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The role of fluctuations in perception
Gustavo Deco1 and Ranulfo Romo2

1 Instituciò Catalana de Recerca i Estudis Avançats, Universitat Pompeu Fabra, Department of Technology, Computational

Neuroscience, Passeig de Circumval.laciò, 8, 08003 Barcelona, Spain
2 Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, 04510 México, D.F. México

Noise contributed by the probabilistic spiking times of
neurons has an important and advantageous role in
brain function. We go beyond the deterministic noise-
less description of the dynamics of cortical networks and
show how the properties of the system are influenced by
the spiking noise. We review here recent results that
show the direct link between brain activity and psycho-
physically quantified behaviors during a somatosensory
detection task. We focus on the following remarkable
observation in this somatosensory task: when a near-
threshold stimulus is presented, a sensory percept may
or may not be produced. These perceptual judgments
are believed to be determined by the fluctuation in
activity of early sensory cortices. We show, however,
that the behavioral outcomes associated with near-
threshold stimuli depend on the neuronal fluctuations
of more central areas to early somatosensory cortices.
Furthermore, we show that the behavioral correlate of
perceptual detection is given by a noise-driven transition
in a multistable neurodynamical system. Thus, neuronal
fluctuations can be an advantage for brain processing
because they lead to probabilistic behavior in decision
making in this and other sensory tasks.

Introduction
One of the most fundamental concepts in the psychology
and philosophy of the mind is the notion of perception.
Perception refers to the act of acquiring individual aware-
ness of an event or entity external to one’s self. The external
physical event or entity exerts an effect on the senses that,
after further cortical processing, generates a new grade of
mind called a percept. Since the first days of psychology, two
challenging questions have been: how is sensory infor-
mation encoded and, in particular, how does further proces-
sing transform this represented information into the
individual awareness of a percept? In other words, the
essential problem is still the seminal concept of subjective
sensation. More than one century ago, the pioneering
researchwork ofErnstHeinrichWeber andGustavTheodor
Fechner [1] began to scrutinize the concept of sensation
quantitatively by studying the interplay between the
physical and psychical world with the experimental para-
digm of perceptual detection. In this paradigm, human
subjects have to report a produced or not produced sensory
percept when a near-threshold sensory stimulus is pre-
sented. Nowadays, utilizing the same perceptual-detection
paradigm, modern neuroscience aims to discover the
neuronal correlates of sensation by showing how neural

activity encodes the physical parameters of the sensory
stimuli both in the periphery and central areas of the brain
[2–4]. Single-cell recordings and functional magnetic reson-
ance imagingopen the possibility to investigatemore closely
the brain processing underlying the generation of a percept
[3,5–9]. Electroencephalogramandmagnetoencephalogram
techniques have also been used to study the neural systems
that are involved in perceptual decision making (for a
review, see Ref. [10]). Now, it is possible to provide exper-
imentally answers to a number of questions. For example,
where and how in the brain do the neuronal responses that
encode the sensory stimuli translate into responses that
encode a perceptual decision [2,3]? What components of the
neuronal activity evoked by a sensory stimulus are directly
related to perception [5,6]? Where and how in the brain is
sensory information stored in memory [11]?

Despite a large amount of measurements at all macro-
scopic, mesoscopic and microscopic neuroscience levels,
understanding the brain processing involved in perception
is difficult. The main problem is that perception can be
described at many different levels of abstraction, from the
high-level computational principles of processes involved
in perception through to the neurophysiological principles
by which neurons function. The solution of this problem
requires a theoretical framework that explicitly estab-
lishes a link between the underlying neuronal substrate
and the algorithmic computational level of perception in a
unifying way. The benefits that might be gained from this
linkage can help us to understand perceptual processes.

Computational neuroscience offers a framework for un-
derstanding the computational mechanisms underlying the
neuronal correlates of perception. Computational models
achieve this linkage by the explicit construction and simu-
lation of microscopic models based on local networks with
large numbers of neurons (>1000) and synapses (>1 000
000) that lead to the desired global behavior of the whole
system. This type of biophysical realistic microscopic model
is expressed by a dynamical system owing to the fact that
processing does not operate in a completely feed-forward
manner because recurrent feedback is also present [12].
Apparently even the simple detection of a stimulus can
depend on dynamic interactions between different groups
of neurons. At a neural level, backward connections are at
least as numerous as feed-forward connections, and there
are good grounds for supposing that these feedback connec-
tions have a necessary function in brain processing [13]. To
understand information processing we need to understand
the dynamic contributions from three feed-forward and
feed-back processes over time, and this involves more than
a one-sweep feed-forward computation [14–16]. An in-depth
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analytical study of these detailed microscopic dynamical
models is not possible and, therefore, a reduction of the
hypothesized models is necessary to establish a systematic
relation between structure (parameters), dynamics and
functional behavior (i.e. to solve the so-called ‘inverse’ pro-
blem). A mere simulation of brain functions is, in general,
not useful because there are usually no explicit underlying
first principles. To overcome this problem, statistical phy-
sics mean-field methods have been introduced to analyti-
cally reduce the system [17,18]*. Further simplifications are
possible by reducing the system dynamics to a one-dimen-
sional diffusion equation typically used for describing the
behavioral level [19].

Many recent examples in theneuroscience literature (e.g.
workingmemory [17], attention [15,16] anddecisionmaking
[20]) advocate for a dynamical systemapproach that enables
us to discover the neuronal computation underlying specific
brain function by solving the neurodynamical inverse pro-
blem of finding the connectivity structure from which the
measuredneuronal correlates emerges.However, dynamics
alone is not enough. Neuronal recordings are typically
characterized by a high degree of variability in the firing
activity bothwithinandbetween trials.Usually both experi-
mentalists and theoreticians assume that thesefluctuations
are irrelevant and consequently they average them over
repeated measurements. Nevertheless, these stochastic
fluctuations in the neuronal dynamics might actually not
be just a concomitant feature of real brains but could have a
functional role (for a review, see Ref. [21]). In fact, the
probabilistic behavior observed during certain perceptual
tasks indicates a link between the stochasticity at the
cellular and behavioral level [22].

Here, we show that both neurodynamics and stochastic
fluctuations are important, in the sense that both have an
essential computational role for a complete explanation of
perception. To show this, we take as a prototypical example
the most elemental and historical task of perceptual detec-
tion mentioned here. By constructing and analyzing com-
putational models, we establish the link that accounts for
measurements both at the cellular and behavioral level. In
particular, we demonstrate that in perceptual detection
subjects exhibit probabilistic behavior, which trial-by-trial
covariates with the firing activity of single-cell recordings.
The theoretical analysis of the behavioral and neuronal
correlates of sensation shows how variability at the
neuronal level can give rise to probabilistic behavior at
the network level and how these fluctuations influence
network dynamics qualitatively.

The neurophysiology of perceptual decisions
The detection of sensory stimuli is among the simplest of
perceptual experiences and is a prerequisite for any
further sensory processing. A fundamental problem posed

by the sensory detection tasks is that repeated presen-
tation of a near-threshold stimulus might unpredictably
fail or succeed in producing a sensory percept.Where in the
brain are the neuronal correlates of these varying percep-
tual judgments? This problem has been recently addressed
by de Lafuente and Romo [5,6]. These authors trained
monkeys to perform a detection task (Figure 1a). In each
trial, the animal had to report whether the tip of a mech-
anical stimulator vibrated or not (Figure 1b). Stimuli were
sinusoidal, had a fixed frequency of 20 Hz and were deliv-
ered to the glabrous skin of one fingertip. Crucially, they
varied in amplitude across trials. Stimulus-present trials
were interleaved with an equal number of stimulus-absent
trials in which no mechanical vibrations were delivered
(Figure 1b). Depending on the responses of the monkeys,
trials could be classified into four types of responses: hits
and misses in the stimulus-present condition and correct
rejections and false alarms in the stimulus-absent con-
dition (Figure 1c). Stimulus-detection thresholds were cal-
culated from the behavioral responses (Figure 1d).
Previous studies seeking the neuronal correlates of sensory
detection showed that, in the case of the vibrotactile
stimuli, the responses of neurons of the primary somato-
sensory cortex (S1) account for the measured psychophysi-
cal accuracy. However, imaging and physiological studies
show that, in addition to the sensory cortices, areas of the
frontal lobe are also active during sensory detection and
discrimination [3,7,23]. This evidence raises and important
question: what are the specific functional roles of primary
sensory cortices and association areas of the frontal lobe in
perceptual detection?

To further test the contributions of these cortical areas
in perceptual detection, de Lafuente and Romo [5,6]
recorded the activity of S1 and medial-premotor-cortex
(MPC; a frontal lobe area involved in motor planning
and decision making [23]) neurons while monkeys per-
formed the task (Figure 1). They found that the responses
of S1 neurons varied as a function of the stimulus strength
(Figure 1e) but did not correlate with the behavioral
responses (Figure 1f). On the contrary, the responses of
MPC neurons did not vary as a function of the stimulus
strength (Figure 1e), but correlated with the behavioral
responses on a trial-by-trial basis (Figure 1g). The activity
of the MPC neurons was strong and sustained and, with
near-threshold stimuli, it was clearly different for hit-and-
miss trials (Figure 1g, upper left panel). Moreover, almost
70% of the false-alarm responses were predicted from
increases in the activity of MPC neurons in stimulus-
absent trials (Figure 1g, upper right panel). Interestingly,
the activity of MPC neurons preceding the stimulus onset
was higher during hits than during misses (Figure 1g).
These early increases in activity predicted detection suc-
cess significantly above chance. This increased pre-
stimulus activity might be associated with trial history
during a run. In fact, the probability of detection of a sub-
threshold stimulus was increased in trials preceding a
false alarm (see Figure 3f of Ref. [5]). Thus, increased
responses of MPC neurons were associated with stimulus
presence or with false alarms. These results further sup-
port a detection model in which, to judge the stimulus
presence or absence, a central area(s) with internal fluctu-

* In the mean-field approximation, the currents impinging on each neuron in a
populationhave the samestatistics because thehistory of these currents isuncorrelated.
The mean-field approximation entails replacing the time-averaged discharge rate of
individual cells with a common time-dependent population activity (the ensemble
average). Thus, in a statistical sense, the rate of a single neuron calculated across time
is equivalent to the rate of activity across the neurons in a given population at a given
time. These approximations enable us to reduce consistently the dynamics of a large
number of differential equations describing each neuron in a population by a single rate
equation describing the steady state of the population dynamics.

Review Trends in Neurosciences Vol.31 No.11
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ations must track the activity of S1. These results indicate
that perceptual judgments arise in the activity of frontal
lobe neurons but not in sensory cortices. Importantly,
internal fluctuations of frontal lobe neurons have an
impact on the behavior of an animal, as shown by the data
of de Lafuente and Romo [5,6].

Computing a percept: noise and neurodynamics
To understand the computational mechanisms underlying
perceptual detection, we analyze here which kind of sto-
chastic neurodynamical model underlies the experimental
results of Ref. [5]. Their experimental results indicate that
MPC neurons correlate with the behavioral performance,
with a high firing rate for a ‘yes’ report and a low firing rate
for a ‘no’ report. From a theoretical point of view, this
indicates that the underlying neuronal substrate presents
a bistable dynamic. For the same stimulus (amplitude
intensity) two possible behavioral responses were
observed, namely ‘stimulus detection’ and ‘no stimulus
detection’. These two possible choices are associated with
two possible steady states (attractors) of the underlying
neurodynamical system, which coexist for the same
stimulus condition (i.e. the system is bistable). In this
case, sufficiently strong probabilistic fluctuations could
drive the system from the default stable spontaneous state
(no stimulus detection) to the other stable stimulus-detec-
tion state corresponding to the generation of the percept.
The computation of a percept is then understood as a
fluctuation-driven, probabilistic transition to one of the
two possible bistable decision states (see Ref. [22] for other
examples of computation with noise). Thus, in the bistable
regime, fluctuations are essential for perceptual detection
and bears a striking resemblance to a decision-making
mechanism [11,20,24,25], meaning paradoxically that per-
ception results from a cognitive decision-making process.

A minimal network model that captures the compu-
tation involved in perceptual detection and that is consist-
ent with the neurophysiological and behavioral evidence
described earlier was proposed in Ref. [26]. Their model is
schematically shown in Figure 2. The model consists of a
network of spiking integrate-and-fire units organized into
discrete populations of excitatory and inhibitory neurons.

Figure 1. The detection task. (a) Drawing of a monkey working in the detection

task. (b) The sequence of events during the detection trials. Trials began when the

stimulation probe indented the skin of one fingertip of the left, retrained

hand (probe down, PD). The monkey then placed its right, free hand on an

immovable key (key down, KD). On half of the randomly selected trials, after a

variable pre-stimulus period (Prestim, 1.5–3.5 s), a vibratory stimulus (Stim, 20 Hz,

0.5 s) was presented. Then, after a fixed delay period (Delay, 3 s), the stimulator

probe moved up (probe up, PU), indicating to the monkey that it could make the

response movement (MT) to one of the two buttons. The button pressed indicated

whether or not the monkey felt the stimulus. Henceforth, these are referred to as

‘yes’ and ‘no’ responses, respectively. (c) Depending on whether the stimulus was

present or absent and on the behavioral response, trial outcome was classified as a

hit, miss, false alarm (FA) or correct reject (CR). Trials were pseudo-randomly

chosen: 90 trials were stimulus absent (amplitude 0) and 90 trials were stimulus

present with varying amplitudes (9 amplitudes with 10 repetitions each). (d)

Classical psychometric detection curve obtained by plotting the proportion of ‘yes’

responses as a function of the stimulus amplitude. (e) Mean firing rate of hit trials

for S1 (n = 59) and MPC (n = 50) neurons. (f) Comparison of normalized neuronal-

population activity of S1 neurons during hits and misses for near-threshold stimuli

and during correct rejections and false alarms in stimulus-absent trials.

Normalized activity was calculated as a function of time, using a 200 ms window

displaced every 50 ms. This was calculated by subtracting the mean activity and

dividing by the standard deviation (s.d.) of the activity from a 200 ms window of

the pre-stimulus period. The lower panels show the choice probability index as a

function of time. This quantity measures the overlap between two response

distributions: in this case, between hits and misses and between correct rejection

and false-alarm trials. Dotted lines mark significance levels. (g) The same as in (f)

but for a neuronal population activity of MPC neurons. Reproduced, with

permission, from Ref. [5].

Review Trends in Neurosciences Vol.31 No.11
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Some excitatory ‘selective’ neurons were linked to the
sensory input generated by external neurons, reflecting
the presentation of vibrotactile stimulation. The other
excitatory neurons were grouped into a ‘non-selective’
population and there was one additional pool of local
inhibitory neurons that implemented competition in the
network. Neurons in the network were connected by three
types of receptors that mediate the synaptic currents

coming into them: g-amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionic acid (AMPA), N-methyl-d-aspartic acid
(NMDA) glutamate and g-aminobutyric acid (GABA)
receptors. Neurons within an excitatory population were
mutually coupled with a strong self-supporting weight
(W+). In this network, called the ‘non-competing yes neuron
model’ (NCYN), there was a single pool of excitatory units
the activity of which was taken to reflect a ‘yes’ response to
the presence of a vibrotactile stimulus.

To obtain the appropriate steady states for the percep-
tual-detection model and to capture the transient changes
of the network enroute, the connectivity parameters that
sustain the required two bistable steady states associated
with a low or high activity for the selective population
corresponding to a ‘no’ or ‘yes’ detection response, respect-
ively, must be found. This is an inverse problem – first, the
whole-system behavior (the steady state) is studied to
obtain approximate parameters that enable the study of
how the system evolved to the steady-state in the first
place. We study the steady states of the system via the
mean-field approach [17]. Using this approximation, the
relevant parameter space given by the self-excitatory
weight W+ versus the external input l can be scanned.
Figure 2 also shows the parameter space for making a ‘yes’
response divided into two broad areas: where the self-
excitatory weight was high when the model generated a
‘yes’ response across broad variations in l and when the
weight was low and the selective populationmaintained its
spontaneous state across different values of l (correspond-
ing to a ‘no’ response). There was also a small bistable
region of the parameter space, where the selective popu-
lation had a probability of being in either a ‘yes’ state or in a
state of spontaneous firing (‘no’ state), that is, in this region
both states are stable. This region of genuine bistability is
one of the main ingredients in our model. The bistability is
essential for having (for a given specific external input l)
two possible responses, namely ‘detection’ or ‘no detection’,
each one corresponding to the two possible stable states.
This, together with the noise, would enable a probabilistic
behavior. Note that themodel shows bistable behavior only
when the external input is applied to the MPC network,
which is when the decision is prepared. During the follow-
ing delay period, the system is no longer bistable but the
decision was already internally made.

The solution derived at the mean field level holds only
for the steady state of the network. To get the information
about how the system evolves to a steady state and with
which probability it goes to the different possible bistable
steady states (i.e. performance), the full spiking network
simulations must be run. We can do this by using the
parameters found at the mean field level within spiking-
level simulations, because these parameters have been
derived consistently from the integrate-and-fire level
[27]. These spiking-level simulations give us the statistical
variations that we are interested in and that we can
compare with the experiments. On each trial, statistical
fluctuations influence the outcome that is reached. Thus,
noise contributed by the probabilistic spiking times of
neurons plays a crucial and advantageous part in brain
function. Spiking noise is a important contribution to the
outcome that is reached, in that this noise is a factor in a

Figure 2. (a) The perceptual-detection model (NCYN) has excitatory populations

selective to the applied vibrotactile stimulation. A ‘no’ response is given when the

selective population has low activity and a ‘yes’ response is given when it has high

activity. The arrows indicate the recurrent connections between the different neurons

in a pool (see main text for more details). (b) Phase diagrams for the NYCN model for

parameter exploration of the attractor states (stationary states) of the underlying

dynamical system. The diagrams show the different attractor regions as a function of

the stimulus input (l) and the level of coupling (W+) within the neurons of the same

selective population (cohesion; see main text for more details).
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network with a finite number of neurons. In fact, this noise
results from ‘coherent’ fluctuations into the finite-size
system [28,29].

Figure 3 shows the probability that the model makes a
correct ‘yes’ response as a function of the sensory signal (l).
In each case, there is a function in which the probability of
making a ‘yes’ response increases with the sensory input
(l), emulating the behavior of monkeys detecting a vibro-
tactile stimulus [5]. The firing rate of the neurons involved
in selection (the MPC neurons), however, showed a differ-

ent function in which the mean firing rate was approxi-
mately constant across different input values (l), at least
beyond a certain level, as reflected in the experimental
results. Thus, the model is consistent with the neuronal
and behavioral experimental results of Lafuente and Romo
[5,6] shown in the previous section.

To stress more explicitly the functional role of noise in
this system, one can establish a direct link between
neuronal variability and probabilistic behavior. It has been
shown that the dynamics of bistable models can be reduced

Figure 3. Simulated results plotting the detection curves resulting from 200 trials (overall performance) and the mean rate activity of hit trials at a function of the input

strength l for the MPC neurons for the experimental design of de Lafuente and Romo [5]. (a) Probability of a ‘yes’ response (hit). (b) Mean firing-rate activity of neurons in

the ‘yes’ population. The simulations of the nonstationary and probabilistic behavior of the neurodynamical activity were performed by a full spiking and synaptic

simulation of the network.
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to a one-dimensional diffusion equation typically used to
describe the behavioral level [19]. In diffusion models it is
assumed that the information that drives the decision
process (in this case a perceptual decision) is integrated
continuously over time until a decision boundary is
reached. Given the success of diffusion models in explain-
ing behavioral data, it seems likely that perceptual
decision processes in the nervous system indeed rely on
a similar accumulation of evidence. This analysis estab-
lishes a link between neuronal and behavioral models of
detection. It has been shown that the dynamics of a bis-
table neuronal model, such as the one analyzed earlier, can
be captured in a noise-driven amplitude equation given by
the normal form for a saddle-node bifurcation (D. Marti,
PhD thesis. Universitat Pompeu Fabra, Barcelona, Spain,
2008). This reduced-amplitude normal formy can be
derived analytically from the original neuronal dynamics
[30]. The main idea is that the dynamics close to the
bifurcation point (between bistable and single stable
steady states; in the stimulus intensity l-axis, we call this
bifurcation point lbif) are slow and confined to a center
manifold. The reduced amplitude equation corresponds to
a nonlinear diffusion equation, which describes properly
the original neuronal dynamics. More specifically, the
reduced one-dimensional diffusion equation describes
the motion of a noise-driven over-damped particle in a
potential where m/(l � lbif) and a > 0.

