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Abstract. In this paper we present a new methodology that allows us to formulate and analyse
stochastic multiscale models of the dynamics of cell populations. In the spirit of existing hybrid
multiscale models, we set up our model in a hierarchical way according to the characteristic
time scales involved, where the stochastic population dynamics is governed by the birth and
death rates as prescribed by the corresponding intracellular pathways (e.g. stochastic cell-cycle
model). The feed-back loop is closed by the coupling between the dynamics of the population
and the intracellular dynamics via the concentration of oxygen: Cells consume oxygen which,
in turn, regulate the rate at which cells proceed through their cell-cycle. The coupling between
intracellular and population dynamics is carried out through a novel method to obtain the birth
rate from the stochastic cell-cycle model, based on a mean-first passage time approach. Cell
proliferation is assumed to be activated when one or more of the proteins involved in the cell-
cycle regulatory pathway hit a threshold. This view allows us to calculate the birth rate as a
function of the age of the cell and the extracellular oxygen in terms of the corresponding mean-
first passage time. We then proceed to formulate the stochastic dynamics of the population of
cells in terms of an age-structured Master Equation. Further, we have developed generalisations
of asymptotic (WKB) methods for our age-structured Master Equation as well as a τ−leap
method to simulate the evolution of our age-structured population. Finally, we illustrate this
general methodology with a particular example of a cell population where progression through
the cell-cycle is regulated by the availability of oxygen.
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1. Introduction

In recent years, multiscale modelling of biological systems has become a very active field of research
with significant contributions being made in a number of different areas from cardiology [25,31,36,52] to
developmental biology [26, 40, 49, 51, 62] and tumour growth [2, 11, 14, 15, 27, 33, 34, 41–45,47, 48, 55–57].

The interest driving the increased effort devoted to the development of multiscale models and tech-
niques is motivated by the realisation that the magic bullet approach [53] to addressing complex diseases,
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in particular, in the case of cancer, might not be as effective as it once was thought. Regarding cancer
treatment, this concept was put forward by Paul Ehrlich [53] and consists of a targeted therapy which
acts specifically on cancer cells, leaving normal cells unharmed. With the arrival of the genomic area, this
approach was expected to be considerably boosted. In fact, for over thirty years, research in oncology
has been dominated by a genocentric approach where targeted therapies, i.e. drugs developed to interfere
with specific cancer gene products have been the focus and ultimate aim of cancer biology [39]. Advances
in genomics and other omics (proteomics, epigenomics, etc.) have further boosted this approach. How-
ever, the success of this approach in terms of the development of new, efficient cancer drugs has felt short
of expectations [39].

There are a number of reasons why the magic bullet approach has had limited success. Global cell traits
and behaviour in response to stimuli, i.e. the phenotype, emerge from a complex network of interactions
between genes and gene products which ultimately regulates gene expression (see, for example, the recent
work by Lignet et al. regarding the VEGF signalling network [32]). These networks of gene regulation
constitute non-linear, high-dimensional dynamical whose structure has been shaped up by evolution by
natural selection, so that they exhibit properties such as robustness (i.e. resilience of the phenotype
against genetic alterations) and canalisation (i.e. the ability for phenotypes to increase their robustness
as time progresses). These properties are exploited by tumours to increase their proliferative potential
and resist to therapies [29]. In addition to complex, non-linear interactions within individual cells,
there exist intricate interactions between different components of the biological systems at all levels:
From complex signalling pathways and gene regulatory networks to complex non-local effects where
perturbations at whole-tissue level induce changes at the level of the intra-cellular pathways of individual
cells [2, 14, 34, 41, 44, 48]. These and other factors contribute towards a highly dynamics in biological
tissues. In particular, because of all the layers of complexity involved, it is very difficult to assess the
main tenet of the magic bullet approach, i.e. whether a therapeutic agent is going to be effective against
the tumour and harmless to the surrounding healthy tissue.

In order to try and address these issues, a great deal of research has been done in the development
and analysis of multiscale models. Such models are capable of incorporating within a single model
different sub-models corresponding to different levels of biological organisation (intracellular, cell-to-cell
interaction, whole-tissue level, etc.), which are usually characterised by diverse time and length scales,
and the coupling between them, so that the global tissue behaviour can be analysed as an emergent
property of the different coupled elements [11, 14, 33, 41, 47, 56].

Multi-scale models can be formulated in a number of different ways. One of these frameworks is
the so-called hybrid modelling [2, 28, 34, 41, 47, 48]. Hybrid multiscale models are composed by different
sub-models for different levels of biological organisation (intracellular processes, cell-to-cell interaction,
secretion and transport of signalling cues, etc.), and each of these is modelled in terms of different math-
ematical descriptions (ODEs, cellular automata, PDEs, etc.). Hybrid models are usually characterised
by the use of individual-based models for the dynamics of at least one of the cellular compartments
considered in the model [42, 43]. Other phases (e.g. cellular populations not modelled as individuals
and fluid phases such as blood or interstitial fluid) are modelled by means of PDEs as continuous phases
[28,34]. The individual-based model are often supplemented with models for the behaviour of individual
cells in response to cues such as signalling molecules or nutrient depravation [2]. The concentration of
nutrients or signalling molecules is normally modelled as a continuum field by means of PDEs of the
reaction-diffusion type. Hybrid models have been proposed to study different aspects of tumour growth
such as response to therapy [2, 48], tumour-induced angiogenesis [34, 42, 43] and evolutionary dynamics
of tumour growth [47].

Another possible approach to multiscale modelling is to use multi-phase models [10, 33, 45, 57]. In
these models, each cellular type is modelled as a different phase. Multi-phase fluid models have been
used to analyse different aspects of tumour growth, where each cell type corresponds to a different fluid
[10, 33, 45]. Phase-fields models have been recently used to model tumour-induced angiogenesis [57].
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In spite of the considerable effort done in the field of multiscale models to tumour growth, there are
many aspects of the dynamics of biological tissues which are still poorly explored within this modelling
framework. One of them is the effects of noise. Random effects have been included in several hybrid
and multiscale models. For example the models of tumour-induced angiogenesis by McDougall et al.
[37, 38, 50], based on earlier work on a hybrid continuum-discrete model by Anderson & Chaplain [5], or
the multiscale models of angiogenesis formulated in [42,43] possess an stochastic element, namely, vessel
formation is accounted for in terms of a biased random walk model for the movement of tip endothelial
cells. However, a general methodology that specifically allows us to incorporate and analyse the effects
of noise at the different scales is lacking. As a first step to fill this gap, we propose in this paper a
methodology to formulate stochastic multiscale models of cell population dynamics as well as developing
asymptotic and numerical methods for their analysis.

In this paper, we aim at formulating stochastic multiscale models of the dynamics of cellular population
which account by fluctuations both at the level of intracellular signalling pathways, due to low protein
numbers, and at the level cell-population, due to finite population size effects. Hereafter, we will refer to
these two sources of noise as molecular noise and cellular noise, respectively. The aim of this paper is to
address the issue of noise in multiscale systems in a systematic way. To this end we set up a framework
that allows us to formulate and analyse stochastic multiscale models.

Concerning the set up of our model, we will make the same basic assumption as the one done in [2],
namely, we will divide the consider three layers which we identify with processes characterised by widely
diverse times scales (see Fig. 1 for a schematic representation of our model and the characteristic time
scales involved). We consider a model where we couple the dynamics of the concentration of available
nutrient (e.g. oxygen), determined by its rate of supply and consumption by the cells, an intracellular
layer, where we consider a model of how the concentration of oxygen regulates the rate of progression
through the cell-cycle [1,7], and, therefore, also the birth rate, and, last, a cellular layer where we consider
the stochastic dynamics of the population of cells. The intracellular and cellular layers are coupled by a
model for the oxygen-dependent birth rate, formulated in terms of a mean first passage time problem.

The remainder of this paper is organised as follows. In Section 2, we describe the formulation of
our model. We discuss our stochastic model of oxygen-regulated cell-cycle progression and address the
formulation of a model for the oxygen-and-age-dependent birth rate as a mean first passage time prob-
lem associated to the stochastic cell-cycle dynamics. We then proceed to formulate an age-dependent
stochastic birth-death process for the dynamics of the cell population. In Section 3, we present a WKB
asymptotic method to find approximate solutions of the corresponding age-dependent Master Equation.
Section 4 is devoted to the formulation of an age-dependent τ -leap method that allows us to perform
simulations of the multiscale stochastic model. Last, in Section 5, we discuss our results, the limitations
of the present approach and directions for future research.

2. Model formulation

2.1. General structure of the stochastic multiscale model

Before going through a detailed discussion of the different elements involved in the formulation of the
stochastic multi-scale model, we proceed to a detailed description of the general structure of the model
which is closely related to that of the model proposed in [2].

The model we present in this article integrates phenomena characterised by different time scales, as
schematically shown in Figure 1, which include oxygen delivery to and consumption by the cell population,
the dynamics of the population of cells under the restriction of a oxygen supply at a finite rate, and cell
division proliferation and apoptosis. Its structure is therefore quite complex and, for this reason, before
presenting the sub-models involved in the description of each of these processes, we explain the overall
structure of the modelling framework.
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Figure 1. Schematic representation of our multiscale model: Oxygen modulates the
progression of cells through the cell-cycle, or, equivalently, their birth rate. The oxygen-
dependent birth rate is modelled in terms of a mean first passage time problem, which
is then used in the Master Equation which determines the stochastic dynamics of the
cell population. Cells consume oxygen, and therefore their dynamics regulates the con-
centration of oxygen, thus closing the feed-back loop. We also show the corresponding
characteristic time scales: tenths of milliseconds for oxygen, minutes or hours for the
intracellular processes, and days for cells.

