within a single box. While this would not change the tip cell distribution, it could lead
to vessel production in a particular box.

The transition rates for sprouting and tip movement depend on a third model vari-
able, generic AF, whose concentration is denoted by c. A large number of AFs, includ-
ing VEGF, have been identified (Risau 1997), but, for simplicity, here we focus on a
single, generic chemical, c. As we typically have far more molecules of the AF in our
system than numbers of tip or vessel cells, the noise due to fluctuations in the chemi-
cal concentration is expected to be significantly smaller than that associated with the
movement, proliferation and death of tip and vessel cells. Hence, we will view the AF
as deterministic and continuous, c = c(x, t), where x is related to the box index k via
x = kh, so x ∈ [0, L].

In principle, the time dependence of c and, hence, the transition rates, imply the
appearance of additional terms in the master equation. However, these effects are
neglected since the timescale of changes in the AF are much shorter than the timescales
associated with changes in the blood vessels.3 Hence, the AF will be in a quasi-steady
state between any two events that occur in the stochastic model for the vessel cells. In
Appendix C, we discuss an alternative approach in which c is treated as a stochastic
variable.

In the subsections that follow we introduce functional forms for the transition rates
in Table 1. We start in Sect. 2.1 by discussing different approaches that can be used
to model the movement of the tip cells. Then, in Sects. 2.4, 2.5 and 2.6, we introduce

3 More precisely, in the model of a corneal assay discussed in Sect. 5 and modelled via PDEs in Byrne and
Chaplain (1995), the AF remains close to its steady state configuration and is only slightly influenced by
the growing vasculature. Thus, we can assume that the transition rates affecting the endothelial cells remain
constant between events associated with the stochastic model. This assumption would cease to hold if the
source of the AF were itself dynamic and would change on a similar or faster timescale than the timescale
of events affecting tip and vessel cells. For instance, we could include tumour cells as a new species in our
model, which would act as a source of AF. The tumour, and hence the resulting distribution of AF, could
change faster than the blood vessel dynamics, so we cannot assume any longer that the AF is in a steady
state between events affecting tip and vessel cells.
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(a) (b)

Fig. 2 A tip cell migrates from box k to box k + 1 leaving a trail of vessel cells in box k. a Before jump,
b after jump

transition rates that describe sprouting, anastomosis and regression. Throughout this
section we keep the lattice size h fixed. In Sect. 3 we derive scaling conditions for
the parameters in terms of the lattice size h, which allow us to take a continuum
limit.

2.1 Mechanisms of tip cell movement and sprout production

We now consider how to model tip cell movement. A key assumption is that new
vessel cells are produced behind tip cells along the path that each tip cell describes. A
similar assumption was made in earlier continuum models of angiogenesis (Balding
and McElwain 1985; Byrne and Chaplain 1995), where it was termed the “snail-
trail” approach. We will discuss the relationship between our stochastic model and
such continuum models in Sect. 3. For simplicity, in what follows we ignore vessel
maturation and blood flow.

Following Stokes and Lauffenburger (1991), Anderson and Chaplain (1998), Plank
and Sleeman (2003), we distinguish two principal mechanisms of tip cell movement:
undirected, random movement and directed movement associated with chemotaxis.
We will compare two approaches to modelling undirected random movement, both
of which yield the same behaviour for the tip cell density in the deterministic limit,
but yield different behaviour for the vessel density. The first approach is based on
a conventional random walk, similar to that used to model chemical diffusion (see
Erban et al. 2007), whereas the second one can be interpreted as a random walk with
crowding effects.

Chemotaxis is modelled as a biased random walk: the probability of tip cell move-
ment depends on the concentration of the chemoattractant in the boxes involved in the
movement, leading to a preferred direction for migration.

For each type of tip cell movement under consideration, the transition rate can be
written as

TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl ,

with l = k ± 1, and the processes may be depicted as in Fig. 2.
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When a tip cell moves from box k to box l = k±1, we assume that δR vessel cells are
produced in the outgoing box k. We remark that we could have equally assumed that
the new vessel cells were produced in the incoming box. For the types of movement
under discussion, it will not matter whether the vessels are located in the incoming,
outgoing or both boxes.

2.1.1 Random movement

We will now consider two approaches for modelling undirected movement, both of
which will lead to the diffusion equation in the macroscopic limit, as will be shown
in Sect. 3.2.

Case 1: The simplest approach to modelling random movement of tip cells is to
assume that the transition rates for the migration of a tip cell out of box k into any of
its nearest neighbour boxes is proportional to the number of tip cells in box k. This
means that the tip cells move independently of each other. Our principal modelling
assumption for vessel production is that vessel cells will be produced behind a moving
tip. This is analogous to the snail-trail approach used to develop continuum models
of angiogenesis (Balding and McElwain 1985; Byrne and Chaplain 1995). Let box l
be a nearest neighbour of box k, so l = k ± 1. Then the transition rate governing the
migration of a single tip cell from box k to box l, which also leads to the production
of a number δR of vessel cells in box k, is given by

T D
Nk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl

= D̃Nk . (5)

The transition rate is proportional to Nk , the number of tip cells in box k, the box
from which the cell migrates. D̃ is the coefficient of proportionality and has units
[D̃] = 1

time , so the transition rate also has units [T ] = 1
time . D̃ is assumed to depend

on the lattice constant h alone, and is otherwise assumed to be constant. In particular,
it does not depend on the cells, which means there is no interaction between the tip
cells with other cells. This assumption can easily be relaxed.

Case 2: Here we account for crowding effects, assuming that a tip cell in box k will
only move to a neighbouring box if the number of tip cells is higher in box k than in the
neighbouring box. One might argue that tip cells themselves are not the main obstacle
to movement but rather other parts of the tissue, such as normal tissue cells, cancerous
cells or extracellular matrix (ECM). The approach chosen here has the advantage
that the transition rate depends only on one species, namely the tip cells, and that
the ansatz for the transition rate we make below will lead to the same macroscopic
evolution equation for the tip cell densities as the ansatz in Case 1. As before, the
number of vessel cells produced during tip migration is denoted δR . However, the
scaling dependence on h is not assumed to be the same as for Case 1, and we shall
comment on this later. The transition rate is given by

T D
Nk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl

= D̃ (Nk − Nl)
+ , (6)
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where

(x)+ := max(x, 0).

We could reasonably take other positive, increasing functions of Nk − Nl , or, more
generally, positive functions of the two arguments Nk and Nl which increase with Nk

and decrease with Nl . Such monotonicity would imply that tip cells only compete
for space and, as such, ignores potentially cooperative behaviour, such as attractive
signalling between tip cells, in which case we would need also to allow for increasing
functions of Nl . The advantage of the current choice for transition rate (6) is that it
is piecewise linear and leads to the same mean field equation and continuum limit as
transition rate (5) (see Sect. 3.24).

2.2 Chemotaxis

Recall that chemotaxis is the directed movement of a cell in response to spatial gradi-
ents of a diffusible chemical. In the case of tip cells, an important chemoattractant is
VEGF (Carmeliet and Jain 2011). The simplest models of chemotaxis assume a linear
dependence of the transition rate on the spatial gradient of the chemoattractant. If the
chemical is discretised on the same lattice as the cells, then by gradient we mean the
difference in chemical concentrations between neighbouring lattice sites (see Stevens
and Othmer 1997; Hillen and Painter 2009 for reviews of chemotactic models). A
simple transition rate for chemotaxis is given by

T χ
Nk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl

= χ̃ Nk (cl − ck)
+, (7)

where ck is the AF concentration in box k. The chemotactic coefficient χ̃ depends on
the lattice constant h, and is assumed constant and non-negative (for a chemorepellent,
we would have χ̃ < 0). We remark that it is straightforward to consider more general
forms of χ̃ , for example, χ̃ = χ̃(N , R, c). Further, (7) is always non-negative, as
required for a transition rate.

So far, we have not specified how c itself evolves. It could be specified externally,
or, as part of the model, undergo random movement. As the number of molecules
of the AF is typically much larger than the number of tip cells, we expect stochastic
fluctuations in c will be much smaller than those associated with the tip cells. Hence,
we model the AF as a continuous and deterministic variable, with c = c(x, t) evolving
according to a reaction–diffusion equation of the form:

∂c

∂t
= Dc∇2c + g(N , R, c), (8)

4 We can interpret this model as a locally averaged version of Case 1: in Case 1, tip cells can also move
into a neighbouring box with a higher number of tip cells, but on average, more tip cells would move from
the box with the higher tip cell number to the one with lower number. In Case 2, only the net movement is
taken into account.
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where g(N , R, c) represents the net rate of production of c (g ≡ (sources) − (sinks)).
We shall discuss in Appendix C how to treat c as a stochastic variable.

There are several ways in which the concentration ck that appears in Eq. (7) and
varies discretely in space can be related to the continuous function c(x, t) obtained
by solving (8). If x = kh, then we can fix ck = c(kh, t). Alternatively, we could
sample ck at the midpoints, rather than the endpoints, of the discrete boxes. We could
also choose ck to be the average concentration in box k, ck = 1

h

∫
box c(x, t)dx . In

what follows, we assume c is smooth and varies slowly on the lengthscale h. Hence,
the different definitions of ck will be equivalent up to terms of higher order in h and,
without loss of generality, we define ck = c(kh, t), with kh being the midpoint of box
k. Likewise, when solving Eq. (8), tip and vessel cell numbers are interpreted locally
so that if x ∈ [k − h

2 , k + h
2 ), then the source and sink terms contributing at position x

are given by g(Nk, Rk, c(x, t)). This interpretation of ck is consistent with centering
the boxes associated with the stochastic model.

We have made explicit the dependence of c on the tip and vessel cells, as only these
cells are modelled explicitly in the current paper. In practice, the source could, for
instance, be a tumour. If tumour cells were modelled explicitly, then g would depend
on the tumour cells. In the simulations in Sect. 5 the source of AF is assumed to
be localised to the boundary of the domain x = 0 and the interior of the domain is
source-free. The function g will then only contain sink terms so that, for example, we
may consider

g(N , R, c)(x, t) = −λc − a1 H(c(x, t) − ĉ)
Nk(t)

h
c(x, t), (9)

where, as before, kh = x and H(x) represents the Heaviside step function (H(x) = 1
for x ≥ 0 and H(x) = 0 for x < 0). We assume that c is degraded at a constant rate λ

and that it binds irreversibly to tip cells with constant of proportionality a1 provided
that c > ĉ. Further motivation for this functional form for g is provided in Sect. 2.4.
We remark that other functional forms for g could straight-forwardly be implemented.