VðxÞ ¼ �mx� ax3

3
[Equation 1]

Figure 4 shows this potential for different values of m

around the bifurcation point lbif. Thus, the probability of
perceptual detection can be seen as the probability of
escaping from the lower-rate branch of this potential func-
tion owing to the underlying fluctuations within a certain
time after the onset of the stimulus. The boundary is
naturally given by the peak of the right hill. Note that
this potential is not bistable but is only describing locally at
the bifurcation point (of bistability), the escaping dynamics
from the spontaneous state, which is enough for solving the
detection problem.

A second different bistable network model called ‘com-
peting yes–no neurons’ (CYNN) was also studied [26]. In
the CYNNmodel, there were two competing populations of
excitatory neurons, one corresponding to a ‘yes’ response
and the other to a ‘no’ response. The ‘no’ response was
modeled as a constant bias coming into the ‘no’ units
supporting that response. Bothmodels (NCYN and CYNN)
are consistent with the existing single-cell recordings, but
they involve different types of bistable decision states and,
consequently, different types of computation and neurody-
namics. By analyzing the temporal evolution of the firing-
rate activity of neurons on trials associated with the two
different behavioral responses, evidence was produced in
favor of the CYNN model [26]. Specifically, the ‘no’
responses in the models were further examined [26]. In

the NCYN model, the ‘yes’ population maintained a spon-
taneous rate of firing on trials with no perceived signal. By
contrast, in the CYNN model, the ‘yes’ population is
pushed into a low rate of firing by the competitive rise
in the ‘no’ population. Strikingly, this conformed to the
experimentally observed activity pattern in neurons in the
MPC. The work demonstrates that such models can sep-
arate out stimulus-dependent firing from decision making
and it does this in a probabilistic manner, matching (in this
case) the behavioral performance ofmonkeys. Theway that
activity moves to a decision boundary, and the interplay
between decisions (the competition between units for ‘yes’
and ‘no’), is crucial for understanding the operation of the
system.

Discussion
Experimental neuronal and behavioral correlates of per-
ceptual detection indicate an underlying computation that
is given by a noise-driven transition in a multistable
neurodynamical system. Furthermore, this mechanism
resembles a decision-making-like cognitive operation
[31]. Recently, theoretical and behavioral studies have
shed light on the neural mechanisms underlying decision
making. At the behavioral level, linear diffusion models
describe a wide range of experimental results [19]. In
particular, diffusion models are well suited for fitting
perceptual performance and choice reaction time. Diffusion
models postulate that the information driving the decision
process is accumulated continuously over time until a
decision boundary is reached. More specifically, the infor-
mation from a stimulus (the sensory evidence) is
represented in a diffusion equation by the mean drift rate
of the random variable. This random variable is accumu-
lated over time from the starting point toward one or the
other boundaries. The escaping through a given boundary

Figure 4. Energy landscape of the analytically reduced one-dimensional nonlinear

diffusion equation for the neuronal dynamics computing perceptual detection in

the vicinity of the bifurcation point. Three different values around the bifurcation

point lbif are plotted. For values of the intensity of the stimulus l < lbif, the energy

landscape shows a low-activity valley on the left and a hill on the right. A

perceptual detection corresponds, in this case, to the noise-driven escape of the

low-activity valley by jumping the right barrier. In fact, the vertical dashed line

corresponds to the boundary of the diffusion process, here, naturally given by the

neuronal landscape. For increasing values of l the valley and the hill disappear,

resulting in an increase of the performance.

y Normal forms are the canonical equations for bifurcations, that is, they describe
the dynamics of the system in amuch simpler form, at least for the specific parameters
where a qualitative change in the dynamics of the system is observed. Strictly
speaking, normal forms are valid only at the bifurcation points, although they catch
the main features of the dynamical behavior even far from the bifurcation point [30].
See also Ref. [41] for a formal treatment of normal forms.
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corresponds to making a specific decision. A key feature of
diffusion models is the consideration of randomness due to
noisy fluctuations of the path reflecting the accumulation
of sensory evidence. These fluctuations enable the expla-
nation of the generation of both correct and error
responses. The well-known speed–accuracy tradeoffs are
usually reproduced by adjusting the boundaries. Shifting
the boundaries apart results in a better performance and
slower response reaction times, whereas shifting the
boundaries closer produces more errors and faster
response times. The astonishing capability of diffusion
models to fit behavioral data seems to indicate that some
decision-making processes in the nervous system are really
computed by a similar mechanism that accumulates sen-
sory evidence [32]. Similar phenomenological models have
been proposed in which the drift of the decision variable is
proportional to the value of the variable itself [33] (also
called the ballistic model in Ref. [34]). Such connectionist
model differs from the classical diffusion model in that the
drift of the decision variable is proportional to the value of
the variable itself (i.e. it can be leaky or repelling). The
diffusion, thus, occurs not on a flat landscape but on a
curved one, and the effective dynamics is equivalent to an
Ornstein-Uhlenbeck process with fixed boundaries. Psy-
chometric measures of performance in addition to reaction
times for two alternative forced-choice paradigms can be
analytically studied within such phenomenological model
frameworks (see, for example, Ref. [35]).

One disadvantage of the phenomenological models dis-
cussed here is the difficulty in assigning a biological mean-
ing to the model parameters. Biologically plausible models
motivated and constrained by electrophysiological data
have been developed in recent years to establish a link
between behavior and neuronal activity [11,20,24,25].
These models involve two groups of neurons coupled
through mutually inhibitory connections. Each group
receives an input proportional to the evidence for the
respective alternative, and the inhibition-driven compe-
tition leads to one of the groups winning out at the expense
of the other. Usually, the dynamics relevant for decision
making in these nonlinear networks depend on the
stability of the spontaneous activity state (i.e. the state
in which no decision has yet been made). If, once the
stimulus is presented, the spontaneous state destabilizes,
the dynamics rapidly evolve towards one of the two
decision states [25]. The model developed in Ref. [20]
provides a remarkable qualitative match with behavioral
measures of performance and reaction times in addition to
certain aspects of neuronal activity. This is not dissimilar
to the repelling Ornstein-Uhlenbeck connectionist ballistic
model [36].

The biologically plausible models establish a solid
foundation for the phenomenological diffusion models.
The dynamics of detailed biophysical rate and spike-based
models can be reduced to a one-dimensional diffusion
model as shown in Ref. [30], which derived a diffusion
equation analytically from the original neuronal dynamics.
This is possible because the dynamics close to the bifur-
cation point are slow and confined to a centermanifold. The
reduced amplitude equation is a nonlinear diffusion
equation, which describes the original neuronal dynamics,

and enables also the fit of performance and reaction-time
data. Themacroscopic phenomenological diffusion descrip-
tion is extended (from linear to nonlinear) and, at the same
time, is explicitly linked with a biologically realistic imple-
mentation. Biologically realistic models complement diffu-
sion models without losing their capabilities to explain
behavioral data.

We review here, for perceptual detection, a decision-
making scenario that occurs when the spontaneous state
does not lose stability but is rather bistable with the
decision state (positive detection), hence leading to
multi-stability between two possible fixed points. Such
multi-stability only occurs if the recurrent excitation
within each neuronal group or population is strong enough.
In this case, only a sufficiently strong perturbation would
drive the system from the stable spontaneous state to the
detection state. Thus, in the multi-stable regime, fluctu-
ations (perhaps noise-driven), are essential for decision
making. In fact, the large-scale neuronal system can be
reduced to a simple diffusion equation corresponding to an
escape problem. If circuits exhibiting multi-stability are
comprised of large numbers of spiking neurons, the fluctu-
ations, needed to drive the transitions, arise naturally
through noisy input and/or disorder in the collective beha-
vior of the network. Within thesemodels, noise is not just a
nuisance variable because it has a crucial computational
role in decision making.

Of course alternative scenarios are plausible. For
example, one can adjust the neuronal model such that
the onset of the external sensory signal deforms the energy
landscape so that only one highly excited attractor exists
(corresponding to a ‘yes’ response). In this case, within-trial
noise variability would not be necessary for computing a
response, but between-trial noise would be required to
explain the observed probabilistic behavior. Specifically,
one has to assume that the external signal that drives the
dynamics is stochastic, so that sometimes the new ‘yes’
attractor state appears and some other times it does not. At
the phenomenological level this would correspond to very
successful approaches such as LATER (the linear approach
to threshold with ergodic rate), which explain behavioral
variability in terms of between-trial noise (implemented as
stochastic system parameters) [37]. In our neuronal model,
this would shift the problem of probabilistic detection to
the implementation of a between-trial stochastic system
parameter (in our case the external sensory signal). The
problem is that the explanation of a between-trial stochas-
tic parameter such as the external input is exactly what we
are aiming to understand (i.e. variability of neuronal
responses that covaries with behavior). In conclusion, at
the behavioral label, LATER-like models assuming be-
tween-trial noise are plausible and could explain beha-
vioral data, but, when we try to reconcile this
phenomenological level with the neuronal background
(model and data), the explanation turns tautological.

This kind of multistable landscape could also serve for
further computational purposes. For instance, a model has
been proposed with multistable states for maintaining a
memory of the perceptual decision after the stimulus has
been removed [25]. Another application is to bistable per-
ception and binocular rivalry. Perceptions can change
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‘spontaneously’ from one to another interpretation of the
world, even when the visual input is constant; a good
example is the Necker cube, in which visual perception
flips occasionally to make a different edge of the cube seem
nearer to the observer [38]. It has also been hypothesized
that the switching between these multistable states is due,
in part, to the statistical fluctuations in the network
because of the Poisson-like spike firing that is a form of
noise in the system [39,40].

In conclusion, neuronal fluctuations can be an
advantage for brain processing because they lead to prob-
abilistic behavior that is advantageous in decision making,
by preventing deadlock, and is important in signal detect-
ability. We have shown how computations can be per-
formed through stochastic dynamical effects, including
the role of noise in enabling probabilistic jumping across
barriers in the energy landscape describing the flow of the
dynamics in attractor networks.
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An Overview

In these notes I review a particular approach to the large-scale computational modeling of
the mammalian primary visual cortex (V1). The main objectives of this modeling are to
(i) capture groups of experimentally observed phenomena in a single theoretical model of
cortical circuitry, and (ii) identify the physiologicalmechanisms underlying the model dy-
namics. These goals are achieved by building parsimoniousmodels based on minimal, yet
sufficient, sets of anatomical and physiological assumptions and constraints. This work
has identified a particular operating state of the cortical model which I believe to underlie
how V1 responds to visual stimulation.

This state is characterized by (i) high total conductance, (ii) strong cortical inhibi-
tion, (iii) large synaptic fluctuations, (iv) an important role of NMDA conductance in the
orientation-specific, long-range interactions, and (v) a high degree of correlation between
the neuronal membrane potentials, NMDA-type conductances, and firing rates. Tuning
our model to this operating state, we have studied and identified network mechanisms un-
derlying cortical phenomena such including (i) neuronal orientation tuning in V1 [123],
(ii) spatiotemporal patterns of spontaneous cortical activity [20], and (iii) cortical activity
patterns induced by the Hikosaka line-motion illusion stimulus paradigm [94].

Due to the time limitations of this CRM short course, in these notes I will focus
on the first 3 characterizations of what I believe is the visual cortical operating point. I
will review some of the relevant neurophysiological background in Chap. 1 and model-
ing background in Chap. 2. I will highlight the cortical mechanisms that underlies the
so-called Simple and Complex cell populations in Chap. 3. The work that led to [124]
showed that there were network nonlinearity we had not yet fully appreciated or under-
stood: the strong cortico-cortical excitation that was needed to produce Complex cell-type
behavior often led to runaway amplification. The elucidation of this instability led to the
identification of a particular bifurcation in the model network system and showed the
importance of synaptic fluctuations in maintaining stability in the presence of strong re-
current excitation. In conjunction with strong cortical inhibition, we were able to identify
a possible network mechanism underlying orientation selectivity. I review this work in
Chap. 4 before turning to theoretical developments in Chap. 5 and concluding remarks in
Chap. 6.

In this modeling endeavor, I have had the good fortune to work with David Cai,
Gregor Kovac̆ic̆, David McLaughlin, Aaditya Rangan, Robert Shapley and Michael Shel-
ley, each of whom has moved forward the work I am about to describe to you. I would
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Chapter 1

Physiological Background

Located in the back of the skull, the mammalian primary visual cortex (V1) is a thin sheath
of densely packed and highly interconnected neuron. Along the “visual pathway”,Retina
→ Thalamus (LGN)→ V1 → And Beyond, it is in V1 where neuronal responses are
first simultaneously selective to elementary features of visual scenes, including a pattern’s
orientation. For instance, the orientation tuningproperty is the selective response of a
singleneuron to some orientations of a simple visual pattern (say a bar or grating), but
not to other orientations [49].

The primary visual cortex is several cm2 in lateral area and 1-2 mm in thickness. It
has a complex, laminar structure (layers 1, 2/3, 4B, 4Cα , 4Cβ , 5, and 6, labeled from the
cortical surface inwards). Each layer is anatomically distinct, containing excitatory and
inhibitory neurons with dense lateral connectivity, augmented by specific feed-forward
and feed-back projections between different layers. Visual input first arrives at V1 via
axons from the neurons in the Lateral Geniculate Nucleus (LGN, in the thalamus) pri-
marily into the layers 4Cα (“magno pathway”) and β (“parvo pathway”). These inputs
are excitatory only.

Neurons in V1 are roughly divided into “simple” and “complex” cells. This division
dates back to [49]. The responses of simple cells to visual stimuli tend to be approximately
linear, while those of complex cells tend to be nonlinear. For instance, if the stimulus is
a drifting grating, the spiking rate of a simple cell will be modulated at the frequency at
which the grating’s peaks and troughs pass through the cell’s receptive field; the spik-
ing rate of a complex cell will change with the presentation of the stimulus, but then
stay basically constant in time for duration of the stimulus presentation. For a standing,
contrast-reversing grating, simple-cell firing rates are sensitive to its spatial phase and
modulate at the stimulus frequency, while complex-cells are spatial-phase insensitive and
modulate at double the stimulus frequency [86, 87].

The long-standing, theoretical model of [49] proposes that simple cells receive LGN
input and pool their output to drive complex cells. (Evidence for excitatory connections
from simple to complex cells can be found in [125].) Phase sensitivity is lost in this
non-specific spatial pooling. However, most V1 neurons are neither wholly simple nor
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6 Chapter 1. Physiological Background

wholly complex [99]. Experiments show that complex cells receive inputs not just from
simple cells, but also receive strong input from other complex cells [125] and from the
LGN [37, 48, 114]. Furthermore, some complex cells can be excited without strongly
exciting simple cells [44, 72, 73, 80, 85]. Therefore, an alternative hypothesis is that the
amount of excitatory LGN input varies from one V1 neuron to the next (indirect evidence
for this is given in [4, 97, 122]), and is compensated by the amount of cortical excitation,
so that each V1 neuron receives roughly the same amount of excitation [124], as sug-
gested by cortical development theories [81, 82] and experiments [102, 103]. We adopt
this hypothesis in our model, as described below.We note that simple cell properties were
recovered in a model of V1 neurons that all received equal amount of LGN drive [131]. In
this model network, strong cortical inhibition cancels the nonlinearity in the LGN drive
to produce the linear response properties of simple cells.

Figure 1.1: Optical imaging of orientation hypercolumns and long range connections:
Fig. 4 of [16] showing the map of orientation preference in color and the distribution
of connections in black. The orientation preference is color-coded to the oriented color
bars below (e.g., the areas colored orange prefer gratings oriented at 0◦). The white sym-
bols indicate the sites of biocytin injection. Local to the injection site, the distribution of
connectivities is nearly isotropic. However, at distances larger than a hypercolumn, the
connections are between neurons that have similar orientation preferences.

Optical imaging experiments [12–14] reveal orientation preference as organized
into millimeter-scale “orientation hypercolumns” that tile the cortical surface, with ori-
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entation preference laid out in spokes emanating from the so-called “pinwheel centers.”
Orientation preference appears to be well correlated even between single pairs of nearby
cortical neurons, whereas preferred spatial phase does not, indicating the possibility that
spatial phase preference may be mapped across V1 in a disordered fashion [34]. The
exact nature of the spatial frequency preference distribution across V1 is still in dis-
pute: Interpretations of experiments have ranged from spatial domains with only high
or low spatial frequency preference [52] to continuous pinwheel patterns [36]; however,
most recent work seems to indicate that the spatial distribution is most likely to be disor-
dered [53, 84, 115].

Anatomical, electrophysiological and optical imaging studies suggest that lateral
connectivity shows different types of organization on different spatial and temporal scales.
At the local hypercolumn scales (< 500µm), the pattern of connectivity appears to be
isotropic, with monosynaptic inhibition at or below the range of excitation [24,25,39,67].
The excitatory short-range connections appear to be mostly mediated by the fast, AMPA,
neurotransmitter [100] (with time-scale∼3 ms [62]), while the inhibitory connections are
mediated by GABAA (with time-scale ∼7 ms [62]).

At longer lengthscales, ∼1-5 mm, the intralaminar and reciprocal lateral connec-
tions [6–8,16,68,112] (also referred to as the horizontal connections) in V1 are much less
isotropic. These horizontal connections emanate only from excitatory neurons, and termi-
nate on both excitatory (∼75%) and inhibitory (∼25%) neurons [59,75,76]. They are only
strong enough to elicit subthreshold responses in their postsynaptic neurons [47, 136].

Long-range projections have been found to connect sites of like preferences, such as
orientation preference [58, 69], ocular dominance and cytochrome oxydase blobs [137],
and direction preference [101]. The shapes of the cortical regions covered by horizontal
projections of a given neuron differ from species to species, ranging from just barely
elongated along the retinotopic axis in macaque [137] and new world monkeys [112]
(anisotropy ratio ∼1.5–1.8) to highly elongated in the tree shrew [16] (whose anisotropy
ratio is ∼4).

In contrast to short-range connections, long-range connections in V1 appear to be
mediated by both AMPA and NMDA. In particular, in vitro stimulation of white matter
shows that firing by layer 3 pyramidal neurons may be driven and synchronized by long-
range, horizontal connections,mediated in part by NMDA [100]. Additionally, long-range
horizontal inputs to cells in layers 2 and 3 can sum nonlinearly [136]. This strongly in-
dicates NMDA involvement in the long-range connections, since the NMDA channel is
voltage dependent [32]. Moreover, visual response in the superficial V1 layers 1-3 has
been observed to be in part mediated by NMDA receptors, both in cats [104] and the
macaque [105].

The precise role of the long-range horizontal connections in V1 is as yet unknown;
however, it appears that they contribute to spatial summation of stimuli and “contex-
tual” effects from outside of a given neuron’s classical receptive field [8]. They may also
contribute to synchronous firing of cells with similar orientation preferences, especially
when those cells are separated by more than 0.4 mm [41, 63] (see also [20]), and the
synchronization of fast, γ-band (25–90Hz), oscillations present in the collective firing
rates of neuronal populations over distances of ∼5 mm [71, 113]. Simulations using our
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8 Chapter 1. Physiological Background

model [20, 94] suggest that particularly striking examples of the long-range connection
contributions may be in millimeter-scale spatiotemporal patterns of spontaneous corti-
cal activity [57,128] and activity induced by the Hikosaka-motion-illusion stimulus [54],
which have been observed in experiments using voltage-sensitive dyes.