The approach we use is a natural generalisation of the standard continuous-time birth-and-death
Markov process and its description via a Master Equation [17]. As we will see, the consideration of the
multiscale character of the system, i.e. the inclusion of the physiological structure associated to the cell-
cycle variables, introduce an age-structure within the population: The birth rate depends on the age of
cell (i.e. time elapsed since last division) which determines, through the corresponding cell-cycle model,
the cell-cycle status of the corresponding cells.

Regarding the particulars of each sub-model involved, the model of oxygen delivery is a stochastic
differential equation where the oxygen is supplied at a constant rate F and consumed by cells (see Fig.
1). The stochastic character of the equation governing the evolution of the concentration of oxygen arises
from the fact that the number of cells at a given time is a stochastic variable.

The second sub-model (i.e. the intracellular model) considered in our multiscale framework is an
stochastic model of oxygen-regulated cell-cycle progression (see Fig. 1). This sub-model is formulated
using the standard techniques of chemical kinetics modelling [20] so that the mean-field limit of the
stochastic model corresponds to the deterministic cell-cycle model formulated in [1]. This model provides
the cell-cycle status, i.e. the number of molecules of each protein involved in the model from which we
derive whether the G1/S transition has occured, for cell of a given age, a. The cell-cycle status of a cell
of age a is determined in terms of whether the abundance of certain proteins which activate the cell-
cycle (cyclins) have reached a certain threshold. In our particular case, if at age a, the cyclin levels are
below the corresponding threshold, the cell is still in G1. If, on the contrary, the thresold level has been
reached, the cell has passed onto S, and therefore is ready to divide. This implies that the probability
of a cell having crossed the threshold of cyclin levels at age a can be formulated in terms of a mean
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first-passege time problem (MFTP) in which one analyses the probability of a Markov process to hit a
certain boundary [17]. The rate at which our cell-cycle model hits the cyclin activation threshold, i.e.
the rate at which cells go through the cell-cycle restriction point, is taken as proportional to the birth
rate. The birth rate is a function of the age of the cell as well as the concentration of oxygen, as oxygen
abundance regulates the rate of progress through the cell-cycle.

The third and last sub-model (i.e. the cellular model), corresponds to the dynamics of the cell popu-
lation and it is governed the Master Equation for the probability density function of the number of cells
[17]. The stochastic process that describes the dynamics of the population of cells is an age-dependent
birth-and-death process where the birth rate is age-dependent and provided by the intracellular model.
The death rate is, for simplicity, considered constant. As a consequence of the fact that the birth rate
is age-dependent, our Multiscale Master Equation does not present the standard form for unstructured
populations, rather, it is an age-dependent Master Equation.

The detailed description involved in each one of the sub-models summarised here is the object of the
remainder of Section 2.

2.2. Intracellular scale: Stochastic model of oxygen-dependent cell-cycle progression

2.2.1. Background on cell-cycle modelling

The cell cycle is the sequence of events by which a growing cell duplicates all its components and divides
into two daughter cells, each with sufficient machinery and information to repeat the process [4]. The
cell-cycle is usually divided into four phases: G1; S, G2; and mitosis M . In G1 (G =gap), the cell is not
committed to division and the chromosomes do not replicate. Replication of nuclear DNA occurs during
the S phase, whereas completion of mitosis occurs in the final M phase. The interval between DNA
replication and division is called the G2 phase. The gap phases G1 and G2 give the cell additional time
for growth. The cell also passes through two irreversible transitions. The first of these transitions occurs
at the end of G1 and is called “Start”. During G1 the cell monitors its environment and size. When
the external conditions and the size of the cell are suitable, the cell commits itself to DNA synthesis and
division. This transition is irreversible: once the cell enters the S phase and DNA replication commences,
division has to be completed. The second transition,“Finish”, occurs when DNA replication is completed.
Once the cell has checked that DNA and chromatide alignment have occurred, the Finish transition is
triggered and the cell finally divides into two daughter cells. A fifth state, the so-calledG0 state, is defined
to refer to cells that have abandoned normal progression through the cell-cycle and become quiescent. In
this state most (although not all) of the cell functions are suspended, most notably, proliferation.

Cell cycle events are controlled by a network of molecular signals, whose central components are cyclin-
dependent protein kinases (Cdks). In the G1 state, Cdk activity is low, because its obligate cyclin partners
are missing, because cyclin mRNA synthesis is inhibited and cyclin protein is rapidly degraded. At Start,
cyclin synthesis is induced and cyclin degradation is inhibited, causing a dramatic rise in Cdk activity,
which persists throughout S, G2 and M. High Cdk activity is needed for DNA replication, chromosome
condensation, and spindle assembly. At Finish, a group of proteins, making up the anaphase-promoting
complex (APC), is activated [63]. The APC attaches a “construction label” to specific target proteins,
which are subsequently degraded by the cell’s proteolysis machinery. The APC consists of a core complex
of about a dozen polypeptides plus two auxiliary proteins, Cdc20 and Cdh1, whose apparent roles (when
active) are to recognize specific target proteins and present them to the core complex for labelling [61,63].
Activation of Cdc20 at Finish is necessary for degradation of cohesins at anaphase, and for activation of
Cdh1. Together, Cdc20 and Cdh1 label cyclins for degradation at telophase, allowing the control system
to return to G1. We must distinguish between these two different auxiliary proteins, because Cdc20 and
Cdh1 are controlled differently by cyclin-Cdk, which activates Cdc20 and inhibits Cdh1.

In [58], Tyson & Novak describe a model for the irreversible transitions “Start” and “Finish” which
regulate cell-cycle progression. The model we put forward assumes that these transitions occur by means
of bifurcations of the regulatory system which lead to the creation and destruction of stable steady states
of the molecular regulatory system of the cell division process.

36



“mmnp-format” — 2012/11/24 — 13:57 — page 37 — #6
✐

✐

✐

✐

✐

✐

✐

✐

Pilar Guerrero, Tomás Alarcón Stochastic multiscale models of cell populations

The dynamics of the cell-cycle can be affected by environmental conditions, in particular, by the level
of extracellular oxygen: It is well documented that low oxygen concentrations (hypoxia) alter progression
through the cell division cycle [18], and the G1/S transition, in particular. In reference [1], it was assumed
that the response of this transition to hypoxia is mediated by the protein p27, an element of the Cdk
network whose production is upregulated under hypoxia [16,18], although recent studies cast some doubts
on the role of p27 as the mediator of hypoxic effects on cell-cycle progression [9, 23]. In our model, we
assume p27 mediates hypoxia-induced arrest of the G1/S transition by inhibiting cyclin-Cdk complex
formation and, thereby, inhibiting DNA synthesis.

A modification of the model by Tyson & Novak [58] is proposed in [1], where the effects of hypoxia
through p27 levels on the cell-cycle are considered. p27 inhibits the formation of cyclin-CDK complex.
In turn, p27 levels raise in the presence of hypoxia. The set of ordinary differential equations introduced
in [1] to model the effect of hypoxia on the Start transition is the following:

dx

dt
=

(1 + b3u)(1− x)
J3 + 1− x − b4mxy

J4 + x
,

dy

dt
= a4 − (a1 + a2x+ a3z)y,

dm

dt
= ηm

(

1− m

m∗

)

,

dz

dt
= cz1

(

1− m

m∗

)

− cz2
O2

B +O2
z,

where x and y are the concentrations of active Cdh1/APC and concentration of cyclin-CDK complexes,
respectively, z, concentration of p27, O2 oxygen concentration u generic activator, η the cell growth rate,
m is the mass of the cell, and m∗ is the mass of an adult cell. The ai (i = 1, 2, 3, 4), czi , (i = 1, 2), bi
(i = 3, 4) are rate constants and the J3 and J4 are Michaelis–Menten constants. Tyson & Novak [58]
scale their equations so that the total concentration of Cdh1 (active plus inactive) is normalized to 1 and
the Michaelis–Menten constants J3 and J4 are such that J3 ≪ 1 and J4 ≪ 1. Although in the model
proposed in [1], the cyclin considered to be involved in the G1/S transition is CycB and its inhibitor is
assumed to be APC/Cdh1, recent work suggests that a more accurate depiction of the situation would
involve considering CycE and its inhibitor SCF, instead [60]. In fact, for mammals, cyclin D is involved
the regulation of the slow dynamics of phase G1 (inhibited by p27), whereas cyclin E regulates the fast
dynamics (see reference [54] for a detailed description). A fully accurate acount of the regulation of the
G1/S transition in mammalian cells should take the presence of these two cyclins into consideration,
rather than lumping their effects into a single compound.

2.2.2. Stochastic formulation

We now proceed to formulate a stochastic model for the oxygen-regulated progression through the cell-
cycle as a Markov process in terms of a Master Equation. The resulting model will be analysed using
large system size, WKB asymptotic [3, 30, 35]. This (sub-)model provides the proliferation rate of the
cells as a function of the extracellular oxygen. This information will then be used within the cellular-
scale population model as a parameter, i.e. the oxygen-age-dependent birth rate in the Master Equation
describing the dynamics of the cellular phase.