2.3 Combining random and directed movement

We will now consider a simple model of cell movement which combines undirected
random movement with chemotaxis. We treat these effects separately so that the
full model simply comprises two transition rates T D

Nk−1,Nl+1,Rk+δ D̃
R ,Rl |Nk ,Nl ,Rk ,Rl

and

T χ

Nk−1,Nl+1,Rk+δ
χ̃
R ,Rl |Nk ,Nl ,Rk ,Rl

, where T D is the transition rate for random motion

which is given by (5) for Case 1, and (6) for Case 2, and T χ denotes the transition
rate for chemotaxis, (7). We remark that we distinguish δ D̃

R and δ
χ̃
R , as they are, in gen-

eral, different. However, if δ D̃
R = δ

χ̃
R , then we could combine the two transition rates

into one (we will show in Sect. 3 that this situation arises for Case 2). The simplest
approach is to say that the total transition rate for a jump is given by

TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl = D̃ (Nk − Nl)
+ + χ̃ Nk (cl − ck)

+. (10)
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(a) (b)

Fig. 3 In response to the AF c, a new tip cell (T) emerges from an existing vessel. a Before sprouting, b
after sprouting

Here, we take the positive parts of the discrete gradients of c and N individually, so
there is no cancellation when the two terms oppose each other. Hence, a tip cell can
migrate down a strong gradient of c, as long as the discrete gradient of N also points
downwards.

Alternatively, we could combine the transition rates such that

TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl =
(

D̃(Nk − Nl) + χ̃ Nk(cl − ck)
)+

. (11)

In this case a jump occurs only when the combined random and chemotactic term
is positive. We shall see in Sect. 3.4 that transition rates (10) and (11) lead to slightly
different continuum models. This will clarify the sense in which chemotactic and
random (diffusive) fluxes can reinforce or oppose each other.

2.4 Sprouting

The probability of sprouting is assumed to depend on the local concentration of ck .
Such behaviour has been shown for VEGF (see Gerhardt et al. 2003). Sprouting from
an existing vessel in our model is depicted in Fig. 3. We suppose that, as the box size
of our model is larger than the size of a single cell, the newly formed tip cell is created
in the same box as that occupied by the vessel from which it sprouts. This means that
the transition rate has the structure TNk+1|Nk . The simplest ansatz for this transition
rate is that the rate is proportional to the number of vessel cells in box k and to the
concentration of the AF c. Alternatively, new tip cells may emerge from an existing
tip cell. Assuming such events are mediated by the same AF c, we can incorporate
this effect into transition rate TNk+1|Nk via a term proportional to the product Nkck .
Following Byrne and Chaplain (1995), we assume further that tip cell proliferation
only happens when c exceeds a threshold value, ĉ. Combining the above assumptions
we obtain the following expression for the transition rate:

TNk+1|Nk = ã0 Rkck + ã1 Nkck H(ck − ĉ). (12)

While in general the coefficients ã0 and ã1 may depend on the lattice scaling, we will
show in Sect. 3.5 that ã0 and ã1 are independent of h.
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(a) (b)

Fig. 4 A schematic diagram of anastomosis: when a tip cell fuses with a vessel, the tip cell disappears. a
Before anastomosis, b after anastomosis

2.5 Anastomosis

When a new vessel encounters another vessel, a new connected loop can form. This
process is called anastomosis and is depicted in Fig. 4. We view anastomosis as an
event which is localised in a specific box and whose probability of occurrence is
proportional to the number of tip cells and the number of vessel cells in that box. In
what follows, it will be convenient to assume that when anastomosis takes place, the
tip cell disappears from the system. The transition rate for anastomosis is then given
by

TNk−1|Nk = β̃1 Nk Rk, (13)

where β̃1 depends on the lattice constant h, as will be discussed in Sect. 3.5. Anas-
tomosis will also occur when two tip cells meet and the two sprouts behind them
connect. Such events are modelled by transition rates of the form

TNk−2|Nk = β̃2 Nk(Nk − 1). (14)

Since there will typically be more vessel cells in a given box than tip cells, we assume
that the probability of tip-tip anastomosis events is much smaller than tip-vessel events.
A small value of β̃2 would act as an additional sink term for tips and hence decrease
the total number of tips. However, in the absence of suitable experimental data and
given that tip-tip anastomosis seems typically less likely than tip-vessel anastomosis,
we simplify our model by setting β̃2 = 0 in what follows.

2.6 Vessel regression

There are two main reasons for vessel regression: Unperfused sprouts regress if they do
not anastomose within a fixed time period after they form. Secondly, perfused vessels
are pruned away if there is low shear-stress on their walls due to small blood flow
(Resnick et al. 2003). In our model, we do not take blood flow into account, so we
do not distinguish between perfused and unperfused vessels. Hence, both processes
lead to a loss of vessel cells, Rk . In general, vessel regression is a complex process
involving several AFs and interactions with other cell types such as pericytes and
smooth muscle cells (Holash et al. 1999). For simplicity, we model vessel regression
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by the transition rate
TRk−1|Rk = γ̃ Rk, (15)

where the positive constant γ̃ describes the rate of vessel regression. Since our model
does not take into account vessel length or the age of a new vessel sprout, for simplicity
we take γ̃ constant. Our modelling framework makes it easy to generalise the above
transition rate by including more complex functional forms for it.

3 Mean field equations, scaling and continuum limit

In this section, we derive the mean field equations for the mesoscopic stochastic models
developed in Sect. 2 and the scaling dependence of the model on the lattice constant
h, and subsequently take the continuum limit. We compare the resulting equations to
established continuum models of angiogenesis. The first step, finding the mean field
equations, amounts to determining the equations governing the time evolution of the
means 〈Nk〉 and 〈Rk〉 of our state variables Nk and Rk for k = 1, . . . , kmax . The means
are defined in the standard way as

〈Nk〉 =
∑

{N j },{R j }
Nk P({{N j }, {R j }}, t),

〈Rk〉 =
∑

{N j },{R j }
Rk P({{N j }, {R j }}, t).

(16)

Then, the time evolution of the mean values is given by

d 〈Nk〉
dt

=
∑

{N j },{R j }
Nk

d P({{N j }, {R j }}, t)

dt
,

d 〈Rk〉
dt

=
∑

{N j },{R j }
Rk

d P({{N j }, {R j }}, t)

dt
.

(17)

We then substitute in the expression for
d P({{N j },{R j }},t)

dt from Eq. (1). In general,
the transition rates entering the master equation are nonlinear. To obtain a closed
set of equations for the time evolution of the means, we also assume that the
mean field approximation is valid. This approximation consists of substituting for

moments arising in (17) the product of means. For example,
〈
N n1

k1
N n2

k2
Rn3

k3
Rn4

k4

〉
=

〈
Nk1

〉n1
〈
Nk2

〉n2
〈
Rk3

〉n3
〈
Rk4

〉n4 for positive integers n1, n2, n3 and n4. More rigorously,
we perform a system size expansion of our model using the method of Van Kampen
(1992), and obtain the mean field equations at the leading order of the expansion.
Note also that the means 〈Nk〉 and 〈Rk〉 depend explicitly on time through the prob-
ability density function P . Hence, these equations will form 2kmax coupled ordinary
differential equations (ODEs) for the variables 〈N1〉 , . . . ,

〈
Nkmax

〉
, 〈R1〉 , . . . ,

〈
Rkmax

〉
.

We now derive general expressions for the mean field equations and the continuum
limit, exploiting the general structure of the transition rates which appeared in the
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stochastic model of angiogenesis in Sect. 2, but which are not dependent on the specific
functional form of the transition rates. We write the mean field equations as

d 〈Nk〉
dt

= E Nk
M + E Nk

S + E Nk
A + E Nk

R ,

d 〈Rk〉
dt

= E Rk
M + E Rk

S + E Rk
A + E Rk

R ,

(18)

where the symbol E denotes a particular event, the superscript denotes the cell type
and box to which the particular event contributes, and the subscripts M, S, A and R
denote movement, sprouting, anastomosis and regression, respectively. The terms in
(18) are of the form

E Nk
M =

∑

{N j },{R j }

∑

l∈〈k〉
(TNl−1,Nk+1,Rl+δR ,Rk |Nl ,Nk ,Rl ,Rk

− TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl )P,

E Rk
M =

∑

{N j },{R j }

∑

l∈〈k〉
δRTNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl P,

E Nk
S =

∑

{N j },{R j }
TNk+1|Nk P, E Rk

S = 0, (19)

E Nk
A = −

∑

{N j },{R j }
TNk−1|Nk P, E Rk

A = 0,

E Nk
R = 0, E Rk

R = −
∑

{N j },{R j }
TRk−1|Rk P.

The derivation of these terms can be found in Appendix A. The structure does not
depend on the precise functional form of the transition rates, but only on how they affect
the state variables Nk, Rk . The precise functional dependence will be discussed below.

3.1 Scaling and continuum limit

From the mean field equations for the discretised mean fields 〈Nk〉 and 〈Rk〉 for
k = 1, . . . , kmax , we will now take the continuum limit. As before, we perform all
calculations in spatial dimension d = 1, so we transform the discrete box index k to
a new variable x ∈ [0, L], with L = hkmax . We can think of the continuum limit as
taking the limits h → 0, kmax → ∞, with L kept fixed. In order to do this, we need
to determine how our model parameters scale with h.

We now discuss and compare the continuum limit for the various parts of the model
discussed in Sect. 2. The continuum variables are the tip cell density n(x, t), the vessel
cell density ρ(x, t) and the concentration of AF c(x, t). Note that the AF c was already
treated as continuous in Sect. 2. Hence, in the continuum limit of the stochastic model,
c, n and ρ are all deterministic, continuum variables whose evolution is governed by
PDEs. To translate between tip and vessel cell densities in a continuum model, and
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cell numbers, we define

n(x, t) = 〈Nk(t)〉
h

, ρ(x, t) = 〈Rk(t)〉
h

,

where x = kh corresponds to the midpoint of box k. Note that in dimensions d > 1,
we should replace 1

h by the inverse of the volume of a d-dimensional hypercube, 1
hd .