In addition to the diverse spatial scales, the neuronal network in V1 also operates
within a large range of temporal scales. The manifestations of selectivities such as ori-
entation tuning are actually strongly dynamical, as revealed by reverse-time correlation
experiments [98,135], which reveal some of the time-scales operating during V1 process-
ing. These are: the LGN response time τlgn = O(102) ms, reflecting the concatenation of
retinal and LGN processing of visual stimulation; the various time-scales of synaptically
mediated currents τsyn = O(3-200 ms), as described above; and τG = C/[G], where C is
cellular capacitance and [G] a characteristic size of total synaptic conductances. This τG

is the time-scale of response of a single neuron, but is a property of network activity. The
higher the network activity, the shorter the τG, which is usually aboutO(2-5 ms). Intracel-
lular measurements have shown that under visual stimulation, cellular conductances can
become large, increasing by factors of two or three and dominated by (cortico-cortical)
inhibition [15, 35, 65, 92, 108]

Some prior theoretical studies of cortical effects induced by short- and long-range
horizontal connections in V1 include (but are by no means limited to) the following:
An I&F computational model with an idealized architecture [118]; The mainly analytical
studies of [17, 18, 107] addressing the role of long-range connections on stationary cor-
tical pattern formation and stability; The role of recurrent excitation in a network model
of [29]; A large-scale computational model of neuronal orientation tuning in V1 [127]; A
detailed large-scale, highly-realistic, local computational model of neurons in 4 orienta-
tion hypercolumns in the input layer 4Cα of macaque V1 [77, 111, 131], which included
only short-range connections. Orientation selectivity of cells in this model was shown to
be greatly enhanced by recurrent interactions [77]. In [124], the model was extended to
include heterogeneity in LGN input. It is to this last model we first turn.
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Chapter 2

Modeling Background

In recent work [77,123,124,131],my collaborators and I have developed a computational
model of a small, local patch of layer 4Cα , which is the primary input layer in macaque
V1. Here, I describe the mathematical and biological detail it incorporates.

The cortical model contains four orientation hypercolumns with pinwheel centers
within a 1 mm2 patch of V1 4Cα . For simplicity, the boundary conditions are taken to be
periodic. Individual neurons are modeled as conductance-based, linear I&F point neurons
[66] (i.e., all spatial effects within a cell are neglected). Between “spike times,” the intra-
cellular potentials v j are described by the linear differential equation:

dvj
P

dt
=−gL

(
v j

P−VR

)
−g j

PE(t)
(

v j
P−VE

)
−g j

PI(t)
(

v j
P−VI

)
, P = E, I . (2.1)

The mth spike time, t j
m, of the jth model neuron, is determined by v j

P(t j−
m ) = VT ; v j

P(t j
m+

τre f ) = VR where τre f is an absolute refractory period. Here the membrane potentials of
the excitatory (E) (inhibitory (I)) neurons are denoted by v j

E (v j
I ) where the superscript j

indexes the spatial location of the neuronwithin the network. gL,gPE, and gPI are the leak,
excitatory, and inhibitory conductances, respectively. The various synaptic potentials are
ordered,VI < VL < VT < VE, and therefore, the term −g j

E(t)
[
v j −VE

]
drives the voltage

up and is “excitatory,” while −g j
I (t)

[
v j −VI

]
drives the voltage down and is “inhibitory.”

We take τre f = 3 ms (1 ms) for excitatory (inhibitory) neurons.
The time-dependentpostsynaptic conductances (PSCs) arise due to visual stimu-

lation and from the cortical network activity of the excitatory and inhibitory populations,
and have the general form

g j
PE(t) = FPE(t)+ [(1−λ j)SPE +S0PE]∑

k

a j ,k∑
l

p j
klGE(t− tk

l ),

g j
PI(t) = FPI(t)+SPI ∑

k

b j ,k∑
l

p j
klGI (t− tk

l ), (2.2)

where FPE(t) = λ jg j
lgn(t) (the conductance g j

lgn(t) denotes the feedforward, excitatory

9
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10 Chapter 2. Modeling Background

d

e

Figure 2.1: Model description. (a) A schematic of the large-scale model network, indi-
cating the mechanisms by which Simple and Complex neuronal responses are created:
Simple cells by strong LGN input and strong cortical inhibition, together with phase ran-
domization (not shown but described in [124]); and Complex cells by weak LGN input
and strong cortical excitation. (b) Optical imaging of the orientation preference in a sin-
gle mm2 of layer 2/3 of macaque V1, containing 4 pinwheel centers [12, 13]. The cells
on the white circle are described by a ring model. (c) A schematic of one coarse-grained
(CG) cell located, for example, on a small section of a ring. (d) (taken from [96]) Circles
indicate receptive fields of LGN cells. The thick solid (dashed) lines indicate the on (off)
portion of the receptive field of a V1 Simple cell receiving afferents from recorded LGN
cells. This is evidence for convergent LGN input creating Gabor-like V1 receptive fields.
(e) A schematic of how a V1 receptive field can be built from excitatory inputs from on-
and off-centered LGN cells.

forcing from the LGN), FPI(t) = cinh ∑i GI

(
t−sj

l

)
is a stimulus-independent inhibition

modeled by homogeneous Poisson spike trains. Since the LGN does not generate in-
hibitory PSC in V1 cells, inhibition arises from the LGN driving inhibitory neurons (via
g j

EI) and this is sometimes referred to as a “feedforward” inhibition.

2.1 Model of the LGN input

The LGN drive, g j
lgn(t), of the I&F model (2.1-2.2), is modeled as time-dependent Pois-

son spike trains whose rate is given by the sum of linear spatio-temporal filters. Response
properties of individual LGN cells are estimated from experimental studies [50, 64, 132].
Each LGN neuron shows no orientation selectivity and a “center-surround” receptive
field. There are two types of such neurons: on-center and off-center. For an on-center
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2.1. Model of the LGN input 11

neuron, illuminating the center of its receptive field increases its firing rate, while il-
luminating a surrounding annulus decreases it. For an off-center neuron, the respective
responses are reversed. The temporal response curve of an LGN neuron increases to a
maximum at about 40ms, to a sub-background response with a minimum at about 60ms,
has zero overall integral (which holds for LGN cells in the magno pathway), and is taken
from [11, 43].

An individual V1 neuron “sees” the world through the pooling of about NLGN ≈ 20
LGN cells [122]. Thus the LGN input into a single V1 neuron is represented by a sum of
Poisson spike trains, with total rate given by

ν j
lgn (t) =

N j
LGN

∑
m=1

{
RB±C

[∫

R2
dX Klgn(|X−Xm|)

∫ t

−∞
dsGlgn(s− t)I(X,s)

]}+

. (2.3)

Here RB is the background LGN firing rate (about 20 Hz). The on- and off-centered LGN
cells at Xm are arrayed in the Gabor-like pattern to be described below [96, 97], tilted
by a preferred angle Θ and a spatial phase Φ. The ±-signs model the processing of on-
center and off-center neurons. The symbol {·}+ stands for A+ = max{A,0} (i.e., rate
rectification). The function C[·] describes LGN contrast saturation at high contrasts [55,
56, 109]. The exact forms of the LGN kernels Klgn and Glgn are given in [124, 131]. In
particular, to model the “center-surround” receptive fields of the LGN neurons, Klgn is
taken to be a difference of two Gaussians, with parameters as in [117, 127]. The kernel
Glgn is taken directly from [11, 43]. Retinotopy can be ignored in this model and should
be unimportant for questions of orientation arising in the local, sub-hypercolumn circuit,
but will need to be addressed in any extended modeling. In practice, I will focus on two
types of visual stimuli:

1. Drifting grating: I(X,t) = I0[1+ ε sin(k ·X−ωt−φ)], with k = k(cosθ ,sinθ )

2. Contrast reversal: I(X,t) = I0[1+ ε sin(k ·X−φ)sinωt],

where I0 is the average intensity, ε ≤ 1 is the stimulus contrast, k = k(cosθ ,sinθ ) is
parameterized by spatial frequency k and orientation θ , ω is the temporal frequency and
φ is the spatial phase.

This feedforward LGN drive is highly structured: The receptive fields of on- and off-
centered LGN neurons are segregated into elongated subregions, which together shape the
receptive field of the V1 neuron with Gabor-like inputs with preferred angle Θ, preferred
spatial frequency k and preferred spatial phase Φ. (See Fig. 2.1 for details.) In this local
model of 4 orientation pinwheels, the preferred orientation is built-in to the model by
tying the preferred orientation of a single V1 neuron to the neuron’s location relative to
the pinwheel pattern. To model the spatial phase variations across the cortical surface, the
preferred spatial phase of each V1 neuron is distributed randomly from cell to cell, as is
consistent with recent experiments [34, 78].

To capture the diversity of feedforward input as seen in experiments, I assume that
N j

LGN, the number of LGN cells with outputs converging on the jth V1 neuron, is dis-
tributed randomly and uniformly between 0 and 30. Furthermore,N j

LGN is also distributed
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12 Chapter 2. Modeling Background

randomly in space. Thus some cortical cells receive significant LGN drive while their
neighbors may receive little LGN excitation. Finally, this is combined with the constraint
that the total excitatory synaptic drive onto each cell is approximately constant, though
divided between LGN and cortico-cortical inputs, as is suggested by theories of cortical
development [81] and by recent experiments [102, 103]. Therefore those neurons receiv-
ing weak or no LGN drive, receive stronger recurrent excitation. As I describe below,
these basic model assumptions naturally lead to a neuronal population response diversity
consistent with recent experiments.

2.2 The Structure of Network Coupling

The kernels a j ,k and b j ,k describe the spatial structure of the cortical coupling and are
normalized to have unit sum so that the SPE and SPI’s denote synaptic strengths; we take
SEI = SII so that the cortical inhibition is the same for both excitatory and inhibitory
neurons. The parameter λ j ∈ [0,1] in these equations indicates heuristically how the dis-
tribution of Simple and Complex cells is set in our models and characterizes the Simple-
Complex nature of the jth neuron (with λ j = 0 the most Complex, λ j = 1 the most
Simple, and S0PE models weak cortical excitatory couplings for Simple cells), by setting
the strength of LGN drive relative to the strength of the cortico-cortical excitation. The
parameter λ j is distributed uniformly in [0,1] for our large-scale V1 model (see Fig. 2a).

Individual PSCs are taken to be Θ(t)(τd− τr)
−1

[
exp

(
−t
τd

)
− exp

(
−t
τr

)]
, where Θ

is the Heaviside step function. The time constants are τr = 1,2,1 ms and τd = 5,80,10
ms for AMPA, NMDA and GABAA, respectively. For excitatory synapses,

GE(t) = (1− fN)GAMPA(t)+ fNGNMDA(t),

where fN denotes the fractional contribution of NMDA receptors; for inhibitory synapses,
GI (t) = GGABAA(t). For networks with synaptic failure p j

kl is a Bernoulli random variable
chosen to be 1 with probability p for each spike-time; for sparsenetworks, p j

kl is indepen-
dent of l , is chosen to be 1 with probability p and is fixed for individual realizations of the
network model. (Thus, in both types of networks, each neuron is coupled to Ne f f = pN
other neurons statistically.) In Chap. 3, we reviewwork using an all-to-all network model,
with p j

kl identically equal to 1. In Chap. 4, we discuss a model where the network cou-
pling is sparse and study the effects of intrinsic synaptic fluctuations on the stability of
the network dynamics.
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Chapter 3

An Egalitarian Network Model

3.1 Simple and Complex Cells

A fundamental classification of neurons in the primary visual cortex (V1) is as Simple or
Complex [49]. A Simple cell responds to visual stimulation in an approximately linear
fashion. For example, when responding to the temporal modulation of standing grating
patterns, Simple cells modulate their firing at the stimulus frequency and are sensitive to
its spatial phase (or location). Complex cells are very nonlinear, modulating their firing at
twice the stimulus frequency and showing little sensitivity to spatial phase.

Simple and Complex cells may have different tasks in visual perception. Cortical
cells must represent spatial properties such as surface brightness and color, and the per-
ceptual spatial organization of a scene that is the basis of form. Simple cells are assumed
to be necessary for all of these functions because they are the V1 neurons that are able to
respondmonotonically to signed edge contrast. Complex cells, being insensitive to spatial
phase, cannot provide a cortical representation of signed contrast, but they are sensitive
to texture, firing at elevated rates in response to stimuli within their receptive fields.

While long-standing, the Simple/Complex classification is hardly sharp. Recent
work by Ringach et al [99] analyzes the extracellular responses of neurons in macaque
V1 experiments. They find that many V1 cells are neither completely Simple nor com-
pletely Complex, but lie somewhere in between. And while most cells in V1 might be
classified as Complex, the cortical layer which receives the bulk of LGN excitation, 4Cα ,
has Simple and Complex cells in approximately equal proportion. A central assumption
of this model is that the strength of LGN excitation varies broadly, so that some cortical
cells receive significant LGN drive, while others receive little. This is combined with the
constraint that the total excitatory synaptic drive onto each cell is approximately constant,
though divided between geniculate and striate sources, as is suggested by theories of cor-
tical development [81,82] and by recent experiments [102]. Simple cells arise in a manner
similar to those of the earlier model of [131], as we describe below.

The aim of our modeling is to understand the function of the V1 cortical network

13
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14 Chapter 3. An Egalitarian Network Model

in terms of its network connectivity and dynamics. Thus to be successful, the model must
account in a realistic manner for orientation selectivity, response dynamics with a wide
range of input stimuli, firing rate patterns in background, as well as during stimulation. In
this chapter we focus on the model’s performance in spatial summation experiments that
have been used to classify neurons as Simple or Complex. We show that this egalitarian
model, which combines natural assumptions on the variability of cortical and geniculate
drive and what is known about the neuronal architecture of V1, can rationalize many
aspects of the available experimental data. The model yields physiologically reasonable
Simple and Complex cell responses, both in the rate and the form of spiking. The architec-
ture leads to distinctive predictions of populationmeasures of Simple/Complex responses,
which have the qualitative structure seen in recent experimental measurements.

3.2 Modeling Results

In the present chapter, we will review how simple and complex cellular responses arise
in a large-scale neuronal network model of an input layer 4Cα of macaque V1 [124].
The model represents a 1 mm2 local patch with 4 orientation hypercolumns containing
∼ O(104) conductance based, integrate-and-fire (I&F) neurons — 75% excitatory and
25% inhibitory. The coupling is all-to-all , with local synaptic coupling kernels Gaussian
with lengthscales of roughly 0.2 mm. The cortical architecture, the LGN drive, and the
cortico-cortical synaptic couplings are described in Chap. 2 and constrained whenever
possible by anatomical and physiological measurements [77, 124, 131].

3.2.1 Contrast reversal and spatial phase dependence

“Contrast reversal” is the sinusoidal modulation in time of the contrast of a standing sine-
wave pattern. Response to contrast reversal is a critical test of linearity in Simple cells
[33,120]. A simple cell’s response depends strongly upon the spatial phase or position of
the standing grating pattern relative to the midpoint of the neuron’s receptive field, has a
large amplitude response at the fundamental driving frequency at one spatial phase (the
“preferred-phase”), and very little response at the “orthogonal phase”, 90◦ away from the
preferred phase. Response at both of these phases shows little or no generation of the
higher temporal harmonics that might be expected for a nonlinear system. On the other
hand, nonlinear harmonic distortion products are apparent in the responses of cortical
Complex cells [33]: their temporal responses show little sensitivity to spatial phase, and
firing modulates at twice the stimulus frequency (i.e., at the 2nd harmonic).

Simple and Complex cell responses, like those seen in experiment, arise in this
model cortex. For contrast reversal stimulation, Fig. 3.1a shows a model cell responding
like a Simple cell, and Fig. 3.1b shows another cell responding like a Complex cell. These
are but two cells taken from a large-scale network simulation with ∼ 4,000 cells (75%
excitatory, 25% inhibitory). Orientation and spatial phase preferences are conferred on
cortical cells from the convergence of output from many LGN cells [96], with orientation
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3.2. Modeling Results 15

preference laid out in pinwheel patterns [12–14,70], and spatial phase preference varying
widely from cortical cell to cortical cell [34].
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Figure 3.1: Responses of model neurons to contrast reversal stimulation (8 spatial phases,
at optimal orientation, and temporal and spatial frequency). (a) and (b) are predicted re-
sponses from respectively a Simple and a Complex neuron in the model network. (a)
Model Network Simple cell driven at 4 Hz. The spatial phase is defined so that one spa-
tial cycle of the grating pattern is 360◦. At 180◦, the response is zero. (b) Model Network
Complex cell driven at 4 Hz. The response is at the second harmonic and is insensitive to
spatial phase. [Reproduced from Ref. [124].]

3.2.2 Trade-off between LGN and cortico-cortical input

Phase insensitivity and frequency doubling are key to how this network produces both
Simple and Complex cells. For example, Fig. 3.2b shows that LGN excitation is frequency
doubled at the orthogonal phase, yet this strong nonlinearity in the LGN input is not
expressed in the spiking of the cell. As explained in [131], if excitation and cortico-
cortical inhibition are roughly in balance, phase insensitive cortico-cortical inhibition is
sufficient to suppress frequency-doubled firing at the orthogonal phase.

Another structural element is that the number of excitatory, LGN afferents driving a
cortical cell is inversely correlated to the number of excitatory cortico-cortical afferents.
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16 Chapter 3. An Egalitarian Network Model
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Figure 3.2: Extra- and intracellular responses to 4 Hz contrast reversal. (a) and (b) show
the model Simple Cell in Fig. 3.1a responding at its preferred and orthogonal spatial
phases. (c) the model Complex Cell in Fig. 3.1b at one of the phases. From left to right:
cycle-averaged firing rate (with the spontaneous rate in red dashes); effective reversal
potentialVS (magenta); LGN-driven conductance (green); cortico-cortical excitatory con-
ductance (red); cortico-cortical inhibitory conductance (blue). Dotted lines are standard
deviations for each of the conductances and for the potential. Thin black lines indicate
instantaneous values of conductances and potentials. [Reproduced from Ref. [124].]

That is, the fewer synapses on a cell taken up by the LGN, the more are available to
excitatory (presynaptic) neurons in the network. This assumption is based on theories of
cortical development in which the number of excitatory synapses is kept constant [81,82]
(recent experiments support this theoretical constraint [102]). The consequences of this
assumption are made clear in Fig. 3.3c. For the Complex cell, the lack of LGN excitation
is compensated for by a strong, frequency-doubled cortico-cortical excitation, balanced
by likewise frequency-doubled inhibition. The firing pattern of the cell is then naturally
frequency-doubled, and phase insensitive, as is observed for Complex cells.

3.2.3 Drifting grating responses

Another common visual stimulus used to classify the response properties of cortical neu-
rons is drifting sinusoidal gratings (a traveling, spatially modulated intensity pattern, held
at a fixed orientation). For the model Simple and Complex cells of Figs. 3.1 and 3.2,
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3.2. Modeling Results 17

Fig. 3.3 shows their extra- and intracellular responses to a drifting grating stimulus (8 Hz
at optimal orientation and spatial frequency). Their extracellular spiking is typical of ex-
perimentally observed Simple and Complex cells: The Simple cell follows the temporal
modulation of the grating as the grating drifts across its receptive field, whereas the Com-
plex cell shows an elevated, mostly unmodulated firing over the entire duration of the
stimulation.
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Figure 3.3: Responses to 8 Hz drifting grating at optimal orientation: (a) The model Sim-
ple cell in Fig. 3.1A. (b) The model Complex cell in Fig. 3.1a. From left to right: cycle-
averaged firing rates (spontaneous rates as dashed red lines); effective reversal potential
VS (magenta); LGN-driven conductance (green); cortico-cortical excitatory conductance
(red); cortico-cortical inhibitory conductance (blue). The dotted lines are standard devi-
ations for each of the conductances and for the potential. The thin black lines indicate
instantaneous values of conductances and potentials. [Reproduced from Ref. [124].]