The model we propose here is based on the same basic principles [58] as the one formulated in [1].
Tyson & Novak [58] proposed a model for the G1/S transition in which the central element of the model
is the mutual inhibition between the active form of Cdh1/APC, an inhibitor of cell-cycle progression, and
CycB-CDK, whose activity is needed in order for the cell-cycle to undergo the aforementioned transition.
This mutual inhibition gives rise to a bistable system with two stable steady-states: the so-called G1

fixed point, where Cdh1 activity is close to its maximum and CycB activity is virtually non-existent and
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Figure 2. Schematic representation of the reactions involved in the stochastic of oxygen-
regulated cell-cycle progression. M is the mass of the cell, X(X1) is the number of active
(inactive) Cdh1 molecules, E1 (E2) is the number of Cdh1-activating (inactivating) en-
zymes, C1 (C2) is the number of X1E1 complexes (XE2), Y is the number of cyclin-CDK
complexes, and Z is the number of p27 molecules. Reactions (a) and (b) correspond to
enzyme-catalysed activation and inactivation of Cdh1, respectively. Note that the inac-
tivation reaction is upregulated by CycB (Y ) and modulated by cell size (M). Reactions
(c) and (d) determine the dynamics of the number of active CycB and p27 molecules.
CycB is synthesised at a constant rate and degraded at a rate which depends on both
active Cdh1 and p27. p27 is synthesised at a size-depending rate and degraded at an
oxygen-depending rate. According to [1], g(M) = 1−M/m∗ and f(O2) = O2/(B+O2).
The rate constants are given in Table 2

the S-G2-M fixed point where the opposite is true. Furthermore, Tyson & Novak [58] assume that Cdh1
inhibition by CycB is modulated by cell-size: inhibition is initially poor when cells have just divided
and had not reach the necessary critical size to enter the S-phase but it gets enhanced as cells grow and
approach such critical size. Mathematically, such cell-size regulations induces a saddle-node bifurcation
in which the G1 fixed point is destroyed when cell size (mass) reaches a critical value, which forces the
system to increase CycB activity and to enter the S-phase. In [1] a modification of this very simple
was proposed, whereby a further inhibitor of cyclin activity, p27, was introduced. The activity of p27 is
known to be upregulated by lack of oxygen (hypoxia), which delays the onset of the G1/S transition. This
model allows us to couple the rate of cell-cycle progression with the abundance of oxygen and, therefore,
to analyse the effects of fluctuations in the supply of oxygen on tumour growth [2].

The reactions involved in our stochastic, oxygen-regulated cell-cycle progression model are schemat-
ically shown in Fig. 2. In Fig. 2, M stands for the mass of the cell, X(X1) is the number of active
(inactive) Cdh1 molecules, E1 (E2), the number of Cdh1-activating (inactivating) enzymes and C1 (C2),
the number of X1E1 complexes (XE2). Moreover, Y and Z refer to the number of cyclin-CDK complexes
and the number of p27 molecules, respectively.

Reactions Fig. 2(a) and (b) correspond to enzyme-catalysed Cdh1 activation and inactivation reactions,
respectively. Note that, as per [58], Cdh1 inactivation is upregulated by active CycB (Y ) and it is
modulated by cell growth (M). Reaction Fig. 2(c) accounts for the dynamics of the number of active
CycB molecules, Y : CycB is synthesised at a constant rate and degraded at a rate that depends both on
the number of active Cdh1 (X), thus closing the negative feed-back loop of mutual inhibition between
Cdh1 and CycB, and also on the number of p27 molecules (Z), which implements in the model the role of
p27 as an inhibitor of cyclin activity. Last, reaction Fig. 2(d) determines the dynamics of the number of
p27 molecules, Z: p27 is synthesised at a cell-size depending rate and degraded at an oxygen-depending
rate in such a way that, when oxygen is scarce, degradation of p27 is down-regulated. This effect yields a
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build-up of p27 which delays cell-cycle progression by increasing inhibition of cyclin activity. The reader
is referred to [1] for full details on the biological rationale of this model.

The stochastic model is thus specified in terms of the state vector,
−→
X (a):

−→
X (a) = (M(a), Z(a), X1(a), E1(a), C1(a), X(a), E2(a), C2(a), Y (a), Z(a)),

where a stands for age which is taken to be the time elapsed since the last cell division. The dynamics

of the model is described by the probability density of the system being in state
−→
X at age a, Ψ(

−→
X, a),

whose dynamics is given by the Master Equation:

∂Ψ(
−→
X, a)

∂a
=
∑

i

(Wi(
−→
X − ri, a)Ψ(

−→
X − ri, a))−Wi(

−→
X, a)Ψ(

−→
X, a), (2.1)

where Wi(
−→
X, a) are the transition rate corresponding to each of the elementary reactions involved in

the model shown in Fig. 2, and ri is a vector whose entries correspond to the increase in the number

of molecules of each molecular species when reaction i fires up, i.e. P (
−→
X (a +∆a) = x(a) + ri|x(a)) =

Wi(
−→
X )∆a.

The transition rates corresponding to the enzymatic reaction Fig. 2 are given in Table 1. We have
used the law of mass action (LMA) to model the kinetics of the chemical reactions shown in Fig. 2
[20], including the enzymatic reactions Fig. 2(a) and (b). We have chosen LMA kinetics to model
these reactions instead of Michaelis-Menten kinetics for technical reasons that have to do the asymptotic
analysis of Eq. (2.1) that we carry out in the next section: WKB asymptotics demand the transition rates
Wi satisfy certain scaling laws (see Eq. (2.3) below). Such scaling relation is not satisfied by the Michaelis-
Menten rates, so that we need to resort to LMA kinetics. However, this means that one needs to be careful
when parametrising the model, as the parameter values given in [58], where Michaelis-Menten kinetics
were used to model enzyme-catalysed activation and inactivation of Cdh1, are not directly applicable to
our model. In Appendix A we address this issue and find the relation between the parameters used in
[58] and ours.

Reaction probability p.u.t ri

W1 = η

m∗Ω

M(M−1)
2

(−1, 0, 0, 0, 0, 0, 0, 0, 0)

W2 = ηM (1, 0, 0, 0, 0, 0, 0, 0, 0)
W3 = cz1Ω (0, 1, 0, 0, 0, 0, 0, 0, 0)

W4 = cz1
M
m∗

+ cz2
O2

B+O2
Z (0,−1, 0, 0, 0, 0, 0, 0, 0)

W5 = d1
Ω
X1E1 (0, 0,−1,−1, 1, 0, 0, 0, 0)

W6 = d−1C1 (0, 0, 1, 1,−1, 0, 0, 0, 0)

W7 = d4
Ω2 YMC2 (0, 0, 1, 0, 0, 0, 1,−1, 0)

W8 = d2C1 (0, 0, 0, 1,−1, 1, 0, 0, 0)

W9 = d3
Ω3 XYME2 (0, 0, 0, 0, 0,−1,−1, 1, 0)

W10 =
d−3

Ω2 YMC2 (0, 0, 0, 0, 0, 1, 1,−1, 0)
W11 = a4Ω (0, 0, 0, 0, 0, 0, 0, 0, 1)
W12 =

(

a1 +
a2

Ω
X + a3

Ω
Z
)

Y (0, 0, 0, 0, 0, 0, 0, 0,−1)

Table 1. Reaction probability per unit time, Wi ≡ W (X , ri, a), i = 1, .., 12. ri =
(rim, riz , rix1

, rie1 , ric1 , rix, rie2 , ric2 , riy).

2.2.3. Model Analysis: WKB approximation

The methodology we use to analyse our model is based on WKB asymptotics and was first proposed by
Kubo et al. in [30]. In [30], Kubo et al. have proved that, under the appropriate scaling assumption, the
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time-dependent solution of the Master Equation (ME), Eq. (2.1), can be approximated by a function of
the same form as its equilibrium solution, namely the exponential of a homogeneous function, which we

call S, of
−→
X ,

Ψ(
−→
X, a) = C exp(−S(−→X, a)) = C exp(−Ωs(−→x , a)), (2.2)

where Ω is some measure of system size [6]. Kubo et al. [30] have shown that the transition rates

W (
−→
X, r, a) must be homogeneous functions of X to obtain a solution of the ME of the form of equation

(2.2),

Wi(
−→
X, a) = Ωwi(

−→x , a), −→x =

−→
X

Ω
. (2.3)

Accordingly, the probability of a given reaction to occur within an infinitesimal interval of time is
proportional to the size of the system, Ω, and is determined only by the state of the system, represented
by the set of intensive variables −→x . The definition

ψ(−→x , a) = ΩΨ(
−→
X, a),

together with equation (2.3), enables us to write the ME (2.1) in WKB from

1

Ω

∂ψ(−→x , a)
∂a

=
∑

i

(e−((ri/Ω)·(∂/∂x)) − 1)wi(
−→x , a)ψ(−→x , a),

where we have used that e−r·(∂/∂x) is the generator of the translations in the space of states of the system.
To proceed further, we consider the characteristic function of ψ(−→x , a),

Q(u, a) =

∫ ∞

−∞

ψ(−→x , a)eiu·−→x d−→x , (2.4)

and its associated cumulant generating function q(u, a) ≡ log(Q(u, a)) [3, 30], as the cumulants qn(a) of
ψ(−→x , a) can be obtained from the expansion:

q(u, a) =
∞
∑

n=1

in

n!
un · qn(a),

where un stands for the n-adic product defined as (un)j1,j2,...,jn ≡
∏n

i=1 uji and “·” denotes full contraction
over all of the n indexes. It can be shown [3] that, in terms of the characteristic function Q(u, t), Eq.
(2.4) is given by:

1

Ω

∂Q(u, t)

∂t
=

1

(2π)d

∑

i

(

e−iu·yi − 1
)

∫ ∞

−∞

wi(v, a)Q(u− v, t)dv, (2.5)

where wi(v, a) is the Fourier transform of wi(
−→x , a). Kubo et al. [30] showed that Eq. (2.5) is the starting

point for an asymptotic expansion of the WKB type, where a closed hierarchy of ordinary differential
equations for the cumulants (qn(a)) of the process is obtained.