We write the continuum equations in the general form

∂n(x, t)

∂t
= εn

M + εn
S + εn

A + εn
R,

∂ρ(x, t)

∂t
= ε

ρ
M + ε

ρ
S + ε

ρ
A + ε

ρ
R,

(20)

with the event terms ε corresponding to the event terms in the discrete mean field
equations (18). In the following subsection, we will go through the individual model
components, as we did in Sect. 2, and discuss for each case the mean field equations,
the scaling behaviour and the continuum limit.

3.2 Random movement

We contrast the mean field equations for the models based on the different transition
rates describing the movement of tip cells and subsequent production of vessel cells.
We begin by discussing the rates given by (5) and (6), both of which describe random
movement.

Case 1: To derive the contribution to the mean field equations from the model with
transition rate (5), TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl = D̃Nk , we simply substitute this
transition rate into (19) and obtain:

E Nk
M = D̃ (〈Nk+1〉 + 〈Nk−1〉 − 2 〈Nk〉) , E Rk

M = bR
1 〈Nk〉 . (21)

These equations are valid for k = 2, . . . , kmax −1, and we introduced bR
1 = 2δR D̃.

To perform the continuum limit h → 0, we need to determine how the parameters
D̃, δR and bR

1 scale with h. We start by investigating the number of vessel cells δR

produced behind a moving tip. If tip cells move linearly, then a jump would represent a
path of average length of the lattice spacing h. Hence, if μ denotes the typical diameter
of a vessel cell, during a jump, δR = h

μ
cells would be produced. However, our math-

ematical model defined by (5) is a mesoscopic model of tip cells following Brownian
motion. It is a well known fact that the fractal dimension of the path of Brownian
motion in dimensions d = 2 or higher is 2 (see Falconer 2007). As the vessels are
produced behind the moving tip, the vessel length and hence the number of vessel cells
produced should have the same scaling behaviour as the tip path length. This implies
we have δR ∝ h2. The constant of proportionality is the typical vessel cell size μ, so
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δR = h2

μ2 .

Similarly, Brownian motion implies a scaling of D̃ ∝ 1
h2 , so we set

D̃ = D

h2 , (22)

where D is the macroscopic diffusion coefficient. This implies that the constant
bR

1 = 2D̃δR = 2D
μ2 does not depend on h.

The continuum limit of (21) gives contributions to (20) as follows:

εn
M = D�n, ε

ρ
M = bR

1 n. (23)

Here, we have written the second spatial derivative as the one-dimensional Laplace
operator, � = ∇2 = ∂2

∂x2 . Written this way, (23) will remain valid in higher dimen-

sions. Only the constant bR
1 will require a slight modification: in d dimensions, it will

be given by bR
1 = 2d D

μ2 . We see that our scaling arguments lead to well defined PDEs
in the continuum limit. The corresponding boundary conditions will be discussed,
together with the boundary conditions of the stochastic model, in Appendix E. The
tip cell densities in (23) follow the diffusion equation, and the vessel density at any
point in space changes with time at a rate proportional to the local density of tip cells.
Again, we emphasise that it is not clear a priori that the continuum limit (23) yields
biologically relevant results, as in the original stochastic model, we should not have
a lattice constant h which is smaller than the typical cell size. We will compare sim-
ulations of the continuum and the stochastic equations in Sect. 4 to confirm when the
continuum limit is a reasonable approximation of our system.

Case 2: Similarly to Case 1, transition rate (6), TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl =
D̃ ((Nk − Nl))

+, leads to contributions to the mean field equations (18)

E Nk
M = D̃ (〈Nk+1〉 + 〈Nk−1〉 − 2 〈Nk〉),

E Rk
M = δR D̃

(
(〈Nk〉 − 〈Nk+1〉)+ + (〈Nk〉 − 〈Nk−1〉)+

)
.

(24)

As for Case 1, these equations are valid in the bulk of the domain, k = 2, . . . , kmax −1.
Note that the mean field equation for the tips is the same as in (21), whereas the
equation for the mean number of vessels in box k now depends on the difference in the
concentration of tips in neighbouring boxes, in contrast to (21), where the dependence
was only on the number of tips in the same box, 〈Nk〉.

To understand the scaling of the number of vessels δR produced by a jumping tip
cell, imagine one has a locally constant discrete gradient of tip cells. Transition rate (6)
implies that tip cells will only be migrating in one direction, namely, up the gradient.
This means that the tip path, and thus also the length of the growing vessel, will be
locally linear and scale linearly with h. Hence, no fractal path as in Case 1 will form.
The number of vessel cells produced is then
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δR = h

μ
. (25)

The coefficient in front of the transition rate, D̃, scales in the same way as in Case 1,

D̃ = D

h2 . (26)

This is to be expected as the mean field equations for the tip cells (24) are identical to
the mean field equations (21) in Case 1.

The continuum limit of (24) leads to a contribution to (20) of the form

εn
M = D�n,

ε
ρ
M = bR

2 |∇n|1 .
(27)

Here, we have used |∇n|1 = | ∂n
∂x | in one spatial dimension. Again, the result written

in terms of ∇ remains valid in higher dimensions, as will be shown in Appendix E.
We introduced a new constant bR

2 = D̃δRh = D
μ

, which is independent of h. In the

derivation, we have used ( f )+ − (− f )+ = | f |, and the subscript | f |1 denotes the L1
norm, again indicating the correct generalisation to higher spatial dimensions.

As for Case 1, the continuum limit for the evolution of the mean of the densities
of tips gives the diffusion equation, whereas the production of vessels depends on the
norm of the gradient of tip density. Hence, on the macroscale when the deterministic
continuum limit is valid, tips will behave in exactly the same way for this model
as in Case 1. However, the way vessels are produced is quite different. Imagine the
situation that the tip density is constant, but non-zero. In Case 1, there will still be vessel
production, as tips will still move. Only on average one has as many left-moving as
right-moving tips, so there is no change in macroscopic tip density. For Case 2 however,
there is no tip movement at all, and hence no vessel production. We will investigate
the differences between the two cases, as well as the difference between the stochastic
models and their continuum limits, in more detail in Sect. 4.

3.3 Chemotaxis

The derivation of the contribution to the mean field equations from chemotaxis, based
on transition rate (7), TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl = Nk (χ̃(cl − ck))

+, follows
in the same fashion from (19) as the mean field equations for random movement for
Cases 1 and 2. We obtain in (18)

E Nk
M = −χ̃ 〈Nk+1〉 (ck+1 + ck−1 − 2ck) + χ̃ (〈Nk+1〉 − 〈Nk〉) (ck − ck+1)

+

+ χ̃ (〈Nk−1〉 − 〈Nk〉) (ck − ck−1)
+ ,

E Rk
M = δRχ̃ 〈Nk〉

(
(ck−1 − ck)

+ + (ck+1 − ck)
+)

.

(28)

The scaling arguments for the number of vessel cells produced, δR , are similar to those
for Case 2 of the random movement transition rate: a locally constant concentration
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gradient of the AF c implies linear movement of the tip cells up the gradient, so the tip
cell path length will scale linearly with h. Hence, the number of vessel cells produced
will be

δR = h

μ
. (29)

Likewise, locally linear movement of tip cells implies that χ̃ = χ

h2 , where χ does not
depend on h. This way, the continuum limit of (28) is well defined, and we obtain a
contribution to (20) of the form

εn
M = −∇(χn∇c),

ε
ρ
M = bR

3 |n∇c|1 . (30)

The evolution of c is determined via Eq. (8). In (30), we have introduced bR
3 = δRχ̃h =

χ
μ

. We remark that (30) looks structurally similar to the mean field equations for Case
2 of the random movement model, (27): The time evolution of the tip density equals
the negative divergence of a flux, and the time evolution of the vessel densities is
proportional to the norm of the gradient of the tip flux. In Eq. (27), this flux is the
diffusive flux

J D = −∇(Dn), (31)

whereas in (30) it is the chemotactic flux

Jχ = χn∇c. (32)

Therefore, both (27) and (30) have the structure

εn
M = −∇ J,

ε
ρ
M = b|J |,

with b and J chosen accordingly.

3.4 Combined diffusion and chemotaxis

Case 1: As we argued in Sect. 2.3, if we take both diffusion Case 1 and chemotaxis into
account as modes of movement, due to different scaling behaviour we should consider
chemotaxis and undirected randomness as two separate physical effects represented
in the model by two different transition rates, (5) and (7). The mean field equations,
as well as the continuum equations, will then simply be the sum of the mean field and
continuum equations corresponding to (5) and (7), i.e. Eqs. (21), (27) and (28), (30),
respectively. We thus obtain the total contribution to the mean field equations from
movement,
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E Nk
M = D̃(〈Nk+1〉 + 〈Nk−1〉 − 2 〈Nk〉) − χ̃(〈Nk〉 (ck+1 + ck−1 − 2ck)

+ χ̃(〈Nk+1〉−〈Nk〉) (ck − ck+1)
++χ̃ (〈Nk−1〉−〈Nk〉) (ck − ck−1)

+ ,

E Rk
M = bR

1 〈Nk〉 + bR
3

h
〈Nk〉

(
(ck−1 − ck)

+ + (ck+1 − ck)
+)

,

(33)

and the contribution to the continuum equations (20)

εn
M = D�n − ∇(χn∇c),

ε
ρ
M = bR

1 n + bR
3 |n∇c|1.

(34)

Case 2: If we would like to combine chemotaxis with diffusion Case 2, we have
several choices. Simply considering the two transition rates (6) and (7) independently,
or combining them into one transition rate in a linear way, as done in Eq. (10), will
lead to contributions to the mean field equations

E Nk
M = D̃(〈Nk+1〉 + 〈Nk−1〉 − 2 〈Nk〉) − χ̃ (〈Nk〉 (ck+1 + ck−1 − 2ck)

+ χ̃ (〈Nk+1〉 − 〈Nk〉) (ck − ck+1)
+ + χ̃ (〈Nk−1〉 − 〈Nk〉) (ck − ck−1)

+,

E Rk
M = bR

2

h
((〈Nk〉 − 〈Nk+1〉)+ + (〈Nk〉 − 〈Nk−1〉))+

+ bR
3

h
〈Nk〉

(
(ck−1 − ck)

+ + (ck+1 − ck)
+)

,

(35)

and to the corresponding contributions to the continuum equations

εn
M = D�n − ∇(χn∇c),

ε
ρ
M = bR

2 |∇n|1 + bR
3 |n∇c|1.