Examination of LGN and cortico-cortical conductances in Fig. 3.3 accounts for the
model’s response to drifting gratings. First, the strong LGN excitation into the Simple cell
modulates with the stimulus frequency. Different cells receive LGN excitation of similar
wave-form, but due to variability in both the number of LGN afferents, and in spatial
phase preference, they are diverse in both amplitude and time of peak excitation. For
drifting grating stimulation, this yields a bulk forcing to the model that is nearly constant
in time and which is manifested as nearly time-invariant cortico-cortical conductances
[131]. Thus, for the model Simple cell, both the intracellularVS and its extracellular firing
pattern modulate on the time dependence of its LGN input. Conversely, for the model
Complex cell bothVSand the firing pattern are driven by the unmodulated cortico-cortical
conductances, and hence show only elevated, unmodulated responses.
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18 Chapter 3. An Egalitarian Network Model

3.2.4 Population distributions of modulation ratio

Keeping in mind the structure of the model, it should be clear that these two sample
cells, one Simple and one Complex, must sit within a continuum of possible intracellular
and extracellular responses. We explore this with a standard characterization of response:
Figure 3.4a shows the histogram of modulation ratio F1/F0 for the cycle-averaged effec-
tive reversal potential,VS, across the whole population of∼ 3,000 excitatory cells within
the model. The modulation ratio is the ratio of first harmonic amplitude (at the stimu-
lus frequency) to the mean. The distribution of modulation ratio is broad, unimodal and
monotonically decreasing, and reflects the broad distribution in number of LGN afferents
and the constraint of fixed, total excitation. In recent unpublished work David Ferster and
colleagues measured the modulation ratio of the intracellular potential for 168 cells in cat
cortex (personal communication; see Fig. 11 of [26] for an analysis on a much smaller set
of cat V1 cells). Like our model here, their measurements show also a broad and unimodal
distribution of intracellular F1/F0.

Curiously, this unimodality is not preserved in extracellular measures, neither in
experiment nor in the model. Fig. 3.4b shows for the model cortex the distribution of
modulation ratio of the cycle-averaged firing rate. Following others (e.g. [99, 116]), we
use this extracellular F1/F0 as a classifier, labeling as Simple those cells with F1/F0 > 1
(red in the figure), and as Complex those with F1/F0 < 1 (blue in the figure). Qualitatively
similar, both distributions show a bimodal structure peaked near the extremes of the clas-
sifier, but with a large proportion of cells having responses that are neither completely
Simple, nor completely Complex.

Mechler & Ringach [79] have recently shown that spike-rate rectification could lead
to a bimodal distribution in extracellular F1/F0, even though intracellular response is uni-
modally distributed (see also [1]). Our work here shows that this result can arise within
a network model which incorporates many elements that are biologically realistic. For
our model, we note that the form of the intracellular and extracellular F1/F0 distributions
changed little when the uniform distribution used for NLGN, the number of LGN afferents
impinging on a model V1 neuron, was replaced by a Gaussian distribution whose stan-
dard deviation was half its mean. When the NLGN distribution was made strictly bimodal
(1/2 the cortical cells receiving LGN excitation and 1/2 receiving none at all), this created
an extracellular F1/F0 distribution with a greater population of Complex cells as seen in
Fig. 3.4c, but also a plainly bimodal intracellular distribution.

3.3 Remarks

The main results thus far are these: We have constructed a neuronal network model, based
on macaque V1, for the emergence of Simple and Complex cells within the same basic
circuit. Their different responses reflect the underlying distribution of geniculate versus
cortico-cortical excitation. While the amount of excitation is kept roughly fixed, its di-
vision varies widely from cell to cell, as do many other elements of the model, such
as strength of coupling and of extra-cortical drive, and the receptive field properties of
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Figure 3.4: Comparison of intracellular and extracellularF1/F0 between model and exper-
iment. (a) Distribution of F1/F0 of membrane potential (relative to background activity)
of excitatory neurons in model network, when stimulated at optimal orientation and spa-
tial frequency. The height of each bar indicates the total number of excitatory neurons
in each bin, while the blue and red portions correspond to the cells that are classified as
“Simple” or “Complex” based on their extracellular responses. 9b) Distribution of the
modulation ratio F1/F0 of the firing rate for excitatory neurons in model network. (The
distribution for the inhibitory population is qualitatively similar.) For these two distribu-
tions, only cells with mean rates above 8 spikes/second are included. [Reproduced from
Ref. [124].]

convergent LGN excitation. In a manner consistent with experiment measurement, we
predict a bimodal but broad structure of extracellular modulation ratio, itself arising from
a distribution of intra-cellular modulation ratios that is broad butmonotonic.

This model is very different from the influential hierarchical model of Hubel &
Wiesel [49], wherein Simple cells receive geniculate drive and their pooled output drives
the Complex cells. Clearly, a strict rendering of the Hubel & Wiesel model would yield
a bimodal population response in both the extra- and intra-cellular modulation ratio, as
is not observed here, nor in experiment. Our model is more egalitarian than hierarchical,
with all cell types receiving strong inputs from the network of both simple and complex
cells and with almost all cells receiving LGN drive.

A crucial feature of our model is cortico-cortical inhibition, which allows the pos-
sibility of nearly linear, Simple cell responses in the network, even when driven by LGN
cells with their attendant rectification nonlinearities [131].

While our model is motivated by an interpretation of macaque V1 cortical architec-
ture [77,131] and instantiated in a large-scale computational model with spiking neurons,
it shares important features with the modeling of Chance et al [29]. As in [29], recur-
rent excitation plays a central role in creating Complex cell responses. However, in our
model recurrent excitation does not so much play the role of yielding phase invariant
responses, as in Chance et al, but rather in yielding sufficiently high, physiologically rea-
sonable firing rates for complex cells that are also being inhibited. Phase invariance is
built into the Complex cell’s total synaptic input by summing over both Complex cells
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20 Chapter 3. An Egalitarian Network Model

and Simple cells nonspecifically. In an elaboration of their basic model, Chance et al also
demonstrated that a mixed population of Simple, Complex, and intermediate cells could
be found by randomly varying the strength of connectivity to the model cortical network.

Finally, we have emphasized in this chapter the form of the model’s cycle- or time-
averaged responses. However, examination of Figs. 3.2 and 3.3 show that instantaneous
values of VS and the conductances are strongly fluctuating, with the mean VS mostly be-
low, or barely above, the threshold to firing. Clearly, fluctuations are important to creating
the network state. Futhermore, as large ranges in coupling parameters were explored, re-
gions where multi-stable and hysteretic behavior (with respect to stimulus parameters)
were uncovered, we found that stable and physiologically realistic behavior can only be
maintained by adding background noise. It is at this point when we realized the impor-
tance of fluctuations in the membrane potential and synaptic conductances, issues which
we will address in the next Chapter.
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Chapter 4

Orientation Selectivity and
Fluctuation-Driven Criticality

Orientation selectivity and spatial summation are two of the most fundamental visual pro-
cessing tasks performed by the mammalian primary visual cortex (V1). V1 is the first area
along the visual pathway where neurons are selective for stimulus orientation. Individual
neurons in V1 respond preferentially to lines and edges of a particular orientation. This
orientation selectivity is also independent of stimulus contrast: In computing orientation
tuning curves, i.e., firing rates of individual neurons as a function of stimulus orientation,
the bandwidth (half-width at half maximum), the circular variance (CV), and the orien-
tation selectivity index of individual tuning curves are roughly independent of stimulus
contrast. How orientation selectivity arises in V1 has not been fully understood [38,119].
According to the classical Hubel and Wiesel picture, orientation selectivity directly arises
from the convergence of lateral geniculate (LGN) afferents [51]. However, modeling
based on the Hubel and Wiesel, or the “feedforward,” picture shows that the degree of
selectivity provided by the convergent LGN inputs alone is insufficient to account the se-
lectivity of individual neurons [119]. Some form of cortical processing must be necessary.
Furthermore, in purely feedforwardmodels, at higher contrasts broader tuning is expected
since the feedforward drive surpasses threshold at more orientations. (This is the so-called
iceberg effect.) Noise in the membrane potential has been suggested to be important for
shaping contrast invariance [5,45,83,110]. However, how this “noise” arises in the visual
cortical network is yet to be elucidated.

Modifications of the feedforward scheme follow Hebbian ideas to posit cortical
circuitry with highly specific cortical inhibition. The push-pull model is an example of
such a modification: intracortical inhibition is anti-correlated with the excitatory synaptic
drive [127]. However, other models, without highly specific coupling, demonstrate that se-
lectivity can arise from the sharpening of weakly tuned feedforward excitation by broadly
tuned intracortical inhibition (see, e.g., [3, 27, 117]). The so-called marginal phase arises
when cortical excitation is sufficiently strong to allow symmetry-breaking states [10].
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In the previous chapter, we reviewed how simple and complex cellular responses
arise in a large-scale neuronal network model of an input layer 4Cα of macaque V1 [124].
In the previous model, a continuum of simple and complex cellular responses arise from
the varying degrees of balance between cortico-cortical and feedforward inputs: the most
“simple” of the model neurons are driven strongly by the LGN and are “linearized” by
strong cortical inhibition [131], while the most “complex” receive strong cortical exci-
tation and inhibition [124]. While this model was capable of reproducing many aspects
of simple and complex cell behavior, it does not have complex cells that are orientation
selective. The strong cortical amplification causes an apparent bistability: complex cells
tend to fire at rates that are too high (and are limited by the absolute refractory period)
or not at all. Reasonable complex cell firing rates can be obtained after the introduction
of sufficiently strong noise. In [23], we suggested that strong cortical fluctuations may
stabilize network dynamics and allow complex cell selectivity. In this chapter, within the
framework of a simplified version of [124], we demonstrate how strong synaptic fluc-
tuations in sparsely-coupled networks or networks with synaptic failure, can transform
destabilizing recurrent network amplification to near-bistability in a regime dominated by
fluctuations. In simple cells, strong dynamic synaptic fluctuations provide the “noise” to
circumvent the iceberg effect. In complex cells, the near bistability provides steep, graded
response to recurrent amplification to achieve contrast-invariant orientation selectivity. Fi-
nally, the role of synaptic fluctuations is analyzed detail using the bifurcation structure of
an all-to-all network model.

In contrast with the all-to-all model reviewed in the previous chapter, the modeling
results here were taken from a sparsely couplednetwork. We use the p j

kl terms in Eq.
2.2 to model sparsity in the network coupling. That is, for each pair of neurons j,k,
p j

kl is independent of l and is chosen to be 1 with probability p = 1/Ne f f. Note that
the spatial coupling kernel still has Gaussian lengthscales. Unless otherwise noted, the
results presented below were from network simulations with Ne f f = 96 (i.e., each neuron
projects to 96 postsynaptic target neurons).

4.1 Orientation Selectivity in a Large-Scale Model of V1

Orientation selectivity is measured using orientation tuning curve, i.e., time-average fir-
ing rates as a function of stimulus orientation. A tuned neuron responds strongly at a
few orientations and shows very little response at the “orthogonal” orientation. In our
large-scale model, both simple and complex cells show orientation selective responses.
Figure 4.1 shows the tuning properties of sample neurons: well-tuned firing rates for both
simple and complex cells, regardless of their location within their respective orientation
hypercolumns (see, for instance, [70,74,106]).On the other hand, the membrane potential
and the total conductance are tuned more broadly in neurons near pinwheel centers (Fig.
4.1a-d) than in the iso-orientation domains (Fig. 4.1e-f) (see also, [74,106]). Furthermore,
in iso-orientation domains, the firing-rate, membrane-potential, and conductance tuning
curves for a given neuron are well aligned in orientation angle with one another (their
peaks are at the same angle locations), while near the pinwheel centers the relationship
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4.1. Orientation Selectivity in a Large-Scale Model of V1 23

between the conductance and firing-rate tuning curves is, in general, more varied and
complicated (for example, their peak locations can differ) [74].
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Figure 4.1: Tuning curves for neurons near the pinwheel center (a–d) and in iso-
orientation domains (e,f); (a,b,e) are simple and (c,d,f) complex cells. Firing rate, mem-
brane potential, geniculate excitation, excitatory and inhibitory cortico-cortical conduc-
tances are plotted. Solid lines represent the mean values at medium contrast. Dash-
dotted lines represent the mean values at low contrast. Dashed lines represent the mean
plus/minus one standard deviation. There is little or no LGN input to complex cells in
(c,d,f). [Reproduced from Ref. [123].]

One quantitative measure of orientation selectivity for drifting grating stimuli is the
circular variance (CV), defined as CV [m] = 1−

∣∣∫ π
0 m(θ )e2iθ dθ

∣∣/∫ π
0 m(θ ) dθ , where

m(θ ) is the time-averaged firing rate. CV is near 0 for well-tuned neurons, near 1 for
poorly-tuned neurons, and in-between otherwise. We display the statistical distribution of
the CV for the excitatory neurons in our network in Figure 4.2. In particular, Fig. 4.2a
reveals the approximate contrast invariance of orientation selectivity [5], and Fig. 4.2b
shows that orientation selectivity of the firing rates is almost independent of the neuron’s
location within the orientation column [70, 74, 106].

The mechanism for orientation tuning in iso-orientation domains is relatively sim-
ple: all neurons receive spikes only from neighbors with like orientation preference, so
all the cortical conductances, membrane potentials, and firing rates are simply sharpened
versions of the LGN drive. Near pinwheel singularities, however, sparsity of connections
in our model network is needed for conductances and membrane potentials to be tuned.
Namely, in a densely connected network, they would be untuned as they would be com-
posed of roughly equal contributions from a number of LGN-drive-dominated simple
cells with all possible orientation preferences. Sparsity is thus also needed to achieve
tuned firing rates for complex cells near pinwheel centers, since untuned conductances
could not confer any tun ing upon them. (See [123] for details.) In addition, strong corti-
cal amplification is needed to sharpen the complex cell tuning, and strong gain for con-
trast invariance. Synaptic fluctuations in the network, again induced by its sparsity, give
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Figure 4.2: (a) Circular variance at medium versus low contrasts. (b) Dependence of cir-
cular variance on the distance from a pinwheel center: E C and ES are excitatory complex
and simple cells, respectively. [Reproduced from Ref. [123].]

it stability. Our modeling work further reveals that there is a bifurcation mechanism, the
“fluctuation-controlled criticality” [123], underlying the orientation tuning dynamics of
simple and complex cells.

In producing these model results, large regions of the synaptic coupling strength
parameter space were explored. We find that in order to have contrast invariant orienta-
tion selective complex cells, there must be strong recurrent excitation [124] with large
temporal fluctuations [23]. To understand the effect of synaptic fluctuations on network
dynamics, we systematically varied Ne f f , through synaptic failure or through network
sparsity.

Without sufficient synaptic fluctuations, the complex cells tended to be bistable in
the presence of the strong recurrent excitation needed for cortical amplification and for
orientation tuning. This can be illustrated by comparing model networks with different
Ne f f . Fixing the stimulus (drifting grating) orientation (say, at θ0), the stimulus contrast
was increased from zero contrast to 100% contrast before it was decreased to zero. Let
∆Nspikesdenote the difference in the number of spikes during the contrast decrement and
during the contrast increment. Figure 4.3 shows the distribution of ∆Nspikesof the exci-
tatory simple and the excitatory complex population for networks with different Ne f f .
Fixing the stimulus (drifting grating) orientation (say, at θ0), the stimulus contrast was
increased from zero contrast to 100% contrast before it was decreased to zero. For the
network model with Ne f f = 96 (Ne = 72 and Ni = 24), the neurons are not hysteretic on
average: the distribution of ∆Nspike is symmetric about 0. In the network with larger Ne f f

(= 768), the distribution of ∆Nspikesfor the excitatory complex population is skewed: the
complex cells are hysteretic in stimulus contrast. We note that this hysteresis increases as
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Figure 4.3: Firing-rate hysteresis in the V1 model as characterized by ∆Nspikes. ∆Nspikes>
0 if the cell spiked more during the contrast decrease than increase. Simple cells are
depicted by broken line and complex by solid line. (a) Ne f f = 96. (b) Ne f f = 768. [Re-
produced from Ref. [123].]

Ne f f is further increased.

4.2 Fluctuation-Controlled Criticality

The effect of intrinsic synaptic fluctuations can be further illustrated using a highly ide-
alized, minimal network model. In this model, we let one half of the neurons receive
feedforward drive in the form of Poisson spike trains with identical rates ν0 and spike
strengths f (simple cells), and the other half only strong intracortical excitation (complex
cells). Both receive the same, strong, cortico-cortical inhibition. We ignore the detailed
time-dependence and any spatial structure of the visual drive, and focus instead on the dy-
namics of networks containing two types of cells (simple or complex, i.e., strongly driven
by feedforward or by recurrent excitation) in the presence of synaptic fluctuations. Figure
4.4 displays the complex cell population firing rate as a function of the mean feedforward
drive, gInput = c0νLGN, in networks with the same synaptic coupling strengths but of dif-
ferent Ne f f . These firing rate curves are obtained by first increasing and then decreasing
in succession the feedforward input. In the Ne f f = 200 network, hysteresis is observed
as we ramp up and then down the strength of the feedforward drive. The transition is a
saddle-node bifurcation in gInput for the mean population firing rate. As Ne f f is decreased
(here by increasing the probability of synaptic failure, 1− p), while strengthening individ-
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ual synapses to keep the effective network drive constant, the region of bistable behavior
in gInput becomes smaller and smaller, until the bistability disappears completely and a
smooth firing rate curve is observed (e.g., the curve for Ne f f = 25).
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Figure 4.4: Bifurcation diagram near the “fluctuation-controlled criticality” in an ideal-
ized network. The firing rate is for complex cells. There is a transition to bistability as
Ne f f is increased. [Reproduced from Ref. [123].]

The transition also occurs when we change the relative contributions of fast and
slow excitation (see [123]). NMDA receptors acts on a longer timescale and each PSC
has a smaller temporal variance than a PSC mediated by AMPA receptors. Decreasing the
NMDA component increases the amount of fluctuations, thus smoothing the gain curves
and taking the network out of the bistable range.

To further illustrate the notion of fluctuation-driven dynamics, we rewrite the I&F
equations as dvj

dt = −gT (t)
[
v j −V j

S (t)
]
, where gT is the total conductance and V j

S is an
effective reversal potential, which is necessarily greater than the voltage threshold VT

whenever the neuron fires. In the statistically steady state situation, what distinguishes
the bifurcation is the time-average ofV j

S. We say the dynamics is mean-drivenwhenever
V j

S = T−1 ∫ t0+T
t0

V j
S (t)dt is greater thanVT , i.e., the mean of the synaptic input is sufficient

to drive the neuron to fire. We call the other case fluctuation-driven, since temporal fluc-
tuations in the drive are needed for spiking. This notion of fluctuation-driven dynamics is
distinct from the dynamics of the so-called “balanced networks” where the overall exci-
tatory and inhibitory currents nearly cancel [129, 130]. (In models of Sects. 3.1 and 3.2,
the mean synaptic currents are strongly inhibitory and the effective reversal potentials are
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far below threshold.)
Both intrinsic and extrinsic synaptic fluctuations have the effect of smoothing the re-

lation between synaptic input and neuronal output in the form of spikes. With sufficiently
strong recurrent excitation, as we increase the strength of synaptic fluctuations, the region
of bistability in synaptic input shrinks to achieve near-hysteresis at a critical level of fluc-
tuations. As we increase fluctuations even further, network is no longer hysteretic, but the
network gain is decreased. Since this transition occurs as the amount of synaptic fluctua-
tions is varied, we call it fluctuation-controlled criticality . The network dynamics near
this point is characterized by near-bistability and rapid changing firing rates as a function
of synaptic input.

4.3 Remarks

How contrast invariant orientation selectivity arises in V1 is one of the important prob-
lems of visual neuroscience [38, 119]. An immediate problem confronting any model is
that the Hubel-Wiesel thalamo-cortical drive is broader at high contrasts, as the input at
non-preferred orientations becomes super-threshold. Some form of noise is often invoked
to provide contrast invariance in simple cells. Assuming that a transfer function between
membrane potential and neuronal firing rates can be found, [45, 83] showed that a power
transfer function is the only relation that transforms contrast invariant membrane poten-
tial tuning curves to contrast invariant spike responses. Within a wide range of contrasts,
stimulus-independent noise does transform threshold-linear firing rate curves into approx-
imate power laws in the membrane potential [26, 45, 83] consistent with experimental
findings [5]. However, the effects of synaptic conductances has not been considered and
how contrast invariant membrane potentials arise in the first place is not yet understood.
Here we show that synaptic fluctuations provides a natural form of “noise,” allowing the
iceberg effect to be circumvented in simple cells, while the fluctuation-controlled critical-
ity gives rise to contrast-invariant orientation-selective V1 complex cells.