It has been proved by Kubo et al. [30] that, for arbitrary n, the cumulants of the probability distribution
(e.g., (q1)i = 〈xi〉; (q2)ij = 〈xixj〉−〈xi〉〈xj〉 ...) satisfy the following scaling relation: qn(a) = εn−1qn1(a)+
εnqn2(a)+O(ε

n+1), where ε = Ω−1. This scaling, in turn, yields a consistent asymptotic expansion leading
to a system of ordinary differential equations for the cumulants qn(a) in terms of all the cumulants of
lower order, q1(a), . . . , qn−1(a).

The above scaling for the order-n cumulants imply that a Gaussian approximation of the process can
be obtained such that X(t) = NN (q11, N

−1/2q21) where q11(a) is the lowest order approximation for the
first cumulant (i.e. the first moment, q1), which satisfies the mean-field equations [3, 30]:
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q̇11 =
∑

i

riwi(q11(a), a), (2.6)

and q21(a) is the lowest order approximation for the second cumulant (i.e. the covariance matrix, q2(a)),
whose components satisfy the set of ODEs:

Q̇ij(a) =
∑

k

(

Qik
∂cj(q11, a)

∂q11k
+
∂ci(q11, a)

∂q11k
Qkj

)

+
∑

r

rirjw(q11, r, a), (2.7)

where Qij ≡ (q21)ij . For a full details about the WKB method, including detailed derivations of Eqs.
(2.6), the reader is referred to [3, 30].

We use equations (2.6) and (2.7) to formulate the systems of ODEs for the leading-order contributions
to the first and second cumulants (i.e. the first and second moments, respectively) By substituting the
corresponding values of w(−→x , r, a) and r from Table 1, into Eq. (2.6), where q11 = 〈−→x 〉 = x is mean
vector. We obtain the following equation for each element of the mean vector, where abusing of notation
xi = xi:

dm

da
= ηm

(

1− m

m∗

)

,

dz

da
= cz1

(

1− m

m∗

)

− cz2
O2

B +O2
z,

dx1
da

= −d1x1e1 + d−1c1 + d4ymc2,

de1
da

= −d1x1e1 + (d−1 + d2)c1, (2.8)

dc1
da

= d1x1e1 − (d−1 + d2)c1,

dx

da
= −d3xyme2 + d−3ymc2 + d2c1,

de2
da

= −d3xyme2 + (d−3 + d4)ymc2,

dc2
da

= d3xyme2 − (d−3 + d4)ymc2,

dy

da
= a4 − (a1 + a2x+ a3z)y.

Similarly, using equation (2.7) we obtain the corresponding set of ODEs which, coupled with Eqs. 2.8,
allows us to obtain the entries of the covariance matrix, σ(a) = (Qij(a)).

The Fig. 3 shows the comparison between the numerical solution of Eq. (2.8) and direct numerical
simulation of the stochastic system using Gillespie algorithm [20]

Finally, using the previous results regarding WKB asymptotics of the Master Equation, we obtain a
Gaussian approximation to the solution of Eq. (2.1) is:

Ψ(
−→
X, a) =

(

Ω

2π

)d/2
1

|σ(a)|1/2 e
−Ω

2
(
−→
X(a)−X(a))tσ(a)−1(

−→
X(a)−X(a)) (2.9)

where d is the number of chemical species in our cell cycle model, | · | represents determinant, ()−1 inverse,
X(a) is q11 and σ(a) is the (symmetric) covariance matrix with Qij are the components.
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Parameter Value Source
a1 0.04 Tyson & Novak (2001)
a2 1 Tyson & Novak (2001)
a3 0.25 Alarcón et. al. (2004)
a4 0.04 Tyson & Novak (2001)
b3 10 Tyson & Novak (2001)
b4 35 Tyson & Novak (2001)
η 0.01 Tyson & Novak (2001)
m⋆ 10 Tyson & Novak (2001)
J3, J4 0.04 Tyson & Novak (2001)
u 1 Tyson & Novak (2001)
cz1 0.1 Alarcón et. al. (2004)
cz2 0.01 Alarcón et. al. (2004)
B 0.01 Alarcón et. al. (2004)
d1 (0.1 + d2)/(J3 s0)
d3 (0.01 + d4)/(J4 s0)
ν 10−4

k 0.067
κ 1.57 · 10−4

Table 2. Parameters values

2.3. Modelling the age-dependent birth rate

Activation of many regulatory pathways, in particular, the cell-cycle, depends upon a particular compo-
nent of the regulatory system reaching a critical activation value. In the case of our stochastic model
for cell-cycle progression, cells go through the G1/S transition when the level of activity of CycB reaches
a threshold value. We assume that, after the cell goes through this transition, the cell completes the
cell-cycle and eventually divides after an average time τp has elapsed. Therefore, given some external
conditions (in our case, such conditions are characterised by the concentration of oxygen), the probability
of a cell to divide after certain age is equal to the probability that the corresponding protein has reached
its critical value. This can be formalised in terms of a first passage time problem [46] whose solution
provides precisely this probability and its derivative with respect to the age gives us the birth rate at age
a. Once we have obtained the corresponding birth rate in this manner we can use it to parametrise a
Master Equation for the stochastic evolution of the cell population.

To calculate the birth rate (i. e. probability of birth per cell and per unit time) in terms of a first
passage time problem, we consider the G1/S transition occurs when cyclin activation reaches a threshold
value and, therefore, we can define the birth rate as a function of the time as b(a) = ∂a(1 − G(a)) =

−
∫

R
∂aΨ(

−→
X (a)) d

−→
X with R = {y < k, (m, z, x1, e1, c1, x, e2, c2) ∈ R

d−1} where 1−G(a) is the probability
of cyclin-Cdk exceeds its threshold value at age a. G(a) =

∫

R
Ψ(
−→
X (a)) d

−→
X is the so-called survival

probability, i. e. the probability that
−→
X (a) ∈ R. If Ψ is approximated by Eq. (2.9) we can obtain a

closed equation for G in terms of G, x and Qij .

We are interested in a region where the y is greater than a constant, k, with all other variables varying
over their whole ranges. So, in this case, the expression of G reduces to:
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Figure 3. Comparison of the x(a) and y(a) between Eq. (2.8) (red lines) and the Gillespie
simulation. The black dots lines are error (±σ(a)) Eq.(2.7). Ω = 105 (100 realizations dash
line and one realization dots green), 107 (100 realization dash-dots line and one realization add
signs blue), O2 = 1.0 with initial condition x = (5, 1.4, 0.01, 0.01, 0, 0.99, 0.01, 0, 0.01).

G(a) =

∫

y<k

∫

Rd−1

Ω1/2

(2π)1/2σ
1/2
y

e−
Ω
2
(y−y(a))2σ−1

y

(

Ω

2π

)(d−1)/2
1

A1/2
e
−Ω

2

(−−→
X|y−b

)t
A−1

(−−→
X|y−b

)

d
−→
X|y dy

=

∫

y<k

Ω1/2

(2π)1/2σ
1/2
y

e−
Ω
2
(y−y(a))2σ−1

y dy, (2.10)

where
−→
X|y = (m, z, x1, e1, c1, x, e2, c2), A = |σ(a)|/σy, b = X|y (a) +

Σij

σy

(

y − y(a)
)

and Σij = σjj −
σT
ijσ

−1
ii σij (conditional covariance matrix).
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G(a) can be re-written by using the error function as follows:

G(a) =
1

2

(

1 + erf

(√
Ω(k − y(a))
√

2σy

))

. (2.11)

Thus, the equation for birth rate is obtained by differentiating the G equation (2.10):

dG(a)

da
= −1

2

d
daσy(a)

σy(a)
G(a) +Ω

∫

y<k

dφ(y)

dy

dy(a)

da
Ψ(y(a)) dy (2.12)

+Ω
d
daσy(a)

σy(a)

∫

y<k

φ(y)Ψ(y(a)) dy,

where φ(y) = 1
2 (y − y(a))2σy(a)−1.

Using the divergence theorem and Taylor’s expansion, the first integral in Eq. (2.12) is:

I1 =

(

Ω

2πσy

)1/2
dy(a)

da
e−Ωφ(y)

∑

i

1

i!
Ωiφ(y)i

∣

∣

∣

k

−∞

=

(

Ω

2πσy

)1/2
dy(a)

da

(

1− e−Ωφ(y)
) ∣

∣

∣

k

−∞
,

whereas the second integral in Eq. (2.12) can be approximated by extending the integration domain to
±∞:

I2 = Ω
d
daσy(a)

σy(a)

1

σ
1/2
y

∫ ∞

−∞

φ(y)

(

Ω

2π

)1/2

e−
Ω
2
(y−y(a))2σ−1

y dy

=
1

2

d
daσy(a)

σy(a)
.

We have checked by means of numerical integration that the error introduced by replacing the (y <
k)−integration domain by R in I2 is negligible.

Finally, we find that the ODE G(a) must satisfy is:

dG(a)

da
= −1

2

d
daσy(a)

σy(a)
(G(a)− 1)−

(

Ω

2πσy

)1/2
dy(a)

da
e−Ωφ(k). (2.13)

Eq. (2.13) solved together with Eqs. (2.8) and (2.7) provide the birth rate as a function of age and
oxygen concentration.

Fig. 4 shows the probability of cyclin-Cdk exceeds its threshold, 1 − G(a), using Eq. (2.11) coupled
with Eq. (2.8) and (2.7), and compares the result with the Gillespie stochastic simulation algorithm [20].

In Fig. 5, we have plotted the birth rate for different oxygen concentrations. As we can see, the peak
in b(a) occurs later times for lower oxygen concentrations, this confirms that fact of oxygen delays the
occurrence of the G1/S transition. And in Fig. 6 we observed the probability of birth has more variance
if we increase the noise in the process.