(36)

On the other hand, starting with transition rate (11) we obtain contributions to the
mean field equations

E Nk
M =

(
D̃(Nk+1 − Nk) + χ̃ Nk+1(ck − ck+1)

)+

+
(

D̃(Nk−1 − Nk) + χ̃ Nk−1(ck − ck−1)
)+

−
(

D̃(Nk − Nk+1) + χ̃ Nk(ck+1 − ck)
)+

−
(

D̃(Nk − Nk−1) + χ̃ Nk(ck−1 − ck)
)+

(37)

E Rk
M = δR

((
D̃(Nk − Nk+1) + χ̃ Nk(ck+1 − ck)

)+

+
(

D̃(Nk − Nk−1) + χ̃ Nk(ck−1 − ck)
)+)

,
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and corresponding contributions to the continuum equations

εn
M = D�n − ∇(χn∇c),

ε
ρ
M = |bR

2 ∇n − bR
3 n∇c|1. (38)

For each combination of the random and chemotactic transition rates (34), (36) and
(38), we obtain the same equation for the evolution of the tip densities. This equa-
tion, which simply has the interpretation that the change of tip density in time is the
negative of the divergence of the total flux of tip cells, i.e. the combined diffusive
and chemotactic flux, has been assumed in many continuum models of angiogenesis
(Balding and McElwain 1985; Chaplain and Stuart 1993; Byrne and Chaplain 1995;
Anderson and Chaplain 1998). Note that, as before, both Eqs. (36) and (38) should
be supplemented by the reaction–diffusion PDE for the AF, Eq. (8). The equation
describing the time evolution of the vessel densities is different for Cases 1 and 2, as
the tip density in Case 2 enters via its gradient, whereas in Case 1 it enters as a simple
linear factor. Case 2 leads to equations known as the snail-trail model (Balding and
McElwain 1985; Byrne and Chaplain 1995). Note the subtle difference between the
two possible combinations of chemotaxis and diffusion in Case 2: In Eq. (36), the rate
of vessel production involves the sum of the norm of the diffusive flux and the norm
of the chemotaxis flux, whereas in (38) we obtain the norm of the sum of the fluxes.
This means that if the diffusive and chemotactic flux oppose each other, Eq. (38) will
lead to a lower rate of vessel cell production than Eq. (36).

Note that early continuum models of tip migration and vessel formation (Balding
and McElwain 1985; Byrne and Chaplain 1995) ignore these subtleties of the norm.
Indeed, in those papers, we find that the vessel densities evolve structurally according
to

∂ρ

∂t
= bR

2
∂n

∂x
− bR

3 n
∂c

∂x
. (39)

In the simulations performed in Balding and McElwain (1985), Byrne and Chaplain
(1995) initial conditions are chosen such that the fluxes initially point in the same
direction, so that all terms are initially positive. Hence the appearance of the norm in
Eq. (36) or Eq. (38) initially makes no difference. However, different boundary and
initial conditions can lead to disagreement between different evolution equations for
the vessel densities, as we will confirm in Sect. 4.3. Furthermore, in (39), the vessel
density can potentially become negative.

3.5 Sprouting, anastomosis and regression

Sprouting, anastomosis and regression in the stochastic model (Sects. 2.4, 2.5, 2.6)
were all built upon local transition rates, which only change the cell content of a single
box without dependence on the contents of other boxes. So in each case, the transition
rate is of the form

TNk±δN ,Rk±δR |Nk ,Rk = f (Nk, Rk),
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where f is a generic function dependent only on the local state variables Nk and Rk .5

Imagine that we double the lattice spacing h → 2h, and in each new box of size
2h there are twice as many cells of each type as before, so the cell densities remain
constant. Hence, twice as many stochastic events will take place in a given time period,
so the transition rate for the model with lattice size 2h will be twice as large as the
transition rate for the model with lattice size h. Here, we have made a crucial modelling
assumption for our mesoscopic compartment model, which is that the cells in each
box are well mixed and that boundary effects such as anastomosis events between two
cells in neighbouring lattice sites are negligible.

The above argument implies that all the local transition rates for sprouting, anasto-
mosis and regression should scale like

TNk±1,Rk±1|Nk ,Rk = h f̃

(
Nk

h
,

Rk

h

)
.

Here, f̃ is a function which depends only on the intensive variables Nk
h ,

Rk
h , i.e. vari-

ables which do not change with system size. These are the discrete tip and vessel cell
densities, rather than the tip or vessel cell numbers. The factor of h in front of the
transition rate ensures that the total transition rate is extensive, which means it grows
linearly with system size.

Equipped with this insight, we can now deduce the scaling of the parame-
ters involved in the transition rates in Sects. 2.4, 2.5, 2.6. For sprouting, we had
TNk+1|Nk = ã0 Rkck + ã1 Nkck H(ck − ĉ). Recall that the AF c is measured in terms of
concentration, so it is already an intensive variable. Hence, ã0 and ã1 do not depend
on h. We then obtain the contribution to the mean field equation,

E Nk
S = ã0 〈Rk〉 ck + ã1 〈Nk〉 ck H(ck − ĉ), E Rk

S = 0

and the contribution to the PDE is

εn
S = a0ρck + a1nck H(ck − ĉ), ε

ρ
S = 0.

Here, we simply put a0 = ã0 and a1 = ã1. Similarly, we find the scaling relations
β̃1 = β

h , γ̃ = γ , where a0, a1, β and γ are h-independent, so we obtain contributions
to the mean field equation from anastomosis and regression

E Nk
A = β̃1 〈Nk〉 〈Rk〉, E Rk

A = 0,

E Nk
R = 0, E Rk

R = −γ̃ 〈Rk〉,

5 We do not make explicit the dependence on the deterministic AF c, as, similar to the tip cell move-
ment terms, all stochastic events discussed here will occur on a much slower timescale than the timescale
governing c.
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and similarly contributions to the PDE

εn
A = βnρ, ε

ρ
A = 0,

εn
R = 0, ε

ρ
R = −γρ.

4 Comparison of different mechanisms of movement

This section will focus exclusively on the study of different approaches to mod-
elling tip movement and the subsequent production of new vessel cells. We will
ignore all other aspects of the full angiogenesis model, namely sprouting, anasto-
mosis and vessel regression. Our purpose is to understand the implications of choos-
ing the different transition rates describing the movement of tip cells and subsequent
vessel production, which were outlined in Sect. 2.1, and had the common structure
TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl . A second purpose of this section is to compare the
behaviour of the stochastic models with their corresponding deterministic continuum
limits. In general, we would assume that a continuum model only makes sense when we
have a large number of cells, such that collectively on a larger scale the distribution of
cells resembles a continuum. Moreover, one might question whether a typical biologi-
cal setup of angiogenesis is such that we have sufficiently many tip cells to justify mod-
elling them as a continuum. However, we will show that in some cases, even when the
stochastic model for tip movement leads to noisier behaviour in terms of cell migration
than that predicted by the corresponding continuum model, the resulting production of
vessel cells will be similar for both models. Furthermore, we find situations where the
results of the continuum model are similar to the average of many runs of the stochastic
model. On the other hand, we will also encounter situations where the continuum and
stochastic models completely disagree, even when averaging over many simulations
in the stochastic model, and both models produce markedly different amounts of blood
vessels. These latter situations signal the breakdown in the validity of the deterministic
continuum approximation, and require the use of the stochastic model.

Throughout this section, we perform simulations with no initial static vessel cells.
This might be questioned biologically, as when we start with tip cells, we should also
have accompanying vessel cells. The reason for assuming that initially there are no
vessel cells is simply that, as long as we ignore anastomosis, regression and sprouting,
the vessel cells actually decouple from the dynamics of the model. Hence, any choice
of the initial vessel cells would not change the behaviour of the system, and it is easier
to see how the model behaves when there are no vessel cells initially. Biologically, we
can imagine that such a situation corresponds to seeding individual tip cells in an in
vitro environment, without parent vessels. We will first focus on pure diffusion, that
is, we assume we have a homogeneous distribution of the AF, so chemotaxis does not
contribute to cell movement. Then we focus on pure chemotaxis, which means we have
a strong chemotactic gradient such that diffusion is negligible. However, we emphasise
that the choices of initial and boundary conditions, as well as model parameters, in this
section are guided by the need to understand the dynamics of tip movement and vessel
production in the model, rather than to accurately represent the biology. Indeed, all
the parameters appearing in this section can be removed by non-dimensionalisation.
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Hence we do not attempt to choose realistic values. Only in Sect. 5 will we study the
dynamics of the full model and, with that, aim to capture the essential qualitative and
quantitative features of angiogenesis. Details on the techniques used for solving the
stochastic model and the governing PDEs can be found in Appendix D.

4.1 Random movement

We now compare simulations of the stochastic model based on the two simple tran-
sition rates (5) and (6) describing undirected random movement, together with their
respective deterministic continuum limits (23) and (27). We consider several sets of
initial and boundary conditions to test our model.

4.1.1 Vascular invasion with Dirichlet boundary conditions

We choose a domain of length 1, so x ∈ [0, 1]. The scenario in this section is that we
start with some number, N 0, of tips in the leftmost box. We choose Dirichlet boundary
conditions, which means in the stochastic model that we keep the number of cells in
the left and right boundary boxes fixed. The biological interpretation of this condition
is that on the left boundary we have a parent vessel from which new tips emerge, and
to the right we have a tumour into which we assume the tips disappear. One might
argue that sprouting should stop some time after the vessels have formed. However,
here we are not considering a detailed model of angiogenesis, so for now we focus
on the mathematical behaviour of the movement part of the model, which is a vital
component of the full, more biologically realistic model. Alternatively, this boundary
condition can be interpreted as introducing new tip cells at the boundary of a petri dish
at a constant rate.

The PDEs we are solving are Eqs. (23) and (27) for random movement for Cases 1
and 2, respectively. The setup described above translates into the following initial and
boundary conditions:

n(0, x) = N 0

h
H(h − x), ρ(0, x) = 0,

n(t, 0) = N 0

h
, n(t, 1) = 0, t ≥ 0,

(40)

where 0 < h < 1 is the lattice constant of the stochastic model, and H is the Heaviside
function, which we smooth in the PDE by setting H(x) = 1+tanh(ωx)

2 , with ω � 1
chosen such that we have a close approximation to the Heaviside function while still
obtaining stable numerical results. The initial and boundary conditions in the stochastic
model are chosen to be compatible with the initial and boundary conditions for the
PDE, and take the form

N1(t = 0) = N 0, Nk(t = 0) = 0, k = 2, . . . , kmax ,

Rk(t = 0) = 0, k = 1, . . . , kmax ,

N1(t),Nkmax (t), R1(t), Rkmax (t) fixed in time.