While many of our model results can be analyzed using kinetic theory and pop-
ulation density equations [23], in this chapter, we have given a mechanistic account of
how contrast invariance may be achieved in a fluctuation-driven setting, and relegate the
framework for theoretical analysis to the next chapter. Here we have demonstrated that
an important effect of synaptic fluctuations is to stabilize network dynamics in highly
recurrent networks so that large cortical gain or amplification is possible at a fluctuation-
controlled critical point, which we believe is the underlying mechanism governing con-
trast invariance in V1.
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Chapter 5

An Effective Kinetic
Representation of Neuronal
Network Dynamics

In this chapter, we present a detailed theoretical framework for statistical descriptions
of neuronal networks and derive (1+1)-dimensional kinetic equations, without introduc-
ing any new parameters, directly from conductance-based integrate-and-fire neuronal net-
works.We describe the details of derivation of our kinetic equation in the case of networks
of excitatory neurons. A more complete description, containing, for instance, derivations
of kinetic equations for networks consisting of both excitatory and inhibitory neurons,
and for networks consisting of many coarse-graining patches, can be found in [22].

The dimension reduction in our theory is achieved via a novel moment closure. To
establish accuracy, we compare the prediction of our kinetic theory with the full simula-
tions of the original point-neuron networks.

The hierarchy of the multiple spatial and temporal scales in the cortical dynam-
ics presents a significant theoretical challenge to computational neuroscience. While we
may devise increasingly more efficient numerical methods for simulations of dynamics
of large-scale neuronal networks [20, 77, 94, 117, 127], basic computational constraints
will eventually limit the power of our simulations. Furthermore, to gain qualitative under-
standing of the cortical mechanisms underlying cortical processing, a major theoretical
issue is how to derive effective dynamics under a reduced representation of large-scale
neuronal networks. Therefore, we have developed efficient and effective representations
for simulating and understanding the dynamics of larger, multi-layered networks. As sug-
gested, for example, by the laminar structure of cat’s or monkey’s primary visual cortex,
in which many cellular properties such as orientation preference are arranged in regular
patterns or maps across the cortex [12–14, 36, 70], some neuronal sub-populations may
be effectively represented by coarse-grained substitutes. Conceivably, we may partition
the two-dimensional cortical layers into coarse-grained patches, each sufficiently large to
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contain many neurons, and yet sufficiently small that these regular response properties of
the individual neurons within each patch can be taken as constant for each neuron in the
patch.

Furthermore, there is another important issue that needs to be addressed in coarse-
graining, i.e., how to capture fluctuation-dominatedspiking processes mathematically,
because neuronal networks, as demonstrated in Chaps. 3 and 4, whether real cortical
networks [5, 121] or computer models [20, 40, 110], frequently operate in a dynamical
regime in which the spiking of individual neurons is caused by irregular temporal fluc-
tuations of the membrane potential. In this cortical state, the mean membrane potential
(say, obtained by averaging locally in time, or by trial averages, i.e., averaging over many
voltage traces under the same stimulus condition), does not reach firing threshold, but
fluctuations in the membrane potential do reach spiking threshold. We note that, since a
purely excitatory network can still operate in a fluctuation-driven regime, this notion of
fluctuation-dominated dynamics is distinct from the notion of fluctuation near threshold
in the so-called balanced network that uses near cancellation of excitatory and inhibitory
currents [129, 130].

In [23], starting with large-scale model networks of point neurons, which are suffi-
ciently detailed for modeling neuronal computation of large systems, we tiled the model
cortex with coarse-grained patches. We then derived an effective dynamics to capture the
statistical behavior of the neurons within each coarse-grained patch in their interaction
with other coarse-grained patches. We have used as extension of this kinetic theory to
study rich dynamic phenomena within these networks, including transitions to bistability
and hysteresis, even in the presence of large fluctuations. We have also used these rep-
resentations to study simplified models of orientation selectivity to suggest the possible
role of large fluctuations and cortico-cortical excitation in the orientation tuning of com-
plex cells [23, 123]. This kinetic theory approach has been shown to be rather powerful,
allowing for both computational scale-up and insight into the mechanisms underlying the
operation of neuronal networks [21, 23].

In this chapter, we present the detailed theoretical framework for capturing these
coarse-grained dynamics that can be fluctuation-dominated. (For earlier probabilistic rep-
resentations, upon which our coarse-grained theory is based, see, e.g., [2,9,19,30,40,42,
46,60,88–91,93,126,133] ). Starting with networks of conductance-based integrate-and-
fire (I&F) neurons, we derive a full kinetic description directly, without introduction of
any new parameters. In the limit of infinitely fast conductances, these kinetic equations
can be further reduced to one-dimensional Fokker-Planck equations. As the number of
point neurons N tends to infinity, our kinetic theory reduces further to the classical firing
rate representation [110,126,134]. As pointed out in [23], at moderate and even small N,
this kinetic theory captures the effects of large synaptic fluctuations, with efficiency and
surprising accuracy. We establish the dynamicalaccuracy of our kinetic theory by bench-
marking its predictions against the full simulations of the point neuron network under
time-inhomogeneousinputs. Although the derivation of our kinetic theory assumes that
the number of neurons in a coarse-grained patch is large, the numerical verification of
this asymptotics shows that the number N can become as small as O (10), with accuracy
retained [23]. As expected [23, 28, 46, 61], the kinetic representation is far more efficient
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computationally than the full I&F network. The savings are two-fold: (i) For a given I&F
network, the probability density representation eliminates the need for simulating to very
long times or for simulating many ensembles so as to reduce the statistical error in com-
puting firing rates; (ii) The reduction of the dimension, for probability density description,
provides significant computational savings. For example, to achieve a firing rate compu-
tation with 1% accuracy for a network of 100 neurons, a reduction in computation time
of 4-6 orders of magnitude can be easily obtained [23, 95].

5.1 All-to-all Coupled Excitatory Neuronal Networks

Let us start with a coupled network consisting of N all excitatory neurons with an expo-
nential time-course for conductances. The dynamics of all-to-all coupled excitatory I&F
neuronal network is governed by

τ
dVi

dt
= −(Vi − εr)−Gi (t)(Vi − εE) , (5.1a)

σ
dGi

dt
= −Gi + f ∑

µ
δ

(
t− t i

µ
)
+

S
N ∑

j
∑
µ

p jµδ
(
t− t jµ

)
, (5.1b)

whereVi is the membrane potential of ith neuron in the network and σ is the decay time-
scale of the excitatory conductance time-course. S is the strength of coupling between
neurons in the network. p jµ describes the probability of synaptic release, which is mod-
eled by a Bernoulli process, with release probability equal to p, i.e., p jµ = 1 with proba-
bility p; 0, otherwise. For each incoming external spike, the jump in the conductance of a
neuron is f/σ , and, for each incoming spike from other neurons in the network, the jump
in the conductance is S/Nσ .

For a fixed neuron j, the output spike statistics of
{
t jµ

}
is, in general, not Poisson.

However, the input to the ith neuron is a spike train summed over output spike trains from
many neurons in the network. If we assume that each neuron firing event has a very low
rate and is statistically independent from each other, then the spike train obtained by sum-
ming over a large number of output spike trains of neurons in the network asymptotically
tends to be a Poisson spike process [31]. Therefore, we will assume that the input spike
train summed from all other neurons to the ith neuron is Poisson with rate pNm(t) ,where
m(t) is the population-averaged firing rate per neuron and pN is an effective number of
neurons that are coupled to neuron i.

To study the statistical behavior of the network, we construct a statistical ensemble
of identically structured neuronal networks that differ only in their input, each of which
is an independent set of N independent realizations of the Poisson input spike trains with
the same rate ν0 (t). We are interested in what is the probability of finding a neuron whose
voltage is in (v,v+dv) and whose conductance is in (g,g+dg) at time t. The correspond-
ing probability density function is

ρ (v,g,t) = E

[
1
N

N

∑
i=1

δ (v−Vi (t))δ (g−Gi (t))

]
.
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where E(·) is the expectation with respect to all possible sets of N independent real-
izations of the input Poisson spike process with rate ν0 (t) for given initial data (we
can further average over an ensemble of initial conditions V (0) if necessary.) Denote
ρ = ρ (v,g,t) , the governing equation for the probability density is (see Appendix B
of [22] for a detailed derivation)

∂tρ = ∂v

{[(
v− εr

τ

)
+g

(
v− εE

τ

)]
ρ
}

+ ∂g

( g
σ

ρ
)

(5.2a)

+ν0 (t)
[

ρ
(

v,g− f
σ

,t

)
−ρ (v,g,t)

]
(5.2b)

+pm(t)N

[
ρ

(
v,g− S̄

pNσ
,t

)
−ρ (v,g,t)

]
, (5.2c)

for v∈ [εr ,VT) and g∈ [0,∞), where S̄= pS. The first two terms in Eq. (5.2) describe the
streaming dynamics of neurons without receiving any spikes and the second term in Eq.
(5.2a) describes the streaming arising from a finite σ . The third and fourth terms in Eq.
(5.2) describe the conductance jumps of the neurons upon receiving external input spikes
and spikes from other neurons in the network, respectively.

Eq. (5.2) is a (2+1)-dimensional partial differential equation with delays in g-
space. Eq. (5.2) is not exact since the summed input from other neurons in the network is
only approximately Poisson, and thus term (5.2c) is valid only in an asymptotic sense. We
invoke a small-jump approximation to derive a (2+1)-dimensional, nonlinear advection-
diffusion equation below, and discuss how to reduce the dynamics in two dimensions
(v,g) to dynamics in only one dimension v.

5.1.1 Diffusion Approximation

Note that the jump in conductance of a neuron, induced by a single spike from another
neuron in the network, is S̄/(pNσ) , whereas the jump, induced by a single spike from
the external input, is f/σ . Assuming that these jumps are small, we can Taylor expand
(5.2b) and (5.2c) to get expansion to obtain

∂tρ = ∂v

{[(
v− εr

τ

)
+g

(
v− εE

τ

)]
ρ
}

+∂g

{[
1
σ

(g− ḡ(t))ρ +
σ2

g (t)
σ

∂gρ

]}
(5.3)

with

ḡ(t) ≡ f ν0 (t)+ S̄m(t) , (5.4a)

σ2
g (t) ≡ 1

2σ

[
f 2ν0 (t)+

S̄2

pN
m(t)

]
. (5.4b)

Eq. (5.3) can be written in conservation form:

∂tρ + ∂vJV(g,v)+ ∂gJG(g,v) = 0, for v∈ [εr ,VT), and g∈ [0,∞),
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with the flux

JV (v,g) = −
[(

v− εr

τ

)
+g

(
v− εE

τ

)]
ρ (v,g) , (5.5a)

JG (v,g) = −
[
1
σ

(g− ḡ(t))ρ (v,g)+
σ2

g (t)
σ

∂gρ (v,g)

]
, (5.5b)

where the flux JV (v,g) and JG(v,g) are the flux along the v-direction and the g-direction,
respectively.

The reset dynamics of our I&F neurons is instantaneous, i.e., once a neuron’s volt-
age crosses the thresholdVT , the voltage resets immediately without any refractory period
(i.e., without any delay) and the conductance stays with the same value upon voltage re-
set. Hence,

JV (VT ,g) = JV (εr ,g) , for ∀g∈ [0,∞). (5.6)

Boundary condition (5.6) simply expresses the fact that the neurons that just fired all enter
through the reset voltage. Furthermore, since there are no neuronswhose conductancewill
go below zero or go to infinity, the g-flux vanishes at the boundary g = 0 and g = ∞, i.e.,

JG(v,g = 0) = 0, JG(v,g = ∞) = 0, for ∀v∈ [εr ,VT). (5.7)

Eqs. (5.6) and (5.7) constitute boundary conditions for Eq. (5.3).
One of the most important statistical characterizations of neuronal networks is the

firing rate, which is often measured in physiological experiments to describe neuronal net-
work properties. Here, the dynamics of the network (5.1) is described by the population-
averaged firing rate per neuron as determined by the total probability flux across the
threshold regardlessof the values of conductance, i.e.,

m(t) =
∫ ∞

0
JV (VT ,g,t)dg

= −
∫ ∞

0

[(
v− εr

τ

)
+g

(
v− εE

τ

)]
ρ (VT ,g,t)dg. (5.8)

Once the solution ρ (v,g,t) is known, we can determine the firing rate using Eq. (5.8).
However, Eq. (5.3) is specified with the parameters ḡ(t) and σ2

g (t), which are functions
of m(t) (see Eqs (5.4)). The firing rate m(t) , in turn, depends on the boundary value of
ρ (VT ,g,t) through Eq. (5.8). Therefore, Eq. (5.3) is a nonlinear equation.

Since Eq. (5.3) is a nonlinear (2+1)-dimensional partial differential equation, we
can achieve computational advantage if we are able to reduce further the dynamics to a
(1+ 1)-dimensional effective dynamics. Through this reduction, we can also gain ana-
lytical insight to the neuronal network dynamics. In what follows, we discuss, in turn,
two possible reductions: (i) in the limit of mean-drivendynamics and (ii) in the limit of
fluctuation-drivendynamics.
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5.1.2 Closure in the Mean-Driven Limit

We define the mean-driven limitas the limit where N → ∞, and f → 0, ν0 (t) → ∞, but
f ν0 (t) =finite. In this limit, σ2

g (t) = 0 from Eq. (5.4b) and there will be no fluctuations
in the input conductance for a neuron from either external input or the input from other
neurons in the network. In this all-to-all network, the input conductance from the exter-
nal input without fluctuations will be the same to all neurons, i.e., the effect of the second
term f ∑µ δ

(
t− t i

µ
)
in Eq. (5.1b) is equivalent to a smooth input f ν0 (t), whereas the third

term, which signifies the network interaction, in Eq. (5.1b), is equivalent to a smooth in-
put pSm(t) to a neuron from all other neurons in the network — the fluctuations have
been scaled away by the factor 1/

√
N. Notice that, under these smooth conductance in-

puts without fluctuations, Eqs. (5.1) show the voltages of neurons can move rapidly from
the reset voltage εr to the threshold VT and fire, which leads to the observation that the
knowledge about the value of conductance of a neuron does not provide much informa-
tion about the value of the voltage of the neuron statistically. Therefore, intuitively, the
dynamics of conductance and voltage are uncorrelated in the mean-driven limit. If the
dynamics of conductance and voltage are assumed to be statistically independent, i.e.,

ρ (v,g,t) = ρ (v) (v,t)ρ (g) (g,t) ,

then, the marginalization of Eq. (5.3) to v and g yields

∂tρ (v) (v) = −∂v jV (v) (5.9a)
d
dt
〈g〉 = − 1

σ
[〈g〉− ḡ(t)] (5.9b)

where

jV =−
[(

v− εr

τ

)
+ 〈g〉

(
v− εE

τ

)]
ρ (v) (v) , and 〈g〉 ≡

∫
gρ (g) (g,t)dg.

In the derivation, we have used the fact that the flux across the threshold VT is equal to
the flux entering through the reset voltage εr , i.e.,

∫ VT

εr

∂v

{[(
v− εr

τ

)
+g

(
v− εE

τ

)]
ρ (v,g)

}
dv=−JV (VT ,g)+JV (εr ,g) = 0

by the boundary condition (5.6). Eqs. (5.9) are closed with respect to ρ (v) (v,t) and 〈g〉(t):
Eq. (5.9a) is a (1+1)-dimensional PDE that describes the evolution of ρ (v) (v,t) ,whereas
Eq. (5.9b) describes the evolution of the average conductance 〈g〉(t).

For the case of time-homogeneous external input, i.e., ν0 (t) = ν0, a constant, we
can determine the steady-state firing rate as follows. First, note that the flux jV in Eq.
(5.9a) is constant over (εr ,VT) for a steady state. This constant can be determined by the
flux at the boundary VT , at which, the flux jV is equal to the firing rate. Therefore,

m= jV (v) =−
[(

v− εr

τ

)
+ 〈g〉

(
v− εE

τ

)]
ρ (v) (v) ,
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Figure 5.1: Mean-driven limit: Plotted here is the probability density function of a neu-
ron’s voltage. Solid line: Theoretic Prediction (5.10); Circles: Simulation of the origi-
nal I&F neuronal network dynamics (5.1) in a steady state. Parameters are N = 1600,
f = 0.001, ν0 = 20000, S= 0.05, σ = 3ms, τ = 20msand p= 1. Inset: plotted is 1/ρ(v),
which is a linear function of v from Eq. (5.10). We have scaled voltage units such that
εr = 0 VT = 1, and εE = 14/3 [77]. This convention of units will be used throughout all
the figures in this chapter. [Reproduced from Ref. [22].]

For a steady state in a mean-driven regime, the probability density thus has the following
form:

ρ (v) (v) =− mτ
(v− εr)+ 〈g〉(v− εE)

for v∈ [εr ,VT), (5.10)

and ρ (v) (v) = 0 for v /∈ [εr ,VT), where 〈g〉 = ḡ = f ν0 + S̄mby Eq. (5.9b). Using the
normalization condition

∫ VT
εr

dvρ (v) (v)= 1 and noticing that the denominator in Eq. (5.10)
must be negative to ensure ρ (v) (v)≥ 0, we arrive at

m=





1+ ḡ

τ log
∣∣∣∣

ḡ(εr − εE)
(VT − εr)+ ḡ(VT − εE)

∣∣∣∣
, if ḡ >

VT − εr

εE−VT

0, otherwise

(5.11)
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with ḡ = f ν0 + S̄m. By solving Eq. (5.11) for m, we can determine the firing rate. Note
that Eq. (5.11) is not a new result and is commonly quoted in literature (see, for example,
[110, 126]). Here, we merely illustrate how to use the probability density description to
reproduce this result.

Finally, we point out that, for an integrate-and-fire neuronal network operating in
a mean-driven regime, the probability distribution for voltage is indeed well captured by
Eq. (5.10), as is illustrated in Fig. (5.1).

5.1.3 Closure in Fluctuation-driven Regimes

In general, unlike in the mean-driven limit, g and v are correlated. Stronger fluctuations
in g are expected to correlate with larger values of v. To describe this general dynamics,
here, for the network described by Eq. (5.1), we derive a system of (1+1)-dimensional
kinetic equations.

0 10 20 30 40 50 60
0

0.1

0.2

Conductance, g (sec -1 )

ρ
(g

) (g
)

I&F Simulation 
Gaussian Fit 

Figure 5.2: Conductance dynamics: Probability density function of g. Circles: Simula-
tion of the original I&F neuronal network dynamics (5.1); Solid line: Gaussian fit (5.13).
[Reproduced from Ref. [22].]
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Dynamics of Conductances

Using the flux condition (5.6) at the boundary, we integrate Eq. (5.3) over v to obtain

∂tρ (g) (g) = ∂g

[
1
σ

(g− ḡ(t))ρ (g) (g)+
σ2

g (t)
σ

∂gρ (g) (g)

]
(5.12)

for g∈ [0,+∞). The flux Jg (g) =−
[
σ−1 (g− ḡ(t))ρ (g) (g)+ σ−1σ2

g (t)∂gρ (g) (g)
]
van-

ishes at g = 0 and g = ∞. For time-homogeneous input, ν0 and σ2
g are constant, and the

time-invariant solution can be approximated by the following Gaussian solution

ρ (g) (g) =
1√
2πσg

exp

[
− 1
2σ2

g
(g− ḡ)2

]
(5.13)

where ḡ = ν0 f + S̄m, under the condition f ν0 + S̄m≫ σg. Hence, the mean and variance
of the conductance are

mean(g) = ḡ, var(g) = σ2
g ,

respectively. If the domain of g were (−∞,∞) , then Eq. (5.13) would be exact. The nu-
merical simulation of the full original I&F dynamics (5.1) demonstrates that in certain
regimes this approximate solution well captures the distribution of conductance as shown
in Fig. (5.2). Note that the time-scale for the evolution of ρ (g) (g) is σ . For sufficiently
small σ , starting with any initial condition of ρ (g) (g) , the solution rapidly converges
to the approximate form in Eq. (5.13). If the time-scale of a time-dependent σ2

g (t) is
much slower than σ (which generally is the case for AMPA conductances, which are
much faster than typical time-scales of stimulus input [62]), then, in the limit of σ → 0,
ρ (g) (g,t) is essentially slaved to the time-invariant solution that has the approximate form
in Eq. (5.13).