3. Age-structured Master Equation and WKB approximation

3.1. Formulation of the age-structured Master Equation

We are now in position of formulating our model for population dynamics. Using the above framework
calculate the birth rate as a function of cell age. We formulate an age-dependent birth-death process.
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Figure 4. Comparison with Ω = 107 (red dash-dot line), 108 (green dash line), 109 (blue
line) between Eq. (2.11) and 100 realization of Gillespie’s algorithm (black vertical dash line)
with Ω = 107, O2 = 1.0 and initial condition x = (5, 1.4, 0.01, 0.01, 0, 0.99, 0.01, 0, 0.01).

Parameters such as the oxygen-age-dependent birth rate are determined in term of the models analysed
within the intra-cellular scale described in the previous section. To derive the age-dependent Master
Equation, we consider the following identity:

P(n, a+ δa, t+ δt) =W (n(a) + 1, a, t)δtP(n(a) + 1, a, t)
+(1−W (n(a), a, t)δt)P(n(a), a, t),

(3.1)

whereW (n(a), a, t) = (ν+b(a))n(a), the birth rate is given by b(a) = − dG(a)
da and ν is the constant death

rate.
The p0j births at age aj is provided by a Poisson random variable with mean (and variance)

b(aj)n(aj)δt, P(b(aj)n(aj)δt) = p0j . The probability of p0 births is the follow:

Prob(p0) = P(n(0) = 2p0, t) =







∏

j

PPaj
(p0j )

∑

j

p0j = p0

0 otherwise
, (3.2)

where PPaj
(p0j ) = e−b(aj)n(aj)δt (b(aj)n(aj)δt)

p0j

p0j
! denote the probability that P(b(aj)n(aj)δt) = p0j . When

a birth even occurs, the number of cell with a = 0 is increased by 2(p0), whereas the number of cells with
age a = aj is reduced by p0j .
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Figure 5. Eq. (2.13) the birth rate for different oxygen concentrations with O2 = 0.05
(red dash-dot line), 0.1 (green dash line), 1 (blue line) and Ω = 107 and initial condition
x = (5, 1.4, 0.01, 0.01, 0, 0.99, 0.01, 0, 0.01).
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Figure 6. Eq. (2.13) compares with different values of Ω = 107 (red dash-dot
line), 108 (green dash line), 109 (blue line), O2 = 1.0 and initial condition x =
(5, 1.4, 0.01, 0.01, 0, 0.99, 0.01, 0, 0.01).

By re-arranging, Eq. (3.1) take the limit δt→ 0, we obtain:

∂P(n,a,t)
∂t + ∂P(n,a,t)

∂a =W (n(a) + 1, a, t)P(n(a) + 1, a, t)
−W (n(a), a, t)P(n(a), a, t).

(3.3)

In order to find an approximate a solution of Eq. (3.3) we apply the WKB method put forward by
Kubo et al. [30] have shown that the transition rates W (n, a, t) must be homogeneous functions of n to
obtain a solution of the ME of the form P (n(a), a, t) = C exp(−Ns(n(a), a, t)) with n(a) = n(a)/N

W (n(a), a, t) = Nw(n(a), a, t). (3.4)
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Accordingly, the probability of a given reaction to occur within an infinitesimal interval of time is
proportional to the size of the system and is determined only by the state of the system and is determined
only by the state of the system, represented by the set of intensive variable n(a). The definition

P (n(a), a, t) = N P(n(a), a, t),

together with equation (3.4), the Eq. (3.3) has the following expression:

1
N

(

∂P (n,a,t)
∂t + ∂P (n,a,t)

∂a

)

= (ν + b(a)) (n(a) + 1)P (n(a) + 1, a, t)

− (ν + b(a))n(a)P (n(a), a, t)

enables us to write the ME (3.3) in WKB form

1

N

(

∂P (n, a, t)

∂t
+
∂P (n, a, t)

∂a

)

=
(

e1/N(∂/∂n(a)) − 1
)

w(n(a), a, t)P (n(a), a, t), (3.5)

where we have used that e−(∂/∂n(a)) is the generator of the translations in the space of states of the
system.

Let us consider the cumulant-generating function defined as q(u, a, t) = ln (Q(u, a, t)), where Q(u, a, t)
is the characteristic function of P (n, a, t), defined as its Fourier transform:

Q(u, a, t) =

∫ +∞

−∞

eiunP (n, a, t) dn.

The cumulants, qk(a, t), can be obtained from q(u, a, t) as the coefficients of the expansion:

q(u, a, t) =

∞
∑

k=1

ik

k!
ukqk(a, t). (3.6)

The procedure we follow next, which is based on the work of Kubo et al [30], is to write down an
equation forQ(u, a, t) and construct asymptotic approximations forQ(u, a, t), q(u, a, t) and qk(a, t). These
approximations will provide systems of ODEs for the cumulants and for the moments of the solution of
the ME. We are interested to the system of equation for the first moments (q1(a, t)) and for the elements
of the covariance matrix (q2(a, t)), which will enable us to study the average behaviour of the system and
the Gaussian fluctuations around it.

To obtain the equation for Q(u, a, t), we take the Fourier transform of the ME Eq. (3.5):

1
N

(

∂Q(u,a,t)
∂t + ∂Q(u,a,t)

∂a

)

=
∫ ∞

−∞

eiun
(

e1/N(∂/∂n(a)) − 1
)

w(n(a), a, t)P (n(a), a, t) dn.
(3.7)

The integral on the right hand side of Eq. (3.7)

∫ ∞

−∞

eiun
(

e1/N(∂/∂n(a)) − 1
)

w(n(a), a, t)P (n(a), a, t) dn =

∞
∑

k=1

∫ ∞

−∞

eiun

(

1

N

∂

∂n

)k

w(n, a, t)P (n, a, t) dn =

∞
∑

k=1

1

k!

(

i
u

N

)k
∫ ∞

−∞

eiunw(n, a, t)P (n, a, t) dn.

(3.8)

Furthermore, substituting Eq. (3.8) in Eq. (3.7), rearranging terms, and recalling that the Fourier
transform of the product of two functions equals the convolution of the corresponding Fourier transforms,
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we finally obtain:

1

N

(

∂Q(u, a, t)

∂t
+
∂Q(u, a, t)

∂a

)

=
1

2π
(ei

u
N − 1)

∫ ∞

−∞

Q(u− v, a, t)ω(v, a, t) dv, (3.9)

where ω(v, a, t) is a Fourier transform of w(n, a, t).

Eq. (3.9) needs to be supplemented with boundary conditions for P (n, a = 0, t), i.e. for the probability
of the number of births within the time interval (t, t+ δt) to be p0 = n/2. The number of births within
this time interval can be expressed as the sum of all the births at time t within each age-group aj , p0j ,
i.e. p0 =

∑

j∈I(t) p0j . Therefore,

P (n = 2p0, a = 0, t) = P (p0) =
∑

{p0j
}





∏

j

PPaj
(p0j )



 δ∑
j
p0j

,p0
,

where p0j = Yj(b(aj)n(aj)δt) is a Poisson-distributed random variable with parameter λj = b(aj)n(aj)δt,
i.e.

P (Yj = p0j ) = e−λj
λ
p0j

j

p0j !
,

and, consequently, the corresponding cumulant-generating function for the random variable p0j is Qj(s) =

eλj(e
is−1). Now, since P (p0) is a convolution, the cumulant generating function for P (p0), Q(s, a = 0, t)

is given by [24]:

Q(s, a = 0, t) =
∏

j

Qj(s) = e
∑

j b(aj)n(aj)(e
is−1)δt,

which, taking the limit δt→ 0, results in:

Q(s, a = 0, t) = e
∫

∞
0

(eis−1)b(a)n(a)da. (3.10)

3.2. WKB analysis of the age-structured Master Equation

Once we have formulated our age-structured Master Equation, or, rather, the equivalent problem for the
corresponding generating function, Eqs. (3.9) and (3.10), we now carry out its WKB analysis [3, 30].
Before proceeding further, recall that Q(s, a, t) is related to the cumulant-generating function, q(s, a, t):
Q(s, a, t) = exp(q(s, a, t)), which can be re-expressed as:

Q(u− v, a, t) = eq(u−v,a,t) = exp

(

∞
∑

k=0

ik

k!
ukq(k)(−v, a, t)

)

, (3.11)

where q(u − v, a, t) has been replaced by q(u − v, a, t) = eu ∂vq(−v, a, t) and q(k)(−v, a, t) ≡
(∂u)

kq(u, a, t)|u=−v. Using Eq. (3.11), Eq. (3.9) reads:

1
N

∞
∑

k=1

ik

k!
uk
(

∂qk(a, t)

∂t
+
∂qk(a, t)

∂a

)

=

1

2π

(

ei
u
N − 1

)

∫ ∞

−∞

Q(u− v, a, t)
Q(u, a, t)

ω(v, a, t) dv =

1

2π

∫ ∞

−∞





(

e−i u
N − 1

)

exp





∞
∑

j=1

ij

j!
ujhj(−v, a, t)



 eq(−v,a,t)ω(v, a, t)



 .

(3.12)

48



“mmnp-format” — 2012/11/24 — 13:57 — page 49 — #18
✐

✐

✐

✐

✐

✐

✐

✐

Pilar Guerrero, Tomás Alarcón Stochastic multiscale models of cell populations

For convenience, we have defined the following quantity hj(−v, a, t) ≡ ij(q(j)(−v, a, t) − q(j)(0, a, t))
and we have used q(0)(−v, a, t) = q(−v, a, t).