(41)
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(a) (b)

(c) (d)

Fig. 5 Comparison of tip migration and subsequent vessel production of a single realisation of the stochastic
model (5) or (6) in Case 1 or 2, respectively (filled dots and triangles), the average of 64 realisations (dashed
and dotted lines), and the PDE (23) or (27) (solid and dashed-dotted line). Initial and boundary conditions
as in (41), (40) for initially N 0 = 2 tip cells in the leftmost box. In each case the spatial distribution of tips
or vessels, respectively, is shown at two times. a Tips n(t, x) for Case 1, b vessels ρ(t, x) for Case 1, c tips
n(t, x) for Case 2, d vessels ρ(t, x) for Case 2

The smoothing of the Heaviside function can lead to an insignificant rounding error
in the initial condition of N2(t = 0). The following parameters6 were chosen:

D = 1, δR = 8, h = 0.05, kmax = 21.

Recall that as the vessel cells decouple from the dynamics in our investigations
ignoring sprouting, anastomosis and regression, the choice of δR does not really matter.
Likewise, D can be absorbed by rescaling the spatial or temporal coordinate. We note
that the PDE for n has an analytic solution, which can be found by Fourier expansion.

Figures 5 and 6 contrast the time evolution of the spatial tip and vessel cells
distribution for random movement Case 1, i.e. the stochastic model defined by
TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl = D

h2 Nk and the corresponding PDE (23), to random

6 Fixing δR means we use different cell scales μ when comparing simulations based on the different cases
of the transition rate. Again, we emphasise that, as the vessel cells decouple from the dynamics in our test
case ignoring sprouting, anastomosis and regression, fixing either μ or δR only leads to a rescaling in the
total amount of vessel production. δR should be an integer, so it is easier to enforce this in the simulation
by simply fixing it, rather than calculating it from the lattice constant h and the cell size μ.
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(a) (b)

(c) (d)

Fig. 6 Comparison of tip migration and subsequent vessel production of a single realisation of the stochastic
model (5) or (6) in Case 1 or 2, respectively, the average of 64 realisations, and the PDE (23) or (27). Initial
and boundary conditions as in (41) and (40) for initially N 0 = 40 tip cells in the leftmost box. In each case
the spatial distribution of tips or vessels respectively is shown at two times. a Tips n(t, x) for Case 1, b
vessels ρ(t, x) for Case 1, c tips n(t, x) for Case 2, d vessels ρ(t, x) for Case 2

movement Case 2, i.e. TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl = D
h2 (Nk − Nl)

+ and the cor-
responding PDE (27). In Fig. 5 we performed the simulations with the initial number
of tip cells N 0 = 2 in the initial conditions (41), whereas in Fig. 6 we have N 0 = 40.
This corresponds to n(0, 0) = N 0

h = 40 and n(0, 0) = 800, respectively. Note that
in all figures, the results from the stochastic simulations have been rescaled by h to
compare with the solutions of the PDE, which are given in terms of cell densities.

Focusing on the profile of the tips, we notice that for N 0 = 2, both in Case 1,
Fig. 5a and Case 2, Fig. 5c, the results from individual stochastic simulations look quite
different from the solution of the PDE, but when we average over 64 realisations of
the stochastic model, we obtain good agreement with the PDE. However, the resulting
vessel profiles look quite different for Cases 1 and 2. Contrasting Fig. 5b, d, we see in
Case 1 far more vessel cells are produced. This is not surprising, as the transition rate
in Case 1 is always greater than, or equal to, the one for Case 2, implying more tip
cell movement and hence a higher rate of vessel production. Furthermore, we see that
in Case 1 the average of 64 stochastic realisations agrees well with the result of the
PDE, and even a single realisation of the stochastic model is in much closer agreement
with the PDE than the corresponding result for tips, as shown in Fig. 5a. This result
can be explained as follows: the movement of tip cells is quite noisy, but this noise
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in Case 1 averages out. The total number of vessel cells is found by summing over
all tip migration events, where the noise cancels. The biological interpretation is that
even when we do not know exactly when and where a single tip cell migrates, the
resulting blood vessels form in a robust way with little noise. The situation is quite
different in Case 2, Fig. 5d. Both a single realisation as well as the average of 64
realisations of the stochastic model disagree markedly from the result of the PDE.
We confirmed this disagreement does not disappear when averaging over significantly
more realisations. The reason is as follows: When deriving the PDE from the mean
field equations, (24), we assume that we can approximate the finite differences between
means of neighbouring sites by derivatives. The solution of the PDE is then always
monotonically decreasing in x for the chosen boundary conditions. However, in the
stochastic model with the chosen initial and boundary conditions, Nk can only take
three values, Nk = 0, 1, 2, and the solution is, in general, not monotonically decreasing
but fluctuating. As the probability for tip cell movement, and hence vessel production,
depends on the difference of tip cells in neighbouring boxes, more spatial fluctuations
of tip cells imply a higher chance of movement. Hence, the stochastic model in Case 2
will typically produce more vessel cells than the corresponding PDE. We also note that
the state where Nk = Nl ∀k, l, which is homogeneous in the distribution of tip cells, is
an absorbing state of the stochastic model defined by transition rate (6). Hence, at low
cell numbers we are always close to such a state, and do not necessarily expect that the
mean field approximation is valid. This is in contrast to Case 1 defined by transition
rate (5), which is linear, so the system is self-averaging. This means the average over
an ensemble of N cells is the same as the average over N random paths of a single cell.

This difference between the PDE and stochastic models disappears when we con-
sider a larger initial number of tip cells, N 0 = 40, as shown in Fig. 6. Here, also in Case
2, Fig. 6d, there is good agreement between the PDE and the stochastic models (both
for a single realisation and the average of 64 realisations). This is because the tip pro-
file, as shown in Fig. 6c, is now roughly monotonic in the stochastic model, and hence
the approximation by a differentiable function obtained from a PDE is justified. The
vessel profile for Case 1, Fig. 6b shows even better agreement between PDE and sto-
chastic simulation. The corresponding tip profile obtained from the stochastic model,
Fig. 6a, shows more noise than for Case 2, Fig. 6c. This is again explained by the fact
that the transition rate for Case 2 is always smaller than, or equal to, that for Case 1 and
hence produces less total movement of tip cells, but the same net directed movement.

4.1.2 Lattice constant dependence

We now investigate how the behaviour of the models depends on the lattice constant
h. We fix the typical vessel size to μ = 0.002, vary h = 0.1, 0.05, 0.02 and adjust
δR accordingly. We also keep the tip cell density constant, and correspondingly adjust
the number of cells per box, according to the size of the box. We choose initial and
boundary conditions for the PDE to be

n(0, x) = 100H(0.1 − x), ρ(0, x) = 0,

n(t, 0) = 100, n(t, 1) = 0,
(42)
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so the left half of the domain is filled initially. For the stochastic model we have

Nk = 100h, k = 1, . . . ,
kmax

10
,

Nk = 0, k = kmax

10
+ 1, . . . , kmax ,

Rk = 0, k = 1, . . . , kmax .

(43)

As discussed in the previous section, there can be an insignificant rounding error due
to the smoothing of the Heaviside function. Figure 7 shows the results for random
movement Case 1. Looking at the profile of the tip cell densities, we see that the
deviation of the stochastic simulation from the result of the continuum equation is
larger for smaller values of the lattice constant. This can be understood as we fix
the tip cell density, so for smaller lattice constants, there are fewer cells per box.
However, this higher noise for smaller lattice constants in the tip cell distribution does
not translate into higher noise for the vessel densities.

The corresponding results based on random movement for Case 2 are shown in
Fig. 8. As for Case 1, a smaller lattice constant leads to more noise, because there
are fewer cells per box. However, in contrast to Case 1, here the higher noise trans-
lates into a higher rate of vessel production relative to the continuum model. Indeed,
for a lattice constant h = 0.1, Fig. 8a shows very good agreement between the con-
tinuum and stochastic models, whereas for a lattice constant of h = 0.02 the sto-
chastic model produces considerably more vessel cells than the continuum model, as
can be seen in Fig. 8f. This behaviour is in contrast to the usual relation between a
continuum model and its finite difference approximation: they typically agree when
the lattice constant is small. As explained in the previous subsection, the difference
form of the transition rate (6) implies more movement of tip cells and vessel pro-
duction when the tip profile is noisy compared to the profile obtained from the PDE.
The noise is reduced the more cells one has per box. For a fixed number of total
cells, a higher number of cells per box is obtained when choosing a larger lattice
constant.

Note also the oscillatory pattern in the vessel profile in Fig. 8f. This is an artefact
associated with the difference form of the transition rate (6) that is apparent at low tip
cell numbers. As we can see from the tip profile in Fig. 8e, the spatial domain splits
into three subdomains: in the left third, there are typically 2 tips per box; in the middle
third, there is typically only 1 tip per box; and, in the right third of the domain, there
are typically no tips per box. Due to the difference form of the transition rate, tips
cannot migrate between boxes with the same number of tips in them. Mathematically,
each subdomain is in, or close to, an absorbing state of the stochastic model. Hence,
movement of tips is concentrated at the interfaces between the subdomains, and we
obtain two peaks in Fig. 8f. In general, we have checked that we obtain N 0 peaks if we
have N 0 tip cells at the left boundary, and 0 at the right, as then N 0 + 1 subdomains
form in the tip profile. However, the larger N 0, the more the subdomains are blurred
by stochastic fluctuations, so the N 0 peaks in the vessel profile will be less pronounced
the larger N 0 is chosen.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Tip cells migrating randomly according to Case 1, transition rate (5) and PDE (23), and corresponding
vessel production, with initial and boundary conditions given in (42) and (43). All snapshots taken at time
t = 0.2. a Tips n(t, x) for h=0.1, b vessels ρ(t, x) for h=0.1, c tips n(t, x) for h = 0.05, d vessels ρ(t, x)

for h = 0.05, e tips n(t, x) for h = 0.02, f vessels ρ(t, x) for h = 0.02

4.2 Chemotaxis

We repeat the analysis from the previous subsection in the case of chemotaxis, where
the stochastic model is defined by transition rate (7), and the corresponding contin-
uum model is given by (30). On a lattice with 21 sites and spacing h = 0.05, we
use the initial and boundary conditions as in (43) and (42) with N 0 = 5 tip cells. As
the PDE involves only first order spatial derivatives, we only fix the left boundary.
As well as sprouting, anastomosis and vessel regression, we also neglect the dynam-
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Tip cells migrating randomly according to Case 2, transition rate (6) and PDE (27), and corresponding
vessel production, with initial and boundary conditions given in (42) and (43). a Tips n(t, x) for h = 0.1,
b vessels ρ(t, x) for h = 0.1, c tips n(t, x) for h = 0.05, d vessels ρ(t, x) for h = 0.05, e tips n(t, x) for
h = 0.02, f vessels ρ(t, x) for h = 0.02

ics of the AF. We assume that the AF is supplied from a source on the right-hand
side of the domain, that it is removed via a sink on the left-hand boundary, and that
the AF is already distributed in a steady state. Hence, without loss of generality, we
choose χc(t, x) = x at all times (the value of χ is arbitrary for the pure chemotaxis
model and can be absorbed by suitable non-dimensionalisation). The results of the
simulations for chemotaxis are shown in Fig. 9. As for the random movement Case
1, we observe a marked difference in the tip profile between a single stochastic real-
isation and the PDEs, but relatively good agreement for the total number of vessels
produced. Note the difference in qualitative shape of the vessel profile compared to
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(a) (b)