Dynamics of Membrane Potentials

Next, we project out the variable g from Eq. (5.3). Define the conditional moments

µ1 (v) =
∫ ∞

0
gρ (g|v)dg, µ2 (v) =

∫ ∞

0
g2ρ (g|v)dg,

where
ρ (v,g) = ρ (g|v)ρ (v) (v) , and ρ (v) (v) =

∫ ∞

0
ρ (v,g)dg.

Integrating Eq. (5.3) over g yields

∂tρ (v) (v) = ∂v

{[(
v− εr

τ

)
+ µ1 (v)

(
v− εE

τ

)]
ρ (v) (v)

}
, (5.14)
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and multiplying Eq. (5.3) by g, then integrating over g yields

∂t

[
µ1 (v)ρ (v) (v)

]
= − 1

σ
[µ1 (v)− ḡ(t)]ρ (v) (v) (5.15)

+∂v

[(
v− εr

τ

)
µ1 (v)ρ (v) (v)

]
+ ∂v

[(
v− εE

τ

)
µ2 (v)ρ (v) (v)

]
,

where we have used Eq. (5.5b) and the boundary conditions (5.7). Using Eq. (5.14), we
can cast Eq. (5.15) in the following form

∂t µ1 (v) = − 1
σ

(µ1 (v)− ḡ(t))+
[(

v− εr

τ

)
+ µ1 (v)

(
v− εE

τ

)]
[∂vµ1 (v)]

+
Σ2 (v)
ρ (v)

∂v

[(
v− εE

τ

)
ρ (v) (v)

]
+

[
∂vΣ2 (v)

](
v− εE

τ

)
, (5.16)

where
Σ2 (v)≡ µ2 (v)− µ2

1 (v)

is the conditional variance.

Closure

Equations (5.14) and (5.16) show that the evolution of ρ (v) (v) depends on the first con-
ditional moment µ1 (v) and that the evolution of µ1 (v) depends on the second moment
µ2 (v) through the conditional variance Σ2 (v) , · · · . Therefore, projecting the dynamics
(5.3) to the variable v generates a hierarchy of an infinite number of equations governing
the conditional moments. A theoretical issue naturally arises: how to truncate this hier-
archy to a closed set of equations of a lower order such that the truncated dynamics can
still capture the essential dynamics of the system. Mathematically, a closure issue is often
a coarse-graining issue, namely, whether there exits a scale below which the dynamics
either by itself is sufficiently slowly varying function of v. If so, then, we can postulate
the following closure:

Σ2 (v,t) = σ2
g (t) . (5.17)

Therefore, we have ∂vΣ2 (v) = 0 and Eq. (5.16) becomes

∂t µ1 (v) = − 1
σ

[µ1 (v)− ḡ(t)]+
σ2

g (t)

ρ (v) (v)
∂v

[(
v− εE

τ

)
ρ (v) (v)

]

+
[(

v− εr

τ

)
+ µ1 (v)

(
v− εE

τ

)]
∂vµ1 (v) . (5.18)
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Now Eqs. (5.14) and (5.18) are closed with respect to ρ (v) (v) and µ1 (v) . In summary,

∂tρ (v) (v) = ∂v

{[(
v− εr

τ

)
+ µ1 (v)

(
v− εE

τ

)]
ρ (v) (v)

}
, (5.19a)

∂t µ1 (v) = − 1
σ

[µ1 (v)− ḡ(t)]+
σ2

g (t)

ρ (v) (v)
∂v

[(
v− εE

τ

)
ρ (v) (v)

]
(5.19b)

+
[(

v− εr

τ

)
+ µ1 (v)

(
v− εE

τ

)]
∂vµ1 (v)

constitute our key result: kinetic equations for dynamics of coupled excitatory neuronal
networks. From Eq. (5.19a), the corresponding probability flux clearly is

JV (v,t) =−
[(

v− εr

τ

)
+ µ1 (v)

(
v− εE

τ

)]
ρ (v) (v) . (5.20)

Therefore, the population-averaged firing rate per neuron is determined by the flux (5.20)
at the threshold:

m(t) = JV (VT ,t) .

Boundary Conditions

Now we discuss how to derive boundary conditions for the kinetic equations (5.19). Note
the probability flux (5.5a) along the v-direction satisfies the boundary condition (5.6).
Therefore, ∫ ∞

0
JV (VT ,g)dg=

∫ ∞

0
JV (εr ,g)dg,

which leads to

[(VT − εr)+ (VT − εE)µ1 (VT)]ρ (v) (VT) = (εr − εE)µ1 (εr)ρ (v) (εr) (5.21)

Furthermore, for the quantity,

η (v) =
∫ ∞

0
gJV (v,g)dg

using the closure (5.17), it is easy to show that

η (v) = JV (v,t)µ1 (v)−σ2
g

(
v− εE

τ

)
ρ (v) (v)

with JV (v,t) as in Eq. (5.20). The boundary condition (Eq. (5.6)) entails

η (VT) = η (εr) ,
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i.e.,

JV (VT ,t)µ1 (VT)−σ2
g

(
VT − εE

τ

)
ρ (v) (VT)

= JV (εr ,t)µ1 (εr)−σ2
g

(
εr − εE

τ

)
ρ (v) (εr)

Note that JV (VT ,t) = JV (εr ,t) = m(t) . Hence,

τm(t) [µ1 (VT)− µ1 (εr)] = σ2
g

[
(VT − εE)ρ (v) (VT)− (εr − εE)ρ (v) (εr)

]
. (5.22)

Eqs. (5.21) and (5.22) constitute nonlinear boundary conditions for the kinetic equations
(5.19).

5.1.4 Accuracy of Kinetic Theory

As pointed out in Ref. [23], our kinetic theory can reproduce the voltage distribution
and network firing rates very well. Figure (5.3) illustrates a comparison between the
predictions of our kinetic theory and the full numerical simulation of the original I&F
excitatory-only neuronal networks (5.1) in a steady state. Note that even when the con-
ductance mean input Ginput = f ν0 is not sufficiently strong to force a neuron to fire in
the mean-driven limit (for example, for the values of Ginput < 13.6 in Eq. (5.11)), our
kinetic theory captures the fluctuation-induced firing very well, as shown in Fig. (5.3).
Further, here we show that the time-dependent solutions of our kinetic theory can also
capture very well the original dynamics of the full I&F neuronal network (5.1). Figure
(5.4) clearly demonstrates the dynamical accuracy of our kinetic theory.

We note that under the mean-driven limit, i.e., N → ∞, and f → 0, ν0 → ∞, with
f ν0 =finite, for which σ2

g = 0, the kinetic equations (5.19) recovers the mean-driven
equations (5.9) with 〈g〉 being slaved to ḡ. Therefore, our kinetic theory has a wide range
of validity — from the mean-driven regimes to the fluctuation-dominate regime. We will
further discuss the issue of v-g correlation and fluctuations below.

5.1.5 Fokker-Planck Equation

The kinetic equations (Eqs (5.19)) can be viewed as asymptotic equations for describing
the neuronal network dynamics for small but finite σ . Now we discuss the σ → 0 limit of
kinetic equations (Eqs (5.19)). Note that

σσ2
g (t) =

1
2

[
f 2ν0 (t)+

S̄2

Np
m(t)

]
∼ O (1) .

As σ → 0, Eq. (5.19b) reduces to

µ1 (v) = ḡ(t)+
σσ2

g

ρ (v) (v)
∂v

[(
v− εE

τ

)
ρ (v) (v)

]

= ḡ(t)+
σσ2

g

τ
+

σσ2
g

ρ (v) (v)

(
v− εE

τ

)
∂vρ (v) (v) . (5.23)
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This expression of µ1 (v) makes it transparent the meaning of corrections to the first term
in Eq. (5.23), i.e., ḡ(t), which describes the mean-driven, uncorrelated limit.

Finally, substituting Eq. (5.23) into Eq. (5.19a) yields the following Fokker-Planck
equation,

∂tρ (v) (v) = ∂v

{[(
v− εr

τ

)
+ γ (t)

(
v− εE

τ

)]
ρ (v) (v)+ σσ2

g (t)
(

v− εE

τ

)2
∂vρ (v) (v)

}

(5.24)
where γ (t)≡ ḡ(t)+σσ2

g (t)/τ . Clearly, we have condition that
∫ εE

εr
ρ (v) (v)dv= 1. The

probability flux in Eq. (5.24) is

JFP (v,t) =−
[(

v− εr

τ

)
+ γ (t)

(
v− εE

τ

)]
ρ (v) (v)−σσ2

g (t)
(

v− εE

τ

)2
∂vρ (v) (v) .

5.2 Remarks

In this chapter, we developed a coarse-grained representation of the dynamics of an all-
to-all coupled, excitatory-only neuronal network, in terms of kinetic equations, directly
from the original Integrate-and-Fire system of equations. Comparison with full numer-
ical simulations of the original I&F network established that the reduced dynamics is
very accurate and numerically efficient. Both analytical insight and scale-up of numer-
ical represtation can be achieved by this kinetic approach. For instance, in [23], using
a version of this theory, we studied orientation selectivity of a network model in a ring
architecture. In [22], we present detail derivations of the kinetic equations for networks
consisting of both excitatory and inhibitory neurons and extend the theoretical framework
to describe the interaction between many coarse-grained patches.
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Figure 5.3: Steady state accuracy of kinetic theory for a case of fluctuation-driven dy-
namics: The population-averaged firing rate per neuron m as a function of mean input
conductance Ginput = f ν0. Inset: probability density function of the membrane potential.
Circles: Simulation of the original excitatory-only I&F neuronal dynamics (5.1) in a sta-
tistical steady state; Solid line: Kinetic Theory (5.19); Dot-dashed line: Fokker-Planck
Equation (5.24); Dotted line: Mean-Driven Limit (5.11). Parameters: f = 0.01, S= 0.05,
σ = 3ms, τ = 20ms, N = 300, and p = 0.25. (ν0 = 1200 for the inset.) [Reproduced from
Ref. [22].]
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Figure 5.4: Dynamical accuracy of kinetic theory in a fluctuation-driven regime: Plotted
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identically structured networks. The firing rate is measured using a bin size of 1msec. The
upper and lower boundaries of the gray area mark the values one-standard deviation away
from the mean, measured from an ensemble of the 104 networks. Thick solid line: Ki-
netic theory (5.19). Dashed line: Mean-driven limit (5.11)); (B) Instantaneous probability
density function of the membrane potential at time t = 79.625ms(The upper and lower
boundaries of the gray area mark the values one-standard deviation away from the mean,
measured from an ensemble of the 104 networks. Thick solid line: Kinetic theory (5.19)).
Parameters: f = 0.5, τ = 20msand σ = 0.1ms, S= 0.125 and p = 0. [Reproduced from
Ref. [22].]
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Chapter 6

Concluding Remarks

The primary visual cortex (V1) is one area of the brain where computational modeling
has been successfully used to investigate the link between physiological mechanisms and
cortical function. Our approach to large-scale computational modeling of V1 [20,94,123,
124] has been reviewed in these notes. Clearly, to gain a deeper theoretical understanding
of even the simplest brain functions, modeling must strike a careful balance between
mathematical abstraction and physiological detail.

To recap, the main objectives of our computational neuronal network modelingwere
to (i) capture groups of experimentally observed cortical phenomena in a single theoreti-
cal model of cortical circuitry, and (ii) identify the physiological mechanisms underlying
the resulting model dynamics. In this way, computational modeling with sufficient real-
ism may help to pick from among a number of theoretical scenarios those that could be
truly realized in nature. To achieve these objectives, we have built “parsimonious” mod-
els based on a minimal, yet sufficient, set of anatomical and physiological assumptions
that allow us to qualitatively and quantitatively reproduce a given set of distinct physi-
ological effects within a unified dynamical regime and within a single realistic cortical
architecture. A clear advantage of a single large-scale computational model over more
idealized models is that it is broad enough to explore a large number of possible dynami-
cal regimes, all within a single framework, and thus identify those regimes that are phys-
iologically relevant. Furthermore, by incorporating longer-range coupling, an extended
model can account for the observed spatiotemporal patterns of spontaneous cortical ac-
tivity [20], and cortical activity patterns induced by the Hikosaka line-motion illusion
stimulus paradigm [94].

Furthermore, one of the ultimate goals of large-scale computational neuronal net-
work modeling is to use the network mechanisms identified in computational modeling
for guiding the design of new experiments, as well as to contrast these mechanisms with
experimental results, so that we can reach a better understanding of the underlying phys-
iological phenomena.

In contrast to statistical physics that provides general principles governing large-
scale equilibrium systems, no unifying law has so far been found that would govern
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large-scale networks in neuroscience. We have therefore strived to extract the general
governing features of the neuronal networks in a robust way that is insensitive to the in-
significant details of both the computational model used and the parameter regime it oper-
ates in. However, unlike in analytical considerations where this simply means discussing
a sufficiently general model family, computational models are very concrete in terms of
their specifications, such as the values of parameters used in the model. Therefore, spe-
cial attention must be paid to the “structural robustness” of the uncovered dynamical
mechanisms. In our minds, this means that the models must be able to capture multiple
phenomena in a single dynamical regime, within broad parameter ranges, and also that
the models should capture bifurcations wherever they exist and reproduce their correct
dynamical behavior as observed experimentally. These requirements constrain the mod-
els structurally. Additionally, in a stronger sense, one can only be reasonably convinced
that the network mechanisms discovered via this modeling process are robust structurally
when physiologically reasonable variations of the network architecture all reproduce the
studied phenomena and confirm the discoveredmechanisms in similar parameter regimes.

Moreover, when we study phenomena that are hypothesized to be network induced
instead of being controlled by the cellular dynamics of particular neurons, we can demon-
strate the robustness of the hypothesized network mechanism by replacing the underly-
ing Hodgkin-Huxley-type equations with, for example, a simpler integrate-and-fire (I&F)
neuron model. If the presumed network-induced mechanism is indeed at work, the par-
ticular choice of the neuronal equations (Hodgkin-Huxley; Fitzhugh Nagumo; or linear,
quadratic, or exponential I&F) should make no essential difference. In fact, a study by
comparing a number of such related models can be systematically employed for examin-
ing the robustness of the hypothesized mechanisms.
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635, 1907.

[67] J.S. Lund. Local circuit neurons of macaque monkey striate cortex: Neurons of
laminae 4C and 5A. Journal of Comparative Neurology, 257:60–92, 1987.

71



52 Bibliography

[68] J.S. Lund, A. Angelucci, and P.C. Bressloff. Anatomical substrates for functional
columns in macaque monkey primary visual cortex. Cerebral Cortex, 12:15–24,
2003.

[69] R. Malach, Y. Amir, M. Harel, and A. Grinvald. Relationship between intrinsic
connections and functional architecture revealed by optical imaging and in vivo
targeted biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. USA,
90:10469–10473, 1993.

[70] P. Maldonado, I. Godecke, C. Gray, and T. Bonhoeffer. Orientation selectivity in
pinwheel centers in cat striate cortex. Science, 276:1551–1555, 1997.

[71] P. E. Maldonado, S. Friedman-Hill, and C. M. Gray. Dynamics of striate cortical
activity in the alert macaque: II. Fast time scale synchronization. Cereb Cortex,
10(11):1117–1131, 2000.

[72] J.G. Malpeli. Activity of cells in area 17 of the cat in absence of input from layer
a of lateral geniculate nucleus. J Neurophysiol, 49(3):595–610, 1983.

[73] J.G. Malpeli, C. Lee, H.D. Schwark, and T.G. Weyand. Cat area 17. i. pattern of
thalamic control of cortical layers. J Neurophysiol, 56(4):1062–1073, 1986.

[74] J. Marino, J. Schummers, D. C. Lyon, L. Schwabe, O. Beck, P. Wiesing, K. Ober-
mayer, andM. Sur. Invariant computations in local cortical networks with balanced
excitation and inhibition. Nat. Neurosci., 8(2):194–201, 2005.

[75] K.A.C. Martin and D. Whitteridge. Form, function and intracortical projections of
spiny neurons in the striate cortex of the cat. J. Physiol. (London), 353:463–504,
1984.

[76] B.A. McGuire, C.D. Gilbert, P.K. Rivlin, and T.N. Wiesel. Targets of horizontal
connections in macaque primary visual cortex. J. Comp. Neurol., 305:370–392,
1991.

[77] D. McLaughlin, R. Shapley, M. Shelley, and J. Wielaard. A neuronal network
model of macaque primary visual cortex (V1): Orientation selectivity and dynam-
ics in the input layer 4Cα . Proc. Natl. Acad. Sci. USA, 97:8087–8092, 2000.

[78] F. Mechler, D. Reich, and J.D. Victor. Detection and discrimination of relative
spatial phase by V1 neurons. J. Neurosci., 22:6129–6157, 2002.

[79] F. Mechler and D. Ringach. On the classification of simple and complex cells. Vis.
Res., 42:1017–1033, 2002.

[80] M. Mignard and J.G. Malpeli. Paths of information flow through visual cortex.
Science, 251(4998):1249–1251, 1991.

[81] K. Miller. Synaptic economics: Competition and cooperation in synaptic plasticity.
Neuron, 17:371–374, 1996.

72



Bibliography 53

[82] K. Miller and D. MacKay. The role of constraints in hebbian learning. Neural
Computation, 6:100–126, 1994.

[83] K. Miller and T. Troyer. Neural noise can explain expansive, power-law nonlinear-
ities in neural response functions. J. Neurophys., 87:653–659, 2002.

[84] S. Molotchnikoff, P.-C. Gillet, S. Shumikhina, andM. Bouchard. Spatial frequency
characteristics of nearby neurons in cats’ visual cortex. Neuroscience Letters,
418(3):242–247, 2007.

[85] J.A. Movshon. The velocity tuning of single units in cat striate cortex. J Physiol,
249(3):445–468, 1975.

[86] J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Receptive field organization
of complex cells in the cat’s striate cortex. J Physiol (Lond), 283:79–99, 1978.

[87] J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Spatial summation in the
receptive fields of simple cells in the cat’s striate cortex. J Physiol (Lond), 283:53–
77, 1978.

[88] D. Nykamp and D. Tranchina. A population density method that facilitates large-
scale modeling of neural networks: Analysis and application to orientation tuning.
J. of Computational Neuroscience, 8:19–50, 2000.

[89] D. Nykamp and D. Tranchina. A population density method that facilitates large-
scale modeling of neural networks: Extension to slow inhibitory synapses. Neural
Computation, 13:511–546, 2001.

[90] A. Omurtag, E. Kaplan, B. Knight, and L. Sirovich. A population approach to
cortical dynamics with an application to orientation tuning. Network, 11:247–260,
2000.

[91] A. Omurtag, B.W. Knight, and L. Sirovich. On the simulation of large populations
of neurons. J. of Comp. Neurosci., 8:51–63, 2000.

[92] D. Pare, E. Shink, H. Gaudreau,A. Destexhe, and E.J. Lang. Impact of spontaneous
synaptic activity on the resting properties of cat neocortical pyramidal neurons in
vivo. J Neurophysiol, 79:1450–1460, 1998.

[93] J. Pham, K. Pakdaman, J. Champagnat, and J. Vibert. Activity in sparsely con-
nected excitatory neural networks: effect of connectivity neural networks. Neural
Networks, 11:415–434, 1998.

[94] A.V. Rangan, D. Cai, and D.W. McLaughlin. Modeling the spatiotemporal cortical
activity associated with the line-motion illusion in primary visual cortex. Proc.
Natl. Acad. Sci. USA, 102(52):18793–18800, 2005.

73



54 Bibliography

[95] A.V. Rangan, D. Cai, and L. Tao. Numerical methods for solving moment
equations in kinetic theory of neuronal network dynamics. J. Comput. Phys.,
221(2):781–798, 2007.

[96] R.C. Reid and J.-M. Alonso. Specificity of monosynaptic connections from thala-
mus to visual cortex. Nature, 378:281–284, 1995.