Let us focus on the first cumulant q1(a, t) = 〈n(a, t)〉, which is given by the O(ǫ) terms in Eq. (3.12).
Expanding the exponentials within the right hand side of Eq. (3.12) and keeping only first order terms
we obtain:

ǫ

(

∂q1(a, t)

∂t
+
∂q1(a, t)

∂a

)

= − ǫ

2π

∫ ∞

−∞

eq(−v,a,t)ω(v, a, t)m0(ǫ, v, a, t) dv, (3.13)

where ǫ ≡ N−1 and mk(ǫ, v, a, t) is defined by:

exp





∞
∑

j=1

ij

j!
ujhj(−v, t)



 =

∞
∑

k=0

ik

k!
ukmk(ǫ, v, a, t). (3.14)

Eq. (3.13) needs to be properly balanced with respect to the small parameter ǫ. Such balance is
achieved if, to leading order, m0(ǫ, v, a, t) = O(ǫ0), which is, in fact, satisfied as m0(ǫ, v, a, t) = 1 (see Eq.
(3.14)), and q1(a, t) = O(ǫ0).

Likewise, for second cumulant, q2(a, t), we obtain:

ǫ
2

(

∂q2(a,t)
∂t + ∂q2(a,t)

∂a

)

=

1
2π

∫ ∞

−∞

(

−ǫm1(ǫ, v, a, t) +
ǫ2

2
m0(ǫ, v, a, t)

)

eq(−v,a,t)ω(v, a, t) dv.
(3.15)

Balancing Eq. (3.15) leads to the leading-order scaling q2(a, t) = O(ǫ) and m1(ǫ, v, a, t) = O(ǫ). These
scaling relationships can be checked to be consistent with Eq. (3.14).

In general, we can show that the scaling substitution qk(a, t) = ǫk−1qk1(a, t) + ǫkqk2(a, t) + O(ǫk+1)
and mk(ǫ, v, a, t) = ǫnmk1(v, a, t) + ǫk+1mk2(v, a, t) +O(ǫk+2) is consistent with Eq. (3.14) and leads to
balanced equations for the cumulants qk(a, t).

To leading order, the equation for q1(a, t) reads:

(

∂q1(a, t)

∂t
+
∂q1(a, t)

∂a

)

= − 1

2π

∫ ∞

−∞

eq(−v,a,t)ω(v, a, t) dv, (3.16)

whereas the corresponding equation for q2(a, t) is given by:

ǫ

2

(

∂q2(a, t)

∂t
+
∂q2(a, t)

∂a

)

=
1

2π

∫ ∞

−∞

(

−ǫm1(ǫ, v, a, t) +
ǫ2

2

)

eq(−v,a,t)ω(v, a, t). (3.17)

The leading order approximation of Eq. (3.17) is obtained as follows. From the definitions of the
quantities hj and mj we obtain the following expression for hj :

hj(−v, a, t) = i−j
∞
∑

k=1

ik+j

k + j
(∂u)

j
(

u(k+j)q(k+j)(a, t)
)

|u=−v.

For j = 1, from Eq. (3.14), we have that m1 = h1. Taking into account the scaling substitution for
mk and qk, we obtain the following O(ǫ) approximation:

ǫm11(v, a, t) = ǫ
i

2
∂v(v

2q21(a, t)). (3.18)

Thus, substituting Eq. (3.18) and keeping only the leading order contributions, the equation for
q21(a, t) reads:

(

∂q21(a, t)

∂t
+
∂q21(a, t)

∂a

)

=
1

2π

∫ ∞

−∞

(−ivq21(a, t) + 1) eq(−v,a,t)ω(v, a, t).
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Furthermore, the scaling substitution for qk(a, t) and Eq. (3.6) lead to:

q(u, a, t) = 1
ǫρ(ǫ, u, a, t),

ρ(ǫ, u, a, t) =
∞
∑

j=1

∞
∑

k=1

ij

j!
uj
(

ǫj+k−1qjk(a, t)
)

. (3.19)

This almost completes our derivation of the evolution equations for q1(a, t) and q2(a, t) to leading order
Eq. (3.19) can be rewritten as

ρ(ǫ, u, a, t) = ǫρ1(u, a, t) +O(ǫ2), (3.20)

ρ1(u, a, t) = iuq11(a, t). (3.21)

Substituting Eqs. (3.20) and (3.21) into Eq. (3.16) we obtain that, to leading order, the equations for
q11(a, t) and q21(a, t) are the following equations:

(

∂q11(a, t)

dt
+
∂q11(a, t)

da

)

= − 1

2π

∫ ∞

−∞

eq(−v,a,t)w̄(v, a, t) dv = c(q11, t),

where w̄(v, a, t) is the Fourier transform of w(n, a, t) so the quantity c(q11, t) = − (ν + b(a)) q11.
Finally, the evolution equation for n(a, t) = q11(a, t) is given by:

(

∂n(a,t)
dt + ∂n(a,t)

da

)

= − (ν + b(a))n(a, t),

n(0, t) = 2

∫ ∞

0

b(a)n(a, t) da,
(3.22)

whereas the equation for the variance and σn(a, t) = q21(a, t) is given by:

(

∂σn(a,t)
dt + ∂σn(a,t)

da

)

= (ν + b(a))σn(a, t)− (ν + b(a)),

σn(0, t) = 4

∫ ∞

0

b(a)n(a, t) da.
(3.23)

3.3. Gaussian approximation for the stochastic multiscale model

After the derivation of the previous sections, we can now write down a Gaussian approximation to
the multiscale model schematically represented in Fig. 1. The coupled system which determines such
approximation is as follows:

– Oxygen concentration, O2:

dO2

dt
= S − κO2M, where M(t) =

∫ ∞

0

n(a, t) da, (3.24)

where O2 is the oxygen concentration, which is consumed by the total population, M(t), S is the rate
of delivery of oxygen to the population, which we assume to be constant, and κ is the per-cell oxygen
consumption rate, which we assume to be age-independent

– Age- and oxygen-dependent birth rate (Section 3):

ẋ =
∑

i

riwi(x(a), r, a, O2),

Q̇ij(a) =
∑

k

(

Qik
∂cj(x, a)

∂xk
+
∂ci(x, a)

∂xk
Qkj

)

+
∑

r

rirjw(x, r, a, O2), (3.25)

−b(a) = dG(a)

da
= −1

2

d
daσy(a)

σy(a)
(G(a)− 1)−

(

Ω

2πσy

)1/2
dy(a)

da
e−Ωφ(k),
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– Mean and variance of the age-structured population (Sections 3.1 and 3.2):

∂n(a, t)

dt
+
∂n(a, t)

da
= − (ν + b(a))n(a, t),

n(0, t) = 2

∫ ∞

0

b(a)n(a, t) da, (3.26)

∂σn(a, t)

dt
+
∂σn(a, t)

da
= (ν + b(a))σn(a, t)− (ν + b(a)),

σn(0, t) = 4

∫ ∞

0

b(a)n(a, t) da.

4. Numerical scheme: Age-dependent τ−leaping method

In this section we describe a stochastic numerical method to compare the solution of ME (3.3)-(3.2) with
the solutions of WKB approximation given by system of equations (3.24-3.26).

We use an extension of the τ -leaping’s simulation method in the birth-death process described by ME
(3.3)-(3.2), where the probability of birth is described by Eq. (2.11). Using τ -leaping in every age group
present in the population, n(ai), we generate a time step in each age, τi. The global time step, τ , is
chosen to be the minimum of τi ∀i. At this point, we can calculate the number of of birth and death
events that will occur within time span τ at every age group n(ai), which are given by Poisson deviates
P(dij τ) where:

di1 = b(ai)n(a(i))τ, (4.1)

di2 = νn(a(i))τ, (4.2)

where Eqs. (4.1) and (4.2) are the probabilities of birth and death during a (short) time interval of
duration τ for cells of age a(i). The events whose probabilities are given by Eqs. (4.1) and (4.2) have
associated changes in the population n(a(i)) given by ri1 = −1 and ri2 = −1, respectively. In addition,
a birth event (whose probability is given by Eq. (4.1)) have associated a change in the new born cells,
i.e. cell with age a = 0, given by r0 = 2.

We first introduce the method and how to generalise it to our age-structured problem. We then proceed
to describe the algorithm we use in our simulations.

4.1. Age-structured τ -leaping method

In this section, we are going to explain the τ -leaping method describing in [12, 21] and the modification
that we have carried out. Gillespie’s stochastic simulation algorithm (SSA) [20] provides exact sample
paths of the probability density which solves the corresponding Master Equation. It does so by carrying
out every single event in the sample path which means that this method can be painfully slow in particular
for systems involving both fast and slow processes. The SSA also generates a vast amount of detailed
information on a particular sample path whose knowledge may be unnecessary in many applications. In
view of this situation, the τ -leaping method [21] was proposed which aims to speed up the simulation
of Markov processes by answering the following question: How often does each process happen in the
next specified time interval τ? The mathematical foundation of this algorithm can be traced back to
the so-called representation of the Markov processes. Specifically, assume a Markov process, X(t), whose
probability density satisfies a Master Equation:

dΨ(X, t)

dt
=
∑

i

(Wi(X − ri, t)Ψ(X − ri, t))−Wi(X, t)Ψ(X, t). (4.3)
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Each reaction, i, involved in the process described by Eq. (4.3) is characterised by a exponential
waiting time distribution [20]:

Pi(tw|X(t)) =Wi(X, t)e
−tw/Wi(X,t).