Fig. 9 Tip cells migrating by chemotaxis, according to transition rate (7) with initial conditions as in (43)
and (42) with initially N 0 = 5 in the first 2 boxes. The lattice constant is h = 0.05. The averaging of the
stochastic model is over 64 realisations. In each case the spatial distribution of tips or vessels respectively
is shown at two times. a Tips n(t, x), b vessels ρ(t, x)

both cases of random movement, Figs. 5 and 6: the spatial profile is piecewise linear
and grows at a constant rate in regions where we have a constant level of tip cells
(the left part of the domain). This is due to the choice of a constant gradient of the
AF.

A qualitative difference between the stochastic and PDE simulations in Fig. 9 is
that for the tip profile, the front of the wave in the stochastic model is less sharp. Due
to the finite size of the lattice we have diffusive effects in the stochastic model, even
though there is no explicit diffusion term. Whereas in the PDE model the wave front
moves with constant speed, in the discrete stochastic model the movement of the front
is composed of jumps by individual cells. This process cannot be sharp. However, we
expect this effect will decrease as the lattice constant decreases. Indeed, we confirm
this with the simulations shown in Fig. 10.

4.3 Diffusion and chemotaxis

We now compare the different possibilities for combining random movement Case
2 with chemotaxis, as outlined in Sects. 2.3 and 3.4. We focus on the differences
obtained from the PDEs (36) and (38), ignoring the underlying stochastic models for
now. The comparison between the stochastic and continuum models proceeds as per
the last subsections. Recall that the difference between (36) and (38) is that the vessel
densities evolve over time at rates which are proportional either to the sum of the
norms of the diffusive and chemotactic fluxes in (36), or to the norm of the sum of the
fluxes in (38). Thus, we expect to see differences when the diffusive and chemotactic
fluxes are in opposing directions. In the following simulation, we fix

χc(t, x) = x, D = 0.01.

We impose Neumann boundary conditions, δR = 100 and prescribe an initial distri-
bution of the tip cells which is smooth and peaks in the middle domain, as shown in
Fig. 11a for time t = 0. Since in both cases, the evolution of the tip cells is governed
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Tip cells migrating by chemotaxis, according to transition rate (7) from a parent vessel to the left
of the domain to the right. All plots shown at time t = 0.4. The averaging of the stochastic model is over
1,280 realisations. a Tips n(t, x) for h = 0.1, b vessels ρ(t, x) for h = 0.1, c tips n(t, x) for h = 0.05, d
vessels ρ(t, x) for h = 0.05, e tips n(t, x) for h = 0.02, f vessels ρ(t, x) for h = 0.02

by the same PDE, the graphs in Fig. 11a are indistinguishable. The diffusive flux will
always point away from the peak of the tip distribution, whereas the chemotactic flux
always points to the right. Hence, the model based on the norm of the sum of the fluxes
will produce fewer vessels in the domain to the left of the peak of tip cell distribution,
which is confirmed in Fig. 11b.

123



518 F. Spill et al.

(a) (b)

Fig. 11 Comparison of two PDE models combining chemotaxis and diffusion (36) and (38), as described
in Sect. 3.4. The tips in both cases behave in the same way, so the respective plots are identical. The vessel
profile at time t = 0.3 shows a slight difference for the two cases. a Tips n(t, x) at t = 0, b vessels ρ(t, x)

at t = 0

5 Simulations of the full angiogenesis model

We will now perform simulations of a full stochastic model of angiogenesis, including
terms representing tip cell movement, vessel production, sprouting, anastomosis and
vessel regression. We summarise the transition rates discussed in Sect. 2.2:

TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl =
(

D̃(Nk − Nl)
)+ + (χ̃ Nk(cl − ck))

+ , l = k ± 1

TNk+1|Nk = ã0 Rkck + ã1 Nkck,

TNk−1|Nk = β̃1 Nk Rk,

TRk−1|Rk = γ̃ Rk . (44)

These are chosen in such a way that the corresponding continuum equations, together
with the PDE governing the evolution of the concentration of the AF, are given by

∂n

∂t
= D

∂2n

∂x2 − χ
∂

∂x

(
n

∂c

∂x

)
+ a0ρc + a1 H(c − ĉ)nc − βnρ,

∂ρ

∂t
= 1

μ

∣∣∣∣D
∂n

∂x

∣∣∣∣ + 1

μ

∣∣∣∣χn
∂c

∂x

∣∣∣∣
1
− γρ,

∂c

∂t
= Dc

∂2c

∂x2 − λc − a1 H(c − ĉ)nc.

(45)

These continuum equations are almost identical to the continuum model of angiogene-
sis presented in Byrne and Chaplain (1995), so we can directly compare the stochastic
model to an established continuum model. The only difference is the appearance of
the norm (either in this form or as the norm of the sum of the fluxes, as discussed in
Sect. 3.4) in the evolution equation for the vessel densities in (45): the corresponding
equation in Byrne and Chaplain (1995) or the related publications (Balding and McEl-
wain 1985; Chaplain and Stuart 1993) had no norm. The appearance of the norm looks
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more natural and is certainly mathematically more consistent, as it ensures that the
vessel densities cannot become negative. Furthermore, generalising the model with
the norm to higher dimensions is straightforward, whereas the model without norms
makes no sense in higher dimensions (see Appendix B). We choose the same initial
and boundary conditions for the PDEs as in Byrne and Chaplain (1995),

n(0, 1) = nL , ρ(0, 1) = 1

μ
, n(0, x) = ρ(0, x) = 0 (0 ≤ x < 1)

c(0, 0) = 1, c(0, x) = 0 (0 < x ≤ 1), (46)

n(t, 1) = nLe−kt , ρ(t, 1) = 1

μ
ρmin + 1

μ
(1 − ρmin)e−kt ,

n(t, 0) = 0, c(t, 0) = 1, c(t, 1) = 0.

The parameter values in non-dimensionalised units were given in Byrne and Chaplain
(1995), and Mantzaris et al. (2004)7 to be

a0 = 50μ, a1 = 10, β = 50μ, γ = 0.25,

χ = 0.4, D = 10−3, ĉ = 0.2, k = 1.5, (47)

λ = 1, Dc = 1, ρmin = 0.05, nL = 1,

where μ is the average dimensionless cell length (see the discussion below). The initial
and boundary conditions have the following interpretation: on the boundaries of the
domain, x ∈ [0, 1], we have a tumour at x = 0 and a parent vessel at x = 1. Note
that the PDEs in (45) do not depend on spatial derivatives of ρ, and hence the system
(46) is overspecified and the boundary condition for ρ in (46) is not required to solve
the PDE. We interpret this boundary condition as a source term for new vessel cells.
In practice, we solve the equations such that in the spatial discretisation of the PDE,
we simply fix the boundary value corresponding to the left-most discretized value of
ρ. This is consistent as the equation for ρ in (45) is an ODE at each point in space.

We remark that in Byrne and Chaplain (1995), the modelling focus was on corneal
assays with implanted tumour, where the vessels grow in a quasi two-dimensional
environment. The actual model was formulated in one dimension, describing the pro-
jection onto a one-dimensional domain between tumour and parent vessel. Tip cell
densities were measured in tips per unit area, and the vessel densities in length per
unit area. In the present paper, we chose units as cell numbers per length for the
one-dimensional model. As neither the model in Byrne and Chaplain (1995) nor the
present paper account for the fact that cell sizes can vary, it is straightforward to
translate between the two units: as the vessels form one-dimensional structures, the
average length of a vessel segment of one cell is then simply μ. Hence, to trans-
late between our variable ρ and the ρ appearing in Byrne and Chaplain (1995), we
simply multiply by μ. This explains the appearance of μ in the parameters in (47).

7 Not all parameters were listed in Byrne and Chaplain (1995), so we take the remaining one from Mantzaris
et al. (2004). Hence, the results we obtain are as in Mantzaris et al. (2004).
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Note that since the experimental setup describes angiogenesis in two spatial dimen-
sions, the reduction to a one-dimensional model also works in this simple form if
tip movement is not diffusion dominated, as we have to assume that the contribu-
tion to movement is negligible for the dimension over which we integrate. However,
two-dimensional diffusion is symmetric with respect to both dimensions. As in the
experimental setup, migration is dominated by chemotaxis, and we integrate over
the direction perpendicular to the chemotactic gradient. In the simulation below we
fix μ = 0.1h. This is as we argued in earlier sections: the stochastic model is well
defined when the cell size is smaller than the box size, so there are several cells
per box.

Figure 12 shows the results for the simulation of the PDE (45) and the stochas-
tic model defined by (44). For better comparison with Byrne and Chaplain (1995),
Mantzaris et al. (2004), we have rescaled n and ρ by h

N 0 , where N 0 is the initial
number of tip cells in the boundary box. We see in Fig. 12a, b that when there are
initially N0 = 100 tips on the right boundary, and a lattice spacing of h = 0.02, the
qualitative shapes of the tip and vessel profiles obtained by averaging over 100 reali-
sations of the stochastic model look similar to those obtained from the PDE, but there
are marked quantitative differences. Most importantly, we see that the wave front, for
both tips and vessels, in the stochastic model moves considerably faster than in the
PDE model. Recall that when we focused on chemotaxis only, as shown in Fig. 9, the
wave front in the stochastic model was smeared out compared to the wave front in
the PDE model, with some individual tip cells in the stochastic model moving faster
than in the PDE model, where all tips were moving at the same speed. Here, in the
full model of angiogenesis, those leading tip cells, accompanied by newly formed
vessel cells, can sprout and hence increase the magnitude of the tip density at the wave
front.