[97] D. Ringach. Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex. J. Neurophysiol., 88:455–463, 2002.

[98] D. Ringach, M. Hawken, and R. Shapley. Dynamics of orientation tuning in
macaque primary visual cortex. Nature, 387:281–284, 1997.

[99] D. Ringach, R. Shapley, and M. Hawken. Orientation selectivity in macaque V1:
Diversity and laminar dependence. J. Neuroscience, 22:5639–5651, 2002.

[100] C. Rivadulla, J. Sharma, and M. Sur. Specific roles of nmda and ampa receptors
in direction-selective and spatial phase-selective response in visual cortex. J. Neu-
rosci., 21:1710–1719, 2001.

[101] B. Roerig and J.P. Kao. Organization of intracortical circuits in relation to direction
preference maps in ferret visual cortex. J Neurosci, 19(24):RC44, 1999.

[102] S. Royer and D. Pare. Bidirectional synaptic plasticity in intercalated amygdala
neurons and the extinction of conditioned fear responses. Neuroscience, 115:455–
462, 2002.

[103] S. Royer and D. Pare. Conservation of total synaptic weight through balanced
synaptic depression and potentiation. Nature, 422:518–522, 2003.

[104] H. Sato, Y. Hata, and T. Tsumoto. Effects of blocking non-n-methyl-d-aspartate
receptors on visual responses of neurons in the cat visual cortex. Neuroscience,
94:697–703, 1999.

[105] C.E. Schroeder, D.C. Javitt, M. Steinschneider, A.D. Mehta, S.J. Givre, H.G.
Vaughan, Jr., and J.C. Arezzo. N-methyl-D-aspartate enhancement of phasic re-
sponses in primate neocortex. Exp. Brain Res., 114:271–278, 1997.

[106] J. Schummers, J. Marino, and M. Sur. Synaptic integration by v1 neurons depends
on location within the orientation map. Neuron, 36:969–978, 2002.

[107] L. Schwabe, K. Obermayer, A. Angelucci, and P.C. Bressloff. The role of feed-
back in shaping the extra-classical receptive field of cortical neurons: A recurrent
network model. J. Neurosci., 26(36):9117–9129, 2006.

[108] M.N. Shadlen and W.T. Newsome. The variable discharge of cortical neurons:
implications for connectivity, computation and information coding. J Neurosci,
18:3870–3896, 1998.

74



Bibliography 55

[109] R.M. Shapley and J.D. Victor. The effect of contrast on the non-linear response of
the y cell. J. Physiol., 302:535–547, 1980.

[110] M. Shelley and D. McLaughlin. Coarse-grained reduction and analysis of a net-
work model of cortical response. I. drifting grating stimuli. J. Comp. Neurosci.,
12:97–122, 2002.

[111] M. Shelley, D. McLaughlin, R. Shapley, and J. Wielaard. States of high conduc-
tance in a large-scale model of the visual cortex. J. Comp. Neurosci., 13:93–109,
2002.

[112] L. Sincich and G. Blasdel. Oriented axon projections in primary visual cortex of
the monkey. J. Neurosci., 21:4416–4426, 2001.

[113] W. Singer and C.M. Gray. Visual feature integration and the temporal correlation
hypothesis. Annu Rev Neurosci., 18:555–586, 1995.

[114] W. Singer, F. Tretter, and M. Cynader. Organization of cat striate cortex: a correla-
tion of receptive-field properties with afferent and efferent connections. J Neuro-
physiol, 38(5):1080–1098, 1975.

[115] L. Sirovich and R. Uglesich. The organization of orientation and spatial frequency
in primary visual cortex. Proc Natl Acad Sci U S A, 101(48):16941–16946, 2004.

[116] B.C. Skottun, R.L. DeValois, D.H. Grosof, J.A. Movshon, D.G. Albrecht, and A.B.
Bonds. Classifying simple and complex cells on the basis of response modulation.
Vis. Res., 31:1079–1086, 1991.

[117] D. Somers, S. Nelson, and M. Sur. An emergent model of orientation selectivity in
cat visual cortical simple cells. Journal of Neuroscience, 15:5448–5465, 1995.

[118] D.C. Somers, E.V. Todorov, A.G. Siapas, L.J. Toth, D.S. Kim, and M. Sur. A
local circuit approach to understanding integration of long-range inputs in primary
visual cortex. Cereb Cortex, 8(3):204–217, 1998.

[119] H. Sompolinsky and R. Shapley. New perspectives on the mechanisms for orien-
tation selectivity. Current Opinion in Neurobiology, 7:514–522, 1997.

[120] H. Spitzer and S. Hochstein. Simple- and complex-cell response dependences on
stimulation parameters. J.Neurophysiol, 53:1244–1265, 1985.

[121] E.A. Stern, A.E. Kincaid, and C.J. Wilson. Spontaneous subthreshold membrane
potential fluctuations and action potential variability of rat corticostriatal and stri-
atal neurons in vivo. J. Neurophysiol., 77:1697–1715, 1997.

[122] K. Tanaka. Organization of geniculate inputs to visual cortical cells in the cat. Vis.
Res., 25:357–364, 1985.

75



56 Bibliography

[123] L. Tao, D. Cai, D. McLaughlin, M. Shelley, and R. Shapley. Orientation selectivity
in visual cortex by fluctuation-controlled criticality. Proc. Natl. Acad. Sci. USA,
103:12911–12916, 2006.

[124] L. Tao, M. Shelley, D. McLaughlin, and R. Shapley. An egalitarian network model
for the emergence of simple and complex cells in visual cortex. Proc Natl Acad
Sci U S A, 101(1):366–371, 2004.

[125] K. Toyama, M. Kimura, and K. Tanaka. Organization of cat visual cortex as inves-
tigated by cross-correlation technique. J Neurophysiol, 46(2):202–214, 1981.

[126] A. Treves. Mean field analysis of neuronal spike dynamics. Network, 4:259–284,
1993.

[127] T. Troyer, A. Krukowski, N. Priebe, and K. Miller. Contrast invariant orientation
tuning in cat visual cortex with feedforward tuning and correlation based intracor-
tical connectivity. J. Neurosci., 18:5908–5927, 1998.

[128] M. Tsodyks, T. Kenet, A. Grinvald, and A. Arieli. Linking spontaneous activ-
ity of single cortical neurons and the underlying functional architecture. Science,
286:1943–1946, 1999.

[129] C. van Vreeswijk and H. Sompolinsky. Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science, 274:1724–1726, 1996.

[130] C. van Vreeswijk and H. Sompolinsky. Chaotic balanced state in a model of corti-
cal circuits. Neural Comput., 15:1321–1371, 1998.

[131] J. Wielaard, M. Shelley, R. Shapley, and D. McLaughlin. How Simple cells are
made in a nonlinear network model of the visual cortex. J. Neuroscience, 21:5203–
5211, 2001.

[132] T.N.Wiesel and D.H. Hubel. Spatial and chromatic interactions in the lateral genic-
ulate body of the rhesus monkey. J. Neurophysiol., 29:1115–1156, 1966.

[133] W.J. Wilbur and J. Rinzel. A theoretical basis for large coefficient of variation and
bimodality in neuronal interspike interval distributions. J. Theor. Biol, 105:345–
368, 1983.

[134] H. Wilson and J. Cowan. A mathematical theory of the functional dynamics of
cortical and thalamic nervous tissue. Kybernetik, 13:55–80, 1973.

[135] D. Xing, R.M. Shapley,M.J. Hawken, and D.L. Ringach. Effect of stimulus size on
the dynamics of orientation selectivity in Macaque V1. J Neurophysiol, 94(1):799–
812, 2005.

[136] Y. Yoshimura, H. Sato, K. Imamura, and Y. Watanabe. Properties of horizontal and
vertical inputs to pyramidal cells in the superficial layers of the cat visual cortex. J
Neurosci, 20:1931–1940, 2000.

76



Bibliography 57

[137] T. Yoshioka, G. Blasdel, J. Levitt, and J. Lund. Relation between patterns of in-
trinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive re-
gions in macaque monkey striate cortex. Cereb. Cortex, 6:297–310, 1996.

77





              Stochastic processes and PDEs in 
                        mathematical biology 
 
               

                                    Juan J.L. Velázquez

79



80



für Mathematik
in den Naturwissenschaften

Leipzig

Qualitative behavior of a Keller-Segel model

with non-diffusive memory

by

Kyungkeun Kang, Angela Stevens, and Juan J.L. Velazquez

Preprint no.: 35 2008

81



82



   



            
              

       
             

   
       


       
   

 

          
           
     

        
 

 

          
          
         
            
          

83



 

   
      
      
       
        

 
 

           
        
          

          


84



IOP PUBLISHING NONLINEARITY

Nonlinearity 21 (2008) T283–T289 doi:10.1088/0951-7715/21/12/T04

OPEN PROBLEM

Partial differential equations and non-diffusive
structures

A Stevens1 and J J L Velázquez2

1 Universität Heidelberg, Angewandte Mathematik und Bioquant, INF 267, D-69120 Heidelberg,
Germany
2 ICMAT (CSIC-UAM-UC3M-UCM), Facultad de Matemáticas, Universidad Complutense,
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Abstract
In this paper we give a short introduction to open problems and recent studies
of classes of partial differential equations, which—in contrast to reaction–
diffusion systems—describe phenomena with local interactions. Partial
differential equations coupled with ordinary differential equations, models of
transport type and hyperbolic systems are discussed with respect to their pattern
forming behaviour.
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1. Introduction

In the following we summarize some models of partial differential equations, which are
characterized by the presence of at least one non-diffusible ‘active agent’. We are interested in
the pattern forming behaviour and the long time dynamics of such systems. From the applied
point of view we will focus on biological examples and models here, although the mathematical
questions we address also arise in other scientific contexts. From the mathematical point of
view it turns out that the solutions of these models show peculiar patterns in comparison with
mathematical models, where most agents in the system are assumed to diffuse. This latter type
of systems and equations has been studied in mathematical biology in great detail, especially
in the context of Turing type instabilities. The analysis of the ‘more local’ models requires
different mathematical methods and techniques.

2. Reaction–diffusion equations coupled to ODEs

One example for a model of an interacting cell system whose continuous reaction–diffusion
limit is given by a reaction–diffusion equation coupled to an ODE is the model for loss of

0951-7715/08/120283+07$30.00 © 2008 IOP Publishing Ltd and London Mathematical Society Printed in the UK T283
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contact inhibition of malignant cells within a healthy tissue, proposed and analysed in [3, 17].
Two types of cells, malignant and healthy ones, move and divide on a two-dimensional lattice.
The malignant cells, denoted by U , are supposed to be more motile and thus diffuse on the
lattice much faster than the healthy cells, denoted by V . In the case of cell–cell contact the
healthy cells are inhibited to grow, whereas the malignant cells can still grow in such a situation.
Thus the malignant cells are able grow on top of other cells, i.e. the birth rate of U is assumed
to be constant. The healthy V cells can only grow on empty sites. The death rate for all cells of
type U and of type V increases with local overcrowding, since they are assumed to compete,
e.g. for oxygen. In [3, 17] the following system of partial differential equations was rigorously
derived for the macroscopic cell densities u, v by means of a hydrodynamic limit:

ut = !u + u(β − D(u) − D′(u)v),

vt = v(β(1 − v) exp(−u) − D(u)).

Here D(u) =
∑∞

k=0 γ (k+1) uk

k! e−u and γ relate to the death processes in the original interacting
stochastic many particle models and β relates to the birth rate (cf [17]). The diffusion of the
V cells vanishes in this limit.

An interesting question for this limiting system is, what are the qualitative dynamics of
the populations of malignant and of healthy cells, i.e. under what conditions does one of the
cell populations spread faster than the other within the heterogeneous tissue. A first result was
given in [17]. Related questions were pursued in [8].

3. Drift–diffusion models coupled to an ODE

A by now classical drift–diffusion model, respectively, cross-diffusion model in mathematical
biology is the Keller–Segel (KS) model for chemotaxis [14]. Cells exhibiting chemotaxis
move towards regions of higher concentrations of an attractive chemical signal. Well-known
examples are the chemotactic behaviour of Escherichia coli and of the slime mould amoebae
Dictyostelium discoideum.

Two particularly interesting limiting cases of the KS model exist. First, the case where the
diffusion of the chemotactic species is much slower than the diffusion of the chemo-attractant.
In suitable non-dimensional units the model then reduces to a parabolic–elliptic system:

ut = !u − ∇(u∇v), x ∈ $ ∈ RN, t > 0, (1)

0 = !v + u − c x ∈ $, t > 0. (2)

Here u = u(t, x) denotes the concentration of the chemotactic organism and v = v(t, x)

denotes the concentration of the chemo-attractant. This system is usually stated with zero-flux
boundary conditions for a bounded domain$ and initial data u(0, x) = u0(x). A compatibility
condition which allows to solve (2) with zero-flux conditions is given by c = 1

|$|
∫
$

u0 dx.
The mathematical properties of system (1) and (2) have been studied extensively, in

particular steady states and conditions for initial data which ensure the global existence of
solutions or blow-up in finite time. The number of papers on the KS model and related
systems is rather large by now. A summary of the results on this topic in published papers and
preprints until 2002 can be found in [9, 10].

So far a second interesting limiting case for the KS type of models has been studied much
less. Instead of a diffusible chemo-attractant a kind of non-diffusible attractive memory is

86



Open Problem T285

assumed to be given:

ut = !u − ∇(u∇g(z)), x ∈ $ ⊂ RN, t > 0, (3)

zt = f (u, z). (4)

For specific positive g and negative f chemotactic travelling bands were already discussed
in [15], see also [11] and further references therein. In [23] and [2] the existence of global
solutions for such models was proved.

Mathematically the situation becomes more involved for positive f . A specific example
for system (3) and (4) with g(z) = θ log(z) for θ > 0 and f (u, z) = u was introduced
in [18, 24]. The idea for this model originated from a self-attracting reinforced random walk
of a single particle, the derivation of conditions for recurrence and transience and the biological
phenomenon of slime trail following and aggregation of myxobacteria (cf the review paper [19]
for reinforced random walks and the book [4] for the self-organization of myxobacteria).

The PDE model (3) and (4) cannot provide an accurate description of the dynamics of
the self-attracting reinforced random walk of a single particle in any nontrivial continuum
limit. However, it seems likely that for a many particle model this PDE–ODE system results
as a limit under suitable conditions on the number of particles and the law of reinforcement.
Nevertheless, the rigorous derivation of (3) and (4) starting from a stochastic many particle
system has not been obtained so far. In case equation (4) also allows diffusion, a rigorous
derivation of the system from a moderately interacting stochastic many particle system has
been obtained in [25].

For f (u, z) = u · z and g(z) = log(z) blow-up in finite time in one space dimension
for specific initial data was proved in [16]. These functions give rise to a much stronger
tendency for blow-up of solutions than the case f (u, z) = u and g(z) = θ log(z) for any
θ > 0. Therefore, the asymptotic behaviour of the solutions of (3) and (4) for f (u, z) = u

and g(z) = θ log(z) for different space dimensions has recently been studied in [26] in more
detail. Results include blow-up in finite time, blow-up in infinite time and convergence of
solutions to zero in a self-similar way. Most of these solutions exhibit involved asymptotics,
which require a careful analysis of several boundary layers. As a general rule larger values
of θ and smaller values of the spatial dimension N yield a stronger tendency for blow-up.
As a consequence, many critical parameter values occur for which the solutions change their
asymptotic behaviour.

The asymptotics given in [26] do not yield blow-up for θ < 1 in any space dimension.
Given the form of equation (3) one can expect an increasing strength of the chemotactic
attraction for increasing θ . The dependence of the behaviour of (3) and (4) on the space
dimension N is not so obvious and requires a more detailed analysis than what is shown so
far in [26]. An intuitive explanation for the dependence of blow-up on the spatial dimension
is as follows: for smaller dimensions the motion of a Brownian particle covers space more
densely than for larger dimensions. As a consequence, the modification of the environment
(given by v) is smaller for larger dimensions and therefore the tendency for blow-up is weaker.
Blow-up results from steepening gradients in the attractive environment v. In the case of a
diffusing chemical environment v the result is different. Then the tendency for blow-up of
solutions is stronger in larger dimensions.

Due to the hyperbolic character of equation (4) the asymptotics of the solutions of (3)
and (4) depend very sensitively on the initial data in some cases. The strongest dependences
occur for N = 1, θ = 1. This has been rigorously proved in [13]. Also the concentration of
mass to a Dirac mass in infinite time has been shown for the case N = 1, 1 < θ < 3.

It would be interesting to obtain rigorous proofs for various other asymptotic results
derived in [26] and to understand them in a more general context.
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4. Models of transport type

Models of transport type are extensively studied in the context of age and stage structured
population dynamics, especially in epidemiology. Usually the dynamics of a distribution
function f = f (t, x, θ) is described with respect to time, space and a set of internal variables
or age/stage parameters θ . These variables can include magnitudes such as cell orientation
or shape, the state within the cell cycle, age with respect to a disease state and magnitudes
for internal cell states, such as chemical concentrations. Depending on the setting, f can be
understood as a cell density or a probability distribution. Examples are given in [27] and [20].
Further classical references are cited in these books.

An example for a transport model analysed in mathematical biology is

(∂t f + v(θ) · ∇xf )(t, x, θ) =
∫

[−1,1]
[K(θ̂ , θ; f )f (t, x, θ̂) − K(θ, θ̂; f )f (t, x, θ)] dθ̂ .

(5)

The left-hand side of this equation describes cell motion with speed v(θ), which may depend
on the set of internal variables θ . The right-hand side describes the transition between different
cell states. More generally derivatives with respect to θ could also be included and further
dependences considered. Equations such as (5) have been used to study reorientation of cells
due to interaction with themselves and with external cues. In the context of chemotaxis (cf [1])
the kernel K depends on an external attractive chemical signal instead of (or additionally to)
f itself. For alignment of small stiff filaments and elongated cells equation (5) was discussed
in [5] and [7], but cell motion in space was omitted.

The fact that the changes in the internal variables take place locally, i.e. in regions of a size
which is smaller than the characteristic length scale used to define the distribution f (t, x, v),
justifies the discussion of equation (5) together with the other type of models presented in this
paper.

4.1. Pattern formation in transport models with internal variables

An interesting feature of models of type (5) is that they can generate patterns with a
characteristic wavelength. This is well known for reaction–diffusion systems and was
discovered in the classical work by Turing [28]. The existence of pattern forming instabilities
for (5) has been proved in [21] for a discrete set of state variables. The linearization of equations
of type (5) can exhibit periodic oscillations with a characteristic wavelength, if at least three
state variables are present. It has also been proved that the formation of nontrivial patterns
is possible with at least four internal variables, if the resulting system is symmetric under
reflections. The basic model in this case is

(u1)t + α(u1)x = S2(u1, u2, v1, v2) − T1(u1, u2, v1, v2),

(u2)t + β(u2)x = T1(u1, u2, v1, v2) − T2(u1, u2, v1, v2),

(v1)t − α(v1)x = T2(u1, u2, v1, v2) − S1(u1, u2, v1, v2),

(v2)t − β(v2)x = S1(u1, u2, v1, v2) − S2(u1, u2, v1, v2).

Under suitable conditions on α,β, T1, T2 and S1, S2 the solutions of the linearized system show
patterns with a defined wavelength.

These results can be interpreted in analogy to Turing’s results. Nontrivial patterns are
possible in reaction–diffusion systems only if they are complex enough. Linear systems with
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one diffusing chemical cannot generate patterns, but—as Turing proved—this is possible if at
least two different chemicals with different diffusion coefficients are involved. In the case of
systems of type (5) the patterns are generated by a nontrivial coupling of the cell motility with
the dynamics of the internal cell variables.