We therefore know that the number of times channel i fires in the time interval (0, t) is given by

P
(

∫ t

0 Wi(X, s)ds
)

where P(λ) is a random number sampled from a Poisson distribution with parameter

λ [24]. Therefore, X(t) can be formally represented as:

X(t) = X(t = 0) +
∑

i

riP
(∫ t

0

Wi(X, s)ds

)

.

Using the Markov property, X(t+ τ) can be expressed in terms of X(t) as:

X(t+ τ) = X(t) +
∑

i

riP
(∫ t+τ

t

Wi(X, s)ds

)

. (4.4)

Thus, the question that the τ -leaping method aims to address can be reformulated into the following
form: Under which conditions Eq. (4.4) can be approximated by:

X(t+ τ) ≃ X(t) +
∑

i

riP (Wi(X, t)τ) .

In other words, we need to estimate τ so that
∫ t+τ

t
Wi(X, s)ds ≃ Wi(X, t)τ . This is a problem for

which no systematic solution has been devised so far. Instead, estimates, referred to as leap conditions,
have been derived based on different assumptions [12, 21]. Roughly speaking, τ needs to be chosen so
that |Wi(X, t) + ki)−Wi(X, t)| is bounded by a small quantity.

In order to generalise this method to our age-structured model, we first consider an age-number vector
whose components are n(ai) with i ∈ It where It spans the set of ages actually represented in the
population, i.e. such that n(ai) > 0 at time t. The first issue is to choose a value for τ that satisfies a
leap condition. The simplest generalisation of the standard τ -leaping algorithm is to choose a leap value,
τi, for every age ai with i ∈ It, according to the criteria established in [12] and then choose the minimum
among all of them.

We start by computing the time τi for every age, ai in i ∈ It, using the method formulated by Cao
et al. [12], which improves upon previous results by Gillespie & Petzold [22], as it adheres more closely
to the leap condition by uniformly bounding the relative changes in the propensity functions. Moreover,
this method is faster than the procedure suggested in [22], since the number of auxiliary steps used to
calculate the time leap increases linearly with the number of reactant species, rather than quadratically
with the number of reaction channels [12].

The underlying strategy of this τi-selection procedure is to bound the relative changes in the number
of individuals of populations in such a way that the relative changes in the propensity functions will all
be approximately bounded by a specified value ǫ (0 < ǫ < 1). Let

∆τin(a(i)) ≡ n(a(i))(t + τi)− n(a(i))(t) = −
∑

j

Pi(dij τi) (4.5)

with j = 1, 2 The τ selection we shall base it on the condition

∆τin(a(i)) ≤ max{ǫdij , 1}, ∀j ∈ Jrs, (4.6)

where Jrs denotes the set of indices of all population with different age (so j ∈ Jrs if and only if dij is an
argument of at least one propensity function).
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Since the Poisson random variables Pi(dij τi), on the right-hand side of Eq. (4.5) are statistically
independent and have means and variances dij τi, the mean and variance of the linear combination Eq.
(4.5) can be computed straightforwardly,

〈∆τin(a(i))〉 =
∑

j

−dij τi, var{∆τin(a(i))} =
∑

j

dij τi, ∀j ∈ Jrs. (4.7)

Using the same reasoning that was used in deriving the Gillespie and Petzold τ -selection procedure
[22], we may consider the bound (4.6) on ∆τin(a(i)) to be substantially satisfied if it is simultaneously
satisfied by the absolute mean and the standard deviation of ∆τin(a(i)):

|〈∆τin(a(i))〉| ≤ max{ǫdij , 1},
√

var{∆τin(a(i))} ≤ max{ǫdij , 1}, ∀j ∈ Jrs. (4.8)

Substituting formula (4.7) into conditions (4.8), we obtain the following bounds on τ

τi ≤
max{ǫdij , 1}
|∑j dij |

, τi ≤
max{ǫdij , 1}2
|∑j dij |

j = 1, 2

so taking

τi = minj∈Jrs

{

max{ǫdij , 1}
|∑j dij |

,
max{ǫdij , 1}2
|∑j dij |

}

.

At this point, we have computed a time leap for every age, τi. To take the system forward in time, we
take the minimum τi which satisfies the corresponding leap condition

τ = min
i∈I
{τi}

and calculate the quantities kij = P(dij , τ) and λi =
∑

j

kij . Finally, we make effective the leap by

replacing t by t + τ and n(a(i)) by n(a(i)) − λi. If ki1 = P(di1 , τ) is not zero for some age i, it means
that in the population with age ai there have been births, so the zero-age population, n(0, t+ τ), is given

by n(0, t+ τ) = 2
∑

i

P(di1 , τ). This also implies the age-number vector has now a new component, i.e.

It+τ = It + 1.
To calculate di1 , we need to know the value of the birth rate, b(ai) at new time t + τ . For this, we

resolve the system (3.24-3.25) in the interval of time (t, t + τ) for each age using the vector
−−−→
n(ai), we

use implicit 2nd order Runge-Kutta implemented in the GNU Scientific Library (GSL). Now, we have
the probability of birth at time t using Eq. (2.11), we obtain 1−G(ai)t at time t. We calculate the rate
birth for each age,

b(ai) =
(1−G(ai)t)− (1 −G(ai)t+τ )

τ
.

4.2. Description of the algorithm

The simulation algorithm is:

1. Initialisation. Start with an initial age-number vector,
−−−−→
n(a, 0) at t = 0, whose components, n(ai, 0), are

the initial population corresponding to each age group present in the initial population. The dimension
of this vector is denoted by I, i.e. the number of age groups with non-zero initial population. At t = 0,
b(ai, t = 0) = 0 for all age.

2. Compute birth and death rates for each age: di1 = b(ai)n(a(i)) and di2 = νn(a(i)).
3. Determine the time leap τ according to the leap condition (see Section 4.1)
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Figure 7. The 100 (lines) and one (dots) realization of τ -leaping simulation algorithm of Eq.
(3.3)-(3.2) Ω = 103 (100 realizations dash-dot blue line and one realization vertical dash blue
line) and Ω = 107 (100 realizations red line and one realization starts red) compare between
solution Eq. (3.22) (green dash-line) and error calculated in Eq. (3.23) (black dash-lines), with
N = 104, ν = 0.0001 and initial condition x = (5, 1.4, 0.01, 0.01, 0, 0.99, 0.01, 0, 0.01).

4. Update the system variables: t← t+ τ ,
−−−−−−−→
n(a, t+ τ) =

−−−−→
n(a, t)−

∑

i

(P(di1 , τ) + P(di2 , τ)).

5. Determine the number of births: n(0, t) = 2
∑

i

P(di1τ). If the number of births n(0, t) 6= 0, we must

add the new component to the age-distribution vector, i.e. I ← I + 1.
6. Solve equation for the oxygen concentration in the interval (t, t,+τ): ∂tO2 = F − κO2M , where

M(t) =
∑

i

n(ai, t) is the total population.

7. Calculate the birth rate, b(ai), using the probability of birth at time t using Eq. (2.11), we obtain

1−G(ai)t at time t. We calculate the rate birth in each age, b(ai) =
(1−G(ai)t−τ )−(1−G(ai)t)

τ .
8. Loop through items 2 to 7 until t ≥ T .

Simulation results using this algorithm are shown in Figs. 7 and 9, where the age-structured τ -
leaping simulation algorithm is compared with the numerical solution of the system of equations Eqs.
(3.22) in order to validate the WKB-Gaussian approximation. The Gaussian approximation Eqs. (3.22)
implies that a 68.2% of the realisations should stay within the region delimited by the upper and lower
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Figure 8. Compare the oxygen consume using 100 realization of τ -leaping simulation algo-
rithm of Eq. (3.3)-(3.2) Ω = 103 (blue dash-dot line) and Ω = 107 (red line) between oxygen
consume using Eq. (3.22) (green dash-line) with N = 104, ν = 0.0001 and initial condition
x = (5, 1.4, 0.01, 0.01, 0, 0.99, 0.01, 0, 0.01).

boundaries given by n(t, a)±Ω−α0/2σn(t, a). Figure 7 shows that the stochastic sample paths generated
by our stochastic algorithm lay between the bounds predicted by the Gaussian approximation.

5. Conclusions & discussion

In this paper, we present a formulation of a stochastic multiscale model of cell population dynamics where
different levels of biological organisation, characterised by different time scales (see Fig. 1) are coupled.
We describe the stochastic cellular population dynamics (cellular scale, as per the terminology of [2]) by
means of a birth and death process where the birth rate is determined by a model of oxygen-regulated
cell cycle progression (intracellular scale, as per the terminology of [2]), thus coupling the intracellular
and cellular scales. The resulting coupled system is a stochastic age-structure cell population. The birth
rate is described in terms a novel method on a mean-first passage time approach, which allows us to
determine the birth rate as the average rate at which key proteins involved in cell-cycle regulation cross
a threshold of activation as a function of cell age (i.e. time elapsed since last cell division). Therefore
our methodology allows us to analyse the coupling between fluctuations due to molecular noise at the
intracellular level with cellular noise due to finite population size.

In order to analyse the behaviour of our model, in Section 3, we have extended a WKB asymptotic
method initially proposed by Kubo and co-workers [3, 30] to obtain an approximate solution of our age
structure birth-and-death Master Equation, Eq. (3.5). Carrying out this approximation to lowest order,
we obtain a Gaussian approximation to the (age-structured) probability density where the corresponding
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Figure 9. Number of births using 100 realization of τ -leaping simulation algorithm of Eq.
(3.3)-(3.2) Ω = 103 (blue vertical dash line) and Ω = 107 (red line) compare between births
using Eq. (3.22) (n(0, t) is green dash-line) with N = 104, ν = 0.0001 and initial condition
x = (5, 1.4, 0.01, 0.01, 0, 0.99, 0.01, 0, 0.01).

mean, n(a, t), and variance σn(a, t) are the solutions of two coupled semi-linear PDEs (see Eqs. (3.24-
3.26)).