In Fig. 12c, d we chose a smaller lattice constant h = 0.005, with N 0 = 25 adjusted
such that the density of the tip cells remains the same as in Fig. 12a, b. The difference
between the PDE and the average of 100 realisations of the stochastic model is still
pronounced, but less so than in Fig. 12a, b. Individual realisations of the stochastic
model are noisier for the tip cell movement shown in Fig. 12c than that shown in
Fig. 12a, due to the lower number of tip cells per box.

In Fig. 12e, f, we decreased the lattice constant further to h = 0.00125, but also
increased the initial tip density, choosing N 0 = 50000. The results confirm that we
obtain good agreement even between a single realisation of the stochastic model and
the PDE. This is expected, as noise is suppressed for larger cell numbers, and discrete
effects disappear in the limit as h → 0. However, N 0 = 50000 is quite a large number
of initial tip cells which might not be realistic in many modelling situations. The
purpose of including Fig. 12e, f here is to confirm the mathematical consistency of
our model.

We have also confirmed that we obtain similar results when making the alternative
choice involving no norm in the vessel production term in (45), as discussed in Sect. 2.3
(results not shown). The reason is that the total flux of tip cells is dominated by the
chemotactic flux for the parameters chosen here.
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Results of the PDE (45) and the stochastic model defined by (44). The averaging of the stochastic
model is over 100 realisations. The plots show spatial tip and vessel distributions for different lattice
constants and initial numbers of tip cells, at two different times. In c–f we have omitted some points in the
plot for the stochastic model for better visualisation. We used the units of Byrne and Chaplain (1995) for
better comparison. a Tips n(t, x) for h = 0.02, N 0 = 100, b vessels ρ(t, x) for h = 0.02, N 0 = 100, c tips
n(t, x) for h = 0.005, N 0 = 25, d vessels ρ(t, x) for h = 0.005, N 0 = 25, e tips n(t, x) for h = 0.00125,
N 0 = 50000, f vessels ρ(t, x) for h = 0.00125, N 0 = 50000

6 Discussion

In this paper, we have developed a mesoscopic model of angiogenesis, where tip cell
migration, production of new vessel cells, sprouting, anastomosis and vessel regression
are modelled as stochastic events that affect individual cells. The model is defined
on a fixed lattice, and is mesoscopic in the sense that each box of the lattice can
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accommodate several cells. By investigating how the model behaves when we change
the lattice constant, we were able to take the continuum limit of the mean field equations
of the stochastic model. We have studied situations under which the continuum model
provides a good approximation to the discrete stochastic model. In particular, we
have shown that in many situations, even if the movement of individual tip cells is
highly stochastic, the resulting vasculature has low noise and is very similar to that
predicted by the continuum model. Comparison of the continuum model derived from
the stochastic model with existing continuum models of angiogenesis reveals that we
cannot use a conventional approach to model random movement of tip cells; rather,
we need to employ a novel transition rate in the stochastic model in order to recover
the standard snail-trail model. One might argue that this novel transition rate, which
differs from conventional ones by assuming that tip cells can only migrate in directions
of lower tip cell concentrations, is not a particularly realistic way to take crowding
and finite cell size effects into account. Our model could be easily modified to include
more realistic terms for crowding that affect the cell movement terms and proliferation
rates. However, these terms would not lead to the well-known snail-trail equations
on the deterministic continuum scale. Likewise, there are many ways in which the
stochastic and PDE models presented here could be extended. Other modes of tip
movement (for example, haptotaxis, Chaplain 2000), or more realistic dependencies
of the chemotaxis term (see, for instance, Painter and Hillen 2002; Mantzaris et al.
2004; Hillen and Painter 2009) or the sprouting term on the chemoattractant could be
incorporated easily. Such considerations are postponed for future work. As snail-trail
models of angiogenesis, such as Balding and McElwain (1985), Byrne and Chaplain
(1995), were motivated by similar models of fungal growth (Edelstein 1982), and we
can reproduce these angiogenesis models in the deterministic continuum limit of our
stochastic model, it would also be interesting to apply our modelling framework to
fungal growth.

Another avenue which we are currently investigating involves extending our model
into a stochastic/continuum hybrid model. This can be motivated by the requirement
to simulate large domains of tissue, where it is not computationally feasible to keep
track of all individual cells, but in certain regions stochastic effects are important. Our
modelling approach is suitable for constructing such hybrid models: regions in space
with low variance can be treated as continuous while those with high variance can be
treated as stochastic, and we can directly relate the stochastic model to the continuum
one. Hence, we can quantify the error arising when using continuum models, and only
switch to a continuum model when this error is small.

Finally, for more biological realism, we would need to couple the stochastic model
developed here to a model which includes the source of the AF, which could be,
for instance, tumour cells or macrophages in a wound which would themselves be
stochastic entities and study the interaction of the dynamics of the AF source and the
dynamics of the vasculature.
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Appendix A: Detailed derivation of mean field equations

The transition rates discussed in Sect. 2 fall into two categories: some describe tip
cell movement and the associated production of vessel cells; others represent local
reaction terms which change the cell content inside a single box. We will now analyse
the general structure of the mean field equations for these two cases.

A.1 Movement of tip cells

The movement terms discussed in Sect. 2.1 were modelled by transition rates of
the form TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl , l = k ± 1. We now restrict ourselves to
the interior of the domain, k = 2, . . . , kmax − 1, and refer to Appendix E for the
treatment of the boundary. The term in the master equation (3) describing movement
was

∑
k,l∈〈k〉(E+1

Nk
E−1

Nl
E−δR

Rk
− 1)TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl P . We see that the

contribution to the mean field equations (18) from moving tip cells is given by

E Nk
M =

∑

{N j },{R j }

∑

m,l∈〈m〉
Nk(E+1

Nm
E−1

Nl
E−δR

Rm
− 1)TNm−1,Nl+1,Rm+δR ,Rl |Nm ,Nl ,Rm ,Rl P

=
∑

{N j },{R j }

∑

l∈〈k〉
Nk

(
(E+1

Nk
E−1

Nl
E−δR

Rk
− 1)TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl

+ (E+1
Nl

E−1
Nk

E−δR
Rl

− 1)TNl−1,Nk+1,Rl+δR ,Rk |Nl ,Nk ,Rl ,Rk

)
P

=
∑

{N j },{R j }

∑

l∈〈k〉
Nk

(
TNk ,Nl ,Rk ,Rl |Nk+1,Nl−1,Rk−δR ,Rl P(Nk +1, Nl −1, Rk −δR, Rl)

−TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl P(Nk, Nl , Rk, Rl)

+TNl ,Nk ,Rl ,Rk |Nl+1,Nk−1,Rl−δR ,Rk P(Nk − 1, Nl + 1, Rk, Rl − δR)

− TNl−1,Nk+1,Rl+δR ,Rk |Nl ,Nk ,Rl ,Rk P(Nk, Nl , Rk, Rl)
)

=
∑

{N j },{R j }

∑

l∈〈k〉

(
(Nk − 1)TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl P(Nk, Nl , Rk, Rl)

−NkTNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl P(Nk, Nl , Rk, Rl)

+(Nk + 1)TNl−1,Nk+1,Rl+δR ,Rk |Nl ,Nk ,Rl ,Rk P(Nk, Nl , Rk, Rl)

−Nk TNl−1,Nk+1,Rl+δR ,Rk |Nl ,Nk ,Rl ,Rk P(Nk, Nl , Rk, Rl)
)

=
∑

{N j },{R j }

∑

l∈〈k〉
(TNl−1,Nk+1,Rl+δR ,Rk |Nl ,Nk ,Rl ,Rk

−TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl )P. (48)

Here, 〈m〉 = m ± 1 denotes nearest neighbouring boxes of box m. In the first line, we
simply substitute in the movement part of the master equation (3). Then we note that
only those parts of the sum which are nearest neighbours of k contribute: we apply
the shift operators to TNm−1,Nl+1,Rm+δR ,Rl |Nm ,Nl ,Rm ,Rl P and then shift the summation
index of the sum over the state space, and recover the original sum, so the combination
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(E+1
Nm

E−1
Nl

E−δR
Rm

−1) will yield zero. For the third equality we apply the shift operators,
making only the shifted arguments in P explicit. P without arguments denotes, for
brevity, a dependence on the unshifted cell numbers. Then, the summation indices
are shifted in such a way that all probability densities P will depend on the unshifted
arguments.

Likewise, we can derive a general form for the mean field equations for the vessels:

E Rk
M =

∑

{N j },{R j }

∑

m,l∈〈m〉
Rk(E+1

Nm
E−1

Nl
E−δR

Rm
− 1)TNm−1,Nl+1,Rm+δR ,Rl |Nm ,Nl ,Rm ,Rl P

=
∑

{N j },{R j }

∑

l∈〈k〉
Rk

(
(E+1

Nk
E−1

Nl
E−δR

Rk
− 1)TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl

)
P

=
∑

{N j },{R j }

∑

l∈〈k〉
Rk

(
TNk ,Nl ,Rk ,Rl |Nk+1,Nl−1,Rk−δR ,Rl P(Nk +1, Nl −1, Rk −δR, Rl)

− TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl P(Nk, Nl , Rk, Rl)
)

=
∑

{N j },{R j }

∑

l∈〈k〉
δRTNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl P. (49)

The derivation is similar to the derivation of (48), but the shift of summation index
here is by δR rather than by ±1. We see that the qualitative difference between (49)
and the mean field equation for the tips, (48), is that to the rate of change of mean of
vessels in box k only those transition rates contribute which account for tips jumping
out of box k. In contrast, the mean number of tips in box k changes with the difference
of transition rates describing incoming and outgoing tips from box k. This difference
is clearly understood by the fact that we model vessel cells to be static, so there is no
loss of vessel cells in any box due to movement. There will only be a loss of vessel
cells by other mechanisms such as regression.