The models discussed in [21] are motivated by the peculiar counter migrating periodic
wave-like patterns—or ripples—in cultures of myxobacteria (cf [4]). After alignment these
bacteria move in a nearly one-dimensional manner, basically in two directions, and reverse upon
contact after the exchange of a signal. It was proved in [21] that models with ‘reasonable’
functional dependences can reproduce the experimentally described ripples, if they contain
three internal cell states for the cells moving in the same of the two possible directions, which
means overall six equations for the full system. This result indicates that a minimal amount of
complexity is required for such a system with local interaction to create the requested patterns.
Of course more research is needed to clarify if and how the observed biological phenomenon
relates to the models suggestions, i.e. what could be the mechanics of the different cell states.
An additional test for the model is the experimental observation that the wavelength of the
periodic pattern increases and finally disappears, if a specific type of mutants is added to the
culture, namely, bacteria which are unable to submit the signal for reversal to their neighbours
which are in direct contact with themselves. The suggested model together with the natural
extension for the mutant population perfectly reflects this qualitative feature mathematically
(cf [21]).

In [21] mathematical methods have been developed to study classes of equations of type
(5) which generate patterns. A more systematic classification of such models is still open to do.
It would also be interesting to study analogous effects for nonlinear problems. The analysis of
pattern formation for nonlinear systems has been done for reaction–diffusion systems. Such
results are lacking so far for nonlinear versions of the equations discussed in [21]. This seems
interesting to analyse from the mathematical point of view.

4.2. Alignment in transport models

Models of type (5) were also discussed in [5] to study alignment of small, stiff filaments or
elongated bacteria, namely

∂t f (t, θ) =
∫

[−1,1]
[K(θ̂ , θ; f )f (t, θ̂) − K(θ, θ̂; f )f (t, θ)] dθ̂ (6)

with

K(θ, θ̂; f ) =
∫

[−1,1]
Gσ (θ̂ − Mw(θ))f (t, w) dw,

where Gσ is the standard periodic Gaussian

Gσ (u) = (4πσ )−1/2
∑

m∈Z
exp(−(u + 2m)2/(4σ )), (7)

Mw(θ) = θ + V (w − θ) is the optimal reorientation due to interaction of bundles of filaments
with those of orientation w, and V is the orientational angle. Here σ = 0 is a limiting case,
where Gσ is the Dirac mass. Uniform convergence of solutions for σ → 0 was established
in [6].

In [5] and [7] involved bifurcation results for steady state solutions of (6) were obtained.
In [12] and [22] the full equation was rigorously analysed. In [12] the model for deterministic
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alignment mechanisms, namely, σ = 0, was studied. It was rigorously proved that for a
specific class of initial data the solutions of the equation do align the filament bundles along
two opposite directions. Nevertheless, the amount of mass aligning for each of the opposite
directions turned out to be arbitrary. This is due to the deterministic character of the model.
In [22] it was proved that in the presence of stochastic effects on the alignment mechanism,
namely, σ > 0, mass selection results and only two values for the ratio between the masses
aligning in opposite directions are possible. Either identical masses are aligned in the two
directions, or most of the mass is concentrated in only one direction. Which of the two cases
occurs depends on the specific form of the interaction given by V , as discussed in [22].

The results in [12] and [22] are basically local results and have been derived either for
specific initial distributions or under suitable smallness conditions for the intensity of the
stochasticity, the strength of the interactions for alignment, and others. It would be interesting
to clarify the necessity of these restrictions.

The analysis in [5, 7, 12, 22] is restricted to spatially homogeneous situations. How
additional spatial dependences do affect the system is largely open.
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Qualitative behavior of a Keller-Segel model with

non-diffusive memory

Kyungkeun Kang∗, Angela Stevens†, Juan J. L. Velázquez‡

Abstract

In this paper a one-dimensional Keller-Segel model with a logarithmic chemotactic-
sensitivity and a non-diffusing chemical is classified with respect to its long time be-
havior. The strength of production of the non-diffusive chemical has a strong influence
on the qualitative behavior of the system concerning existence of global solutions or
Dirac-mass formation. Further, the initial data play a crucial role.

1 Introduction

We consider a chemotaxis-system with a logarithmic chemotactic sensitivity and a non-
diffusing chemical. The main question addressed is whether smooth solutions exist globally
in time, or blowup happens. A crucial assumption is that the chemical is produced by
the chemotactic species and decay terms do not occur. Thus a drift-diffusion equation is
coupled to an ODE. In [5] Keller and Segel discussed traveling waves for a similar system,
where for the chemical reaction kinetics just a decay term is considered. Thus existence of
global solutions can always be expected. When varying the strength of the production an
interesting long time behavior can be expected for the system, as introduced in [11] and
formally explored in [8]. Existence of global solutions for linear production kinetics with
respect to the chemotactic species was proved in [13]. For a fixed and strong production
kinetics in [6] finite time blowup was shown for specific explicit initial data.

In this paper we classify the system for a variety of production kinetics and types of
initial data. The aim is to find “critical conditions” for the switch between existence of
global solutions and Dirac mass formation.

The system we study is

ut = uxx −
(
u

wx

w

)
x
, wt = uwλ for t > 0, x ∈ I = [0, π], and λ ∈ [0, 1) ,

∗Department of Mathematics, Sungkyunkwan University and Institute of Basic Science, Suwon 440-746,
Republic of Korea (kkang@skku.edu)

†University of Heidelberg, Applied Mathematics and Bioquant, BQ 0021, INF 267, D-69120 Heidelberg,
Germany (angela.stevens@uni-hd.de)
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with periodic boundary conditions. Here u models the chemotactic species and w the
non-diffusive memory. By setting θ = 1

1−λ and z = w
1
θ we obtain

ut = uxx − θ
(
u

zx

z

)
x
, zt = u for t > 0, x ∈ I = [0, π] . (1)

So θ ∈ [1,∞). In [13] a result for λ = 0, respectively θ = 1 was obtained. In [6] a result
for λ = 1 was given. We will have a closer look at the regime in between, where the
interesting switch from the existence of global solutions toward Dirac mass formation is
to be expected.

Throughout this paper we will use the following notation for the functional spaces for
given t > 0:

Hk = Hk(I) = { f(t, ·) : Djf(t, ·) ∈ L2(I), 0 ≤ j ≤ k }.

2 Qualitative behavior of system for θ = 1:

In this section C will always denote a generic constant that can change from line to
line. We will show that there exist global smooth solutions for system (1) with periodic
boundary conditions. In [13] an L∞-estimate was proved for this case.

First note that u(x, t) = a and z(x, t) = at + b with a, b > 0 are homogeneous solutions
of

ut = uxx −
(
u

zx

z

)
x
, zt = u for t > 0, x ∈ I = [0, π].

For convenience, define z̄(t) = at + b. We will first study the stability for this problem.
Due to translation, e.g. τ = t + b

a , one can assume w.l.o.g. that t ≥ b
a , so z̄(t) = at. For

simplicity, we set a = b. Our main result of this section is

Theorem 2.1 Let (a, at) be a space-independent solution of (1), where a > 0 is constant.
If (u, z) is a solution with initial data (u0, z0) sufficiently close to (a, a), then there exists
v∞ ∈ H2 such that u and z

t both converge to a + v∞ for t→∞.

We need several steps to prove this theorem. So we are looking for solutions of type

u(x, t) = a + v(x, t), z(x, t) = z̄(t) + ζ(x, t) . (2)

Assume that v0(x) = v(x, 1) and ζ0(x) = ζ(x, 1) are “sufficiently” small and regular.
Further details will be specified later. Substituting (2) into (1), we have

vt = vxx −
(

(a + v)
ζx

z̄ + ζ

)

x

= vxx −
(

1
t
ζx

)

x

−
(

ζx

z̄ + ζ
v − aζζx

z̄(z̄ + ζ)

)

x

, ζt = v. (3)

Also we will consider the Fourier-expansion

v(x, t) =
∞∑

n=−∞
vn(t)einx, ζ(x, t) =

∞∑

n=−∞
ζn(t)einx.
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2.1 The linearized problem

First we linearize system (3) around the homogenous solutions and obtain

vt = vxx −
1
t
ζxx , ζt = v , in I = [0, π] . (4)

We show that the space-independent solution (a, at) of (3) is stable on the linearized level.

Proposition 2.2 Let (v, ζ) be a solution of (4). There exist ǫ > 0 and δ = δ(ǫ) such
that for ‖v(1)‖H2 + ‖ζ(1)‖H2 < δ one obtains ‖v(t)‖H2 ≤ ǫ and ‖ζ(t)‖H2 ≤ ǫt for all
1 ≤ t < ∞. Moreover, there exists v∞ ∈ H2 with

∫

Ω
v∞einxdx = ζn(1)− (ζn(1)− vn(1))

∫ ∞

1

en2(1−s)

s2
ds

such that

‖v(t)− v∞‖H2 ,

∥∥∥∥
ζ(t)
t
− v∞

∥∥∥∥
H2

−→ 0 as t → ∞.

Proof. The Fourier coefficients of v and ζ must satisfy

v′n(t) = −n2vn(t) +
1
t
n2ζn(t), ζ ′n(t) = vn(t).

Therefore,

ζ
′′
n(t) = −n2ζ ′n(t) +

1
t
n2ζn(t).

Solving this ODE, we get

ζn(t) = Ant + Bnt

∫ ∞

t

e−n2s

s2
ds, vn(t) = An + Bn

∫ ∞

t

e−n2s

s2
ds− Bn

t
e−n2t, (5)

where

An = ζn(1)− (ζn(1)− vn(1))
∫ ∞

1

en2(1−s)

s2
ds, Bn = en2

(ζn(1)− vn(1)) .

Formula (5) is valid also for n = 0, in which case ζ0(t) = A0t + B0 and v0(t) = A0. Due
to the assumptions on the initial conditions, we have∑∞

n=−∞(1 + n4)
(
|vn(1)|2 + |ζn(1)|2

)
< δ2, and for all n ∈ Z we have vn − ζn/t =

−Bne−n2t/t. Thus, direct computations show that
∥∥∥∥v − ζ

t

∥∥∥∥
2

H2

≤
∞∑

n=−∞
(1 + n4)B2

n

e−2n2t

t2
=

∞∑

n=−∞
(1 + n4) |ζn(1)− vn(1)|2 e2n2(1−t)

t2

≤ ‖ζ(1)− v(1)‖2H2

t2
<

δ2

t2
.
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It is straightforward that

∞∑

n=−∞
(1 + n4)A2

n ≤ C
∞∑

n=−∞
(1 + n4)

(
|vn(1)|2 + |ζn(1)|2

)
≤ Cδ2 ,

and for any t with 1 ≤ t < ∞ we have

∞∑

n=−∞
(1 + n4)B2

n

(∫ ∞

t

e−n2s

s2
ds

)2

≤
∞∑

n=−∞
(1 + n4)(ζn(1)− vn(1))2

(∫ ∞

t

en2(1−s)

s2
ds

)2

≤
∞∑

n=−∞
(1 + n4)(ζn(1)− vn(1))2

1
t2

<
δ2

t2
.

Summing up all estimates, we obtain

‖v‖2H2 ≤
∞∑

n=−∞
(1 + n4)


A2

n + B2
n

(∫ ∞

t

e−n2s

s2
ds

)2

+ B2
n

e−2n2t

t2


 ≤ Cδ2, 1 ≤ t < ∞

and

‖v − v∞‖2H2 =
∞∑

n=−∞
(1 + n4)


B2

n

(∫ ∞

t

e−n2s

s2
ds

)2

+ B2
n

e−2n2t

t2


 ≤ C

δ2

t2
.

This completes the proof.

2.2 Nonlinear stability

Let f(x, t) be the nonlinear part of (3) and let fn denote the n-th Fourier coefficient of f ,
namely

f(x, t) = −
(

ζx

z̄ + ζ
v − aζζx

z̄(z̄ + ζ)

)

x

= −
(

ζx

z̄ + ζ
(v − ζ

t
)
)

x

, fn(t) := (f(x, t), einx).

Recalling (3) and comparing Fourier coefficients, we have

ζ
′′
n(t) + n2ζ ′n(t)− 1

t
n2ζn(t) = fn(t). (6)

By setting ζn(t) = tΦn(t), we get

Φ′
n(t) =

e−n2t

t2

∫ t

1
fn(s)sen2sds. So , Φn(t) =

∫ t

1

e−n2ξ

ξ2

(∫ ξ

1
fn(s)sen2sds

)
dξ.
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The general solution of (6) is given by

ζn(t) = Ant + Bnt

∫ ∞

t

e−n2s

s2
ds + t

∫ t

1

e−n2ξ

ξ2

(∫ ξ

1
fn(s)sen2sds

)
dξ,

vn(t) = An+Bn

∫ ∞

t

e−n2s

s2
ds−Bn

t
e−n2t+

∫ t

1

e−n2ξ

ξ2

(∫ ξ

1
fn(s)sen2sds

)
dξ+

e−n2t

t

(∫ t

1
fn(s)sen2sds

)
,

where

An = ζn(1)−Bn

∫ ∞

1

e−n2s

s2
ds, Bn = en2

(ζn(1)− vn(1)) .

In the sequel we assume that the solutions ζ(x, t) and v(x, t) are in H2, and that the initial
data are small, i.e.

∞∑

n=−∞
(1 + n4)

(
|vn(1)|2 + |ζn(1)|2

)
< ǫ.

Next we introduce the norm

|||ψ|||2L,k =
∫ L

(L−1)+
‖ψ(t)‖2Hk(Ω) dt, k ≥ 0,

with L > 1, (L− 1)+ = max {L− 1, 1}.

Lemma 2.3 Let ψ be smooth in [(L− 1)+, L]× Ω. Then

sup
(L−1)+<t<L

‖ψ(t)‖H2 ≤ C (|||ψ|||L,2 + |||ψt|||L,2) . (7)

Proof. We note first that there exists t̄ ∈ ((L− 1)+, L) such that ‖ψ(t̄)‖H2 ≤ |||ψ|||L,2 .
Thus

ψ(x, t)− ψ(x, t̄) =
∫ t

t̄
ψs(x, s)ds, for any (L− 1)+ < t < L.

Taking the H2−norm on both sides of the equality and using Hölder’s inequality, (7) is
immediate.

Now we state local existence of small solutions.

Proposition 2.4 Let (v, ζ) be a solution of (3). There exist ǫ > 0 and δ = δ(ǫ) such that
for ‖v(1)‖H2 + ‖ζ(1)‖H2 < δ there exists T = T (ǫ) > 0 such that

sup
L<T

|||v|||L,2 < ǫ, sup
L<T

|||ζ|||L,2 < ǫL.

Proof. The proof is standard, so details are skipped.
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Lemma 2.5 Let T ∈ (1,∞] be the time in Proposition 2.4. Then for any t < T

‖ζ(t)‖L∞ + ‖ζ(t)‖H2 ≤ Cǫt. (8)

Proof. Since ‖ζ(t)‖L∞ ≤ C ‖ζ(t)‖H2 , it is sufficient to estimate ‖ζ(t)‖H2 . Let t ∈
((L− 1)+, L) where L < min{T, 2t}. Due to Lemma 2.3 and Proposition 2.4 we have

‖ζ(t)‖H2 ≤ C (|||ζ|||L,2 + |||ζt|||L,2) ≤ C (|||ζ|||L,2 + |||v|||L,2) ≤ CǫL ≤ Cǫt.

This completes the proof.

Lemma 2.6 Let T ∈ (1,∞] be the time in Proposition 2.4. Then for any t < T ,
∥∥∥∥v(t)− ζ(t)

t

∥∥∥∥
H1

≤ Cǫe−Ct, ‖f(t)‖L2 ≤ Cǫ2e−Ct.

Proof. With (8) we can estimate f(x, t) for t ∈ [1, T ) as follows

‖f(t)‖L2(Ω) ≤
∥∥∥∥
(

ζx

z̄ + ζ
(v − ζ

t
)
)

x

∥∥∥∥
L2(Ω)

≤ C

(
1
t
‖ζ‖H2

∥∥∥∥v − ζ

t

∥∥∥∥
H1

+
1
t2
‖ζ‖2H2

∥∥∥∥v − ζ

t

∥∥∥∥
L2

)

≤ C(ǫ + ǫ2)
∥∥∥∥v − ζ

t

∥∥∥∥
H1

≤ Cǫ

∥∥∥∥v − ζ

t

∥∥∥∥
H2

. (9)

Since v′n + n2vn − n2

t ξn = fn, we have

d

dt
(vn −

ξn

t
) + n2(vn −

ξn

t
) +

1
t
(vn −

ξn

t
) = fn.

Multiplying with n2(vn − ξn

t ), we get

n2

2
d

dt
(vn −

ξn

t
)2 + n4(vn −

ξn

t
)2 +

n2

t
(vn −

ξn

t
)2 = fnn2(vn −

ξn

t
).

This implies that

1
2

d

dt

∥∥∥∥v − ζ

t

∥∥∥∥
2

H1

+
∥∥∥∥v − ζ

t

∥∥∥∥
2

H2

+
∥∥∥∥

1√
t
(v − ζ

t
)
∥∥∥∥

2

H1

≤ ‖f‖L2

∥∥∥∥v − ζ

t

∥∥∥∥
H2

.

Due to (9), we obtain

1
2

d

dt

∥∥∥∥v − ζ

t

∥∥∥∥
2

H1

+ (1− Cǫ)
∥∥∥∥v − ζ

t

∥∥∥∥
2

H2

≤ 0. (10)

Hence as long as ǫ is sufficiently small, by integrating over [1, t) we obtain
∥∥∥∥v(t)− ζ(t)

t

∥∥∥∥
H1

≤ ‖v0 − ζ0‖H1 e−Ct ≤ ǫe−Ct. (11)

The second estimate is direct from (9) and (11). This completes the proof.
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Proposition 2.7 There exist ǫ > 0 and δ = δ(ǫ) such that for ‖v(1)‖H2 + ‖ζ(1)‖H2 < δ
we have |||v|||t,2 ≤ ǫ and |||ζ|||t,2 ≤ ǫt for all t < ∞. Moreover, there exists v∞ ∈ H2 such
that ∥∥∥∥

ζ(t)
t
− v∞

∥∥∥∥
H2

−→ 0 for t → ∞,

‖v(t)− v∞‖H1 −→ 0 for t → ∞, and

|||v − v∞|||L,2 −→ 0 for L → ∞.

Proof. Let T be the time in Proposition 2.4. We claim that T = ∞. Suppose that this
is not the case, i.e. T < ∞. Then either |||v|||T,2 > ǫ or |||ζ|||T,2 > ǫT . Suppose that
|||v|||T,2 > ǫ. For the case |||ζ|||T,2 > ǫT we could argue similarly.

Recall the representation formula for vn:

vn(t) = An + Bn

∫ ∞

t

e−n2s

s2
ds− Bn

t
e−n2t

+
∫ t

1

e−n2ξ

ξ2

(∫ ξ

1
fn(s)sen2sds

)
dξ +

e−n2t

t

(∫ t

1
fn(s)sen2sds

)
, (12)

where

An = ζn(1)−Bn

∫ ∞

1

e−n2s

s2
ds, Bn = en2

(ζn(1)− vn(1)) .

It is sufficient to consider the nonlinear parts (12). For simplicity denote

Ψn(t) :=
∫ t

1

e−n2ξ

ξ2

(∫ ξ

1
fn(s)sen2sds

)
dξ +

e−n2t

t

(∫ t

1
fn(s)sen2sds

)
= In(t) + IIn(t).

Integrating by parts we obtain

In(t) = −e−n2t

n2t2

∫ t

1
fn(s)sen2sds +

1
n2

∫ t

1

fn(ξ)
ξ

dξ − 2
n2

∫ t

1

e−n2ξ

ξ3

(∫ ξ

1
fn(s)sen2sds

)
dξ .

Direct computations show that
∫ T

(T−1)+

∞∑

n=−∞
n4I2

n(τ)dτ ≤ C

∫ T

1

∞∑

n=−∞
f2

n(s)ds = C ‖f‖2L2(QT ) ≤ Cǫ4
∫ T

1
e−ctdt ≤ Cǫ4.

Next consider

|IIn(t)| ≤ e−n2t

t

(∫ t

1
|fn(s)| sen2sds

)
≤

∫ t

1
|fn(s)| en2(s−t)ds =: y(t).

Since the right hand side is a solution of y′(t) + n2y(t) = |fn|, one can estimate
∫ T

(T−1)+

∞∑

n=−∞
n4II2

n(τ)dτ ≤ C