The semi-linear PDEs for n(a, t) and σn(a, t) are coupled to the intracellular scale through its de-
pendence upon the age-dependent birth rate b(a, t). This quantity is obtained in terms of a mean-first
passage time for the oxygen-dependent cell-cycle model (details are given in Sec. 2): We consider that
the cell enters the proliferating phase of the cell-cycle when the concentration of CycB exceeds a given
threshold. The birth rate is therefore given by the rate at which the system crosses said threshold. In
order to solve this problem we carry out a WKB approximation [3, 30] to the corresponding Master
Equation (se Eq. (2.1) and Table 1) to obtain a Gaussian approximation, which is determined by the
solution of the system of ODEs for the mean, Eq. (2.6) and for the variance (2.7). This, in turn, allows
us to find an approximation to the solution of the mean-first passage time problem and, therefore, to the
age-dependent birth rate.

Our formulation for the oxygen-regulated cell-cycle progression is described by the mean-first passage
time activation. The birth approach is calculated by the probability of cyclin-Cdk is down a threshold,
it is the probability of extinction, Eq. (2.10), so the birth process happens with the complementary
probability. To calculate this activation process, we have used WKB method to obtain an approximate
solution to the cell-cycle ME. This result is a series of systems of ODEs for the cumulants of order n,
we have used order 2 to obtain a solution of the ME, Eq. (2.9). According to the results from our
reduced model compare with the Gillespie simulations, the approach is good approximation only for less
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intracellular noise, big size of the system form order Ω = 107, see Fig. 3, to obtain a better approximation
we must use a greater order than 2 in the WKB approximation. The system is coupled through a negative
feed-back loop where the population consumes oxygen which, in turn, regulates cell-cycle progression and
therefore birth rate.

In order to validate our asymptotic approach in the stochastic multiscale model, we have introduced
an age-structured extension of the τ -leaping simulation method in birth-death process associated to Eq.
(3.3)-(3.2) with the birth rate calculated by Eq. 2.11. We compare the results of stochastic simulations
with our WKB approximation of the age-structured cell population dynamics in Figs. 7, where we show
realisations of the process generated by using our age-structured τ -leaping model with the Gaussian
asymptotic approximation, 8, where we plot the time evolution of the oxygen concentration, and 9,
where we show the number of births for the asymptotic approximation and the stochastic simulations.
This comparison allows us to assess both the accuracy and range of applicability of our asymptotic
method. Our results confirm that, for the intracellular model considered in this paper, the asymptotic
approximation is accurate only if we consider the scale for protein numbers in the intracellular cell-cycle
model, Ω, to be large enough. In this case, as shown in Figs. 7, 8, and 9 we find that the agreement
between numeric and asymptotic results is good. This limitation regarding the number of proteins stems
from the fact that, in the cell-cycle model considered in this paper, the transition which heralds the onset
of proliferation (i.e. CycB reaching a threshold value) is shortly preceded from a saddle-node bifurcation.
Close to such dynamical phase transition, our Gaussian approximation is expected to be unable to capture
the statistics of the fluctuations [8]. Thus in order to capture the dynamics of the system with accuracy
we have to move well into the small fluctuations regime (i.e. large Ω). This means that our model should
be able to capture the behaviour of systems exhibiting no such bifurcations in a much larger regime.

An alternative to the WKB method used in this manuscript would be the use of Van Kampen’s system-
size expansion [59], also known as the linear noise approximation (LNA), which is closely related to Kubo
et al. [30] WKB approximation. In spite of the similarities between both methodologies, they are not
exactly equivalent. The LNA assumes that the random variable can be written as X(t) = φ(t)+Ω1/2ξ(t),
where φ(t) is the solution of the mean-field equations and ξ(t) is a random variables which satisfies a
linear Fokker-Planck equations from, where (linear) ordinary differential equations for the first and second
moments of ξ(t) can be derived. The WKB approximation is based on an Ansatz regarding the form of
the solution of the Master Equation, which means that, as far as our results are concerned, the equations
for the variance of X(t) are not, in general, the same, although the same mean-field approximation is
obtained in both cases.

The methodology presented in this paper can be generalised in a number of ways as well as being
applied to a variety of situations. One such situation that would be interesting to analyse, in particular
in relation to cancer evolution and therapy, is to introduce hypoxia-induced quiescence. Cancer cells
have the ability to go into quiescence under hypoxic conditions [1,7], so it would be interesting to factor
this capability into our model, specially in the context of competition models between cells which do not
undergo hypoxia-induced quiescence (normal cells) and cells which enter quiescence (cancer cells) [2], in
particular in the context of predicting the outcome of cell-cycle-specific therapies, where cells are killed
upon entering specific cell-cycle stages [44]. This analysis is postponed for future work.

A related issue that would be interesting to explore using the methodology put forward in this
manuscript is the issue of cancer cell metabolism (i.e. the Warburg effect). One of the several, more re-
markable phenotypic changes induced by the Warburg effect, together the an increase of the extracellular
acidification rate, is the reduction of the oxygen consumption rate (OCR) [13]. It would be interesting
to analyse the effect of considering different cell types characterised by different metabolic states, i.e.
different OCRs, in particular in its relation to the effects of hypoxia. This issue will be further explored
in future research.

Further future work, we propose to extend our stochastic multiscale framework to include spatial
degrees of freedom and the coupling to a model of tumour induced angiogenesis. To do this, we need to
resort and adapt more efficient methods of stochastic simulations such as the Next Reaction Method [19].
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A. Appendix A

This Appendix is devoted to establish the relation between the parameters of our stochastic model, d1,
d−1, d2 d3, d−3, d4, and the values of the macroscopic parameters given in [1]. In order to achieve this,
we apply the quasi-steady state approximation (QSSA) to the reaction scheme:

X1 + E1

d1

⇄
d−1

C1
d2→ E1 +X activation of Cdh1/APC

X + E2

d3Y M

⇄
d−3YM

C2
d4Y M→ E2 +X1 inactivation of Cdh1/APC

where the parameters d1, d−1, d2 d3, d−3, d4 are related to those in [1] through the QSSA proposed by
Briggs and Haldane.

This mean-field equations for this reaction mechanism is given by the system of ODEs Eq. (A.1) for
the rates of change of each species involved.

dx1
da

= −d1x1e1 + d−1c1 + d4ymc2,

de1
da

= −d1x1e1 + (d−1 + d2)c1, (A.1)

dc1
da

= d1x1e1 − (d−1 + d2)c1,

dx

da
= −d3xyme2 + d−3ymc2 + d2c1,

de2
da

= −d3xyme2 + (d−3 + d4)ymc2,

dc2
da

= d3xyme2 − (d−3 + d4)ymc2,

dy

da
= a4 − (a1 + a2x+ a3z)y.

where x1 = [X1], x = [X ], ci = [Ci] and ei = [Ei]. Moreover, we use the conservation laws: dei
da + dci

da = 0,

whereby the total enzyme concentration is constant ci + ei = e0 (i = 1, 2), and dx1

da + dc1
da + dx

da + dc2
da = 0,

so that the total concentration of Cdh1 is conserved: x1 + c1 + x+ c2 = s0.

In order to proceed further, we introduce rescaled variables:

x̄1 =
x1
s0
, x̄ =

x

s0
, c̄i =

ci
e0

(i = 1, 2), τ = d3e0y0a, ǫ =
e0
s0
, ȳ =

y

y0

in terms of which, we obtain the following system:
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dx̄1
dτ

= − d1
d3y0

x̄1(1− c̄1) +
d−1

d3y0s0
c̄1 +

d4
d3s0

ȳmc̄2,

ǫ
¯dc1
dτ

=
d1
d3y0

x̄1(1− c̄1)−
(d−1 + d2)

d3y0s0
c̄1,

dx̄

dτ
= −x̄ȳm(1− c̄2) +

d−3

d3s0
ȳmc̄2 +

d2
d3y0s0

c̄1,

ǫ
dc̄2
dτ

= x̄ȳm(1− c̄2)−
(d−3 + d4)

d3s0
ȳmc̄2,

We now take the quasi-steady-state approximation ǫ dc̄idτ = 0 (i = 1, 2), which leads to:

c̄1 =
d1x̄1

d−1+d2

s0
+ d1x̄1

,

c̄2 =
x̄2

x̄2 +
d−3+d4

d3s0

,

dx̄

dτ
= −

ȳmx̄
(

d4

d3s0

)

x̄+ d−3+d4

d3s0

+
d2

d3y0s0

d1x̄1

d1x̄1 +
d−1+d2

s0

. (A.2)

We now use the conservation law dx̄1

dτ + ǫ dc̄1dτ + dx̄
dτ + ǫ dc̄2dτ = 0, i.e. x̄1 + x̄ = 1, so that Eq. (A.2) can be

rewritten as:

dx̄

dτ
= −

ȳmx̄
(

d4

d3s0

)

x̄+ d−3+d4

d3s0

+
d2

d3y0s0

(1− x̄)
1− x̄+ d−1+d2

d1s0

which yields the following relation with between the parameters of our stochastic model and those of the
mean-field approximation given in reference [58]: d2 = (1+b3u)s0/e0, d4 = b4s0/(y0e0), d−1 = J3s0d1−d2,
d−3 = J4s0d3− d4 where bi and Ji (i = 3, 4). This equivalence allows us to give values to the parameters
of our stochastic model so that the mean-field behaviour is the same as in the models by Alarcón et al.
[1] and Tyson & Novak [58].
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