A.2 Local source and sink terms

We now discuss the general structure of the master equation which takes into account
sprouting, i.e. the production of a new tip cell. This involves a transition rate of the
form

TNk+1|Nk .

The term in the master equation (3) describing only tip birth takes the form
∑

k(E−1
Nk

−
1)TNk+1|Nk P . From this we are led to the contribution to the mean field equation (18)

E Nk
S =

∑

{N j },{R j }
Nk(E−1

Nk
− 1)TNk+1|Nk P

=
∑

{N j },{R j }
Nk

(
TNk |Nk−1 P(Nk − 1) − TNk+1|Nk P(Nk)

)
(50)
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=
∑

{N j },{R j }

(
(Nk + 1)TNk |Nk−1 P(Nk) − NkTNk+1|Nk P(Nk)

)

=
∑

{N j },{R j }
TNk+1|Nk P

E Rk
S = 0.

The derivation again makes use of the application of the shift operators and subsequent
shift of summation indices, as for the derivation of Eqs. (48),(49). Similar expressions
can be derived for contributions of anastomosis and vessel regression to the mean field
equations.

Appendix B: Angiogenesis model in higher dimensions

We will now comment on the generalisation of our model to higher spatial dimensions
d. Consider the transition rate describing tip movement from box k to box l, with the
structure

TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl .

In one dimension, we had l = k ± 1. In higher dimensions, we can think of k, l as
multiindices, i.e.

k = {k1, k2, . . . , kd}. (51)

Here, k j = 1, . . . , kmax, j .
In this way, the above transition rate requires no change at all. We need only define

the nearest neighbours of k. On a regular grid, we define the nearest neighbours l to
be any of

l = {k1 ± 1, k2, . . . , kd}
l = {k1, k2 ± 1, . . . , kd}

. . .

l = {k1, k2, . . . , kd ± 1}.

With this definition, we can calculate the mean field equations, take the continuum
limit, and obtain the continuum equations for the different cases of movement given
in Eqs. (23), (27) and (30), with the Laplace and Nabla operators now defined in d
dimensions. The norms are L1 norms, due to the choice of our grid. The relation
between the discrete and continuous variables is now given by

n(t, x1, . . . , xd) = Nk

hd
, (52)

with x j = k j h.
Concerning the generalisation of the local interaction terms, which were used in the

model to describe sprouting, anastomosis and regression, we remark that one needs to
scale the parameters such that these rates scale like T = hd f (

Nk
hd ,

Rk
hd ,

Ck
hd ), where f
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is a function of the intensive variables only, which means these variables do not scale
with system size.

Appendix C: Stochastic treatment of the angiogenic factor

It is straightforward in our model to treat the AF stochastically. For this purpose, we
introduce a new variable Ck , k = 1, . . . , kmax , which is related to the continuous,
deterministic c used in this paper by

〈Ck〉 = hc(x). (53)

As before, x = kh in one spatial dimension. Then, a state in the stochastic model is
specified by Nk, Rk and Ck . We can now introduce additional transition rates in the
stochastic model describing the movement of molecules:

TCk−1,Cl+1|Ck ,Cl = Dh
c Ck . (54)

As for the cell motility terms, we have Dh
c = Dc

h2 . Furthermore, we introduce a tran-
sition rate describing the consumption and degradation of the AF:

TCk−1|Ck = λCk + a1

h
H(Ck − Ĉ)NkCk . (55)

In the continuum limit, we obtain

∂c

∂t
= Dc�c − λc − a1 H(c − ĉ)nc, (56)

reproducing (8) and (9). Other reaction terms can be implemented in a similar way. Let
us now estimate the size of the stochastic effects associated with the AF. As stochastic
effects are expected to be stronger when smaller numbers of molecules are involved,
we are conservative in underestimating the number of molecules. In the corneal assay
modelled in Sect. 5, the concentration of the AF (here, acidic fibroblast growth factor)
was taken to be 10−10M (Byrne and Chaplain 1995), and the distance between tumour
and initial vessel, i.e. the size of our modelling domain, was 3 mm. There are various
estimates of the thickness of the cornea, and a conservative choice is given by 100 µm
(Henriksson et al. 2009). Then a box in a 2D model with a discretisation of 50 sites
in both dimensions would represent a volume of 100 µm ( 3 mm

50 )2, which is again a
conservative choice for the 1D model where we integrate over one dimension. Thus,
the total number of molecules of the AF in one box is of the order

Ck ≈10−10 M100 µm

(
3 mm

50

)2

≈6 × 102310−10 1

10−3 m3

9

2,500
102−6−6 m3 ≈104.

(57)
If we solve (56) and the stochastic model defined by (54) and (55) for the case consid-
ered in Sect. 5, i.e. Dirichlet boundary conditions, with a source on the left boundary,
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Fig. 13 The steady state profile
of the angiogenic factor
simulated from the PDE (56)
and the stochastic model defined
by (54) and (55), but no vessel
cells present. Dirichlet boundary
conditions where imposed such
that C1 = 10,000 and C50 = 0

C1 = 10,000, and a sink with C50 = 0 on the left, and a lattice of 50 sites, we obtain the
steady state profile presented in Fig. 13. With C1 = 10,000 and C50 = 0 we typically
have Ck ≤ 10,000, giving again a conservative estimate of the real stochastic fluctua-
tions. We see in Fig. 13 that the stochastic fluctuations are relatively small throughout
the domain, justifying the use of the PDE for the AF throughout the domain. We note
also that it is justified to use the same spatial discretisation to solve the PDE as was
used to simulate the stochastic model, as variations between neighbouring lattice sites
are small.

Appendix D: Numerical solution of the model

D.1 Stochastic model

To simulate a realisation of the stochastic model, we use the Gillespie algorithm
(Gillespie 1976, 1977), see also the review (Erban et al. 2007). This means that if we
let αm , m = 1, . . . , mtot denote all non-zero transition rates in the model, enumerated
by integers m, then α0 = ∑

m αm denotes the total rate. The time to the next event
is exponentially distributed, so we draw a uniformly distributed random number r1 ∈
[0, 1] such that the time to the next event will be

τ = 1

α0
log

1

r1
. (58)

We then draw a second uniformly distributed random number r2 ∈ [0, 1] which
determines which event will take place. In particular, if

∑s−1
m αm

α0
≤ r2 <

∑s
m αm

α0
, (59)

with 0 < s ≤ mtot , then the event corresponding to rate αs will occur. A principal
assumption concerning the AF is that it diffuses and reacts on a timescale much faster
than that of events affecting the cells, which are movement, sprouting, anastomosis or
regression. Hence, between consecutive Gillespie events we solve the PDE describing
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the evolution of the concentration of the AF c using a finite difference approximation,
with a forward Euler method.

D.2 Solution of the PDEs

The PDEs appearing in this paper were solved with Mathematica 9 using the method
of lines, and in most cases we could rely on the built-in solver to choose the correct
time integration method. We have compared our results with those obtained using
several, alternative ODE integration methods such as explicit and implicit 4th order
Runge-Kutta, and also to a Matlab implementation using the pdepe function, and a
C++ implementation of a finite difference scheme with explicit Euler integration. In
the reduced models of tip cell movement and vessel production shown in Sect. 4, the
tips evolve according to pure diffusion or pure chemotaxis with linear gradient. In these
cases, the PDEs admit explicit solutions by Fourier expansion or direct integration,
respectively. For the case of pure chemotaxis as well as the simulations of the full
model in Sect. 5, the explicit Euler method is unstable and cannot be used.

Appendix E: Boundary conditions in the stochastic model

We will now briefly discuss different choices of boundary conditions in the stochastic
model. We only need to focus on the part of the model involving the transition rate
describing tip cell migration, TNk−1,Nl+1,Rk+δR ,Rl |Nk ,Nl ,Rk ,Rl , as the other transition
rates are local, depending on a single box.

To facilitate comparison of the stochastic and PDE models, it is useful to choose
slightly different conventions from the main part of this paper and center the boxes
at x = (k − 1)h, so that box k extends from x ∈ [k − 3h

2 , k − h
2 ]. Then the domain

extends from x ∈ [− h
2 , L + h

2 ], if we let k = 1, . . . , kmax , and (kmax + 1)h = L . This
has the advantage that, when choosing Dirichlet boundary conditions, we can directly
relate the contents of boxes k = 1, kmax to corresponding values of the PDE model
at x = 0, L . As we assume h � L this redefinition of the domain does not affect the
solution of the PDE.

Dirichlet boundary conditions We implement the boundary conditions by specifying
the tip numbers in boxes k = 1 and k = kmax , so

N1(t) = fL(t),

Nkmax (t) = fR(t).
(60)

Here, we assume that fL and fR are slowly varying functions of time, compared to
the timescale of events occurring in the stochastic model. This means we can hold N1
and Nkmax fixed between successive stochastic events. Another option is to implement
Dirichlet boundary conditions in terms of stochastic reactions. Rather than fixing N1
and Nkmax deterministically, they could undergo birth and death processes so that only
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on average would we get N1 = fL(t), Nkmax = fR(t). For simplicity, in this paper we
view N1 and Nkmax as deterministic.

Neumann boundary conditions For simplicity we restrict our study to zero flux bound-
ary conditions. A simple implementation is such that for box k = 1, there is only one
outgoing transition rate,

TN1−1,N2+1,R1+δR ,R2|N1,N2,R1,R2 , (61)

and similarly for box k = kmax . In this way, there is automatically no flux through
the boundary. However, the number of vessel cells produced in the boundary boxes
will be considerably smaller than the number produced in boxes k = 2, . . . , kmax −1,
as there will be less net movement. One way to overcome this is to add a reflection
transition rate

TN1,R1+δR |N1,R1, (62)

and similarly for k = kmax . This has the interpretation that when a cell attempts to
move to the left, it is reflected at the impenetrable boundary, and, as a result, remains
in the same box from where it starts. It will still leave some vessel cells behind in
this process. Such a term would only make sense for random movement Case 1, as
outlined in Sect. 2.1, since Case 2, as well as chemotaxis, depend on the difference
in cell numbers or concentrations in neighbouring boxes. Here, the incoming and
outgoing boxes are identical.

An alternative implementation of zero-flux boundary conditions is similar to that
commonly used for boundary conditions in finite difference schemes of PDEs. One
fixes the number of tips in boxes 1 and kmax , respectively, as

N1 = N2,

Nkmax = Nkmax −1.

For simplicity, we implemented Neumann no-flux boundary conditions using the
first method (61).
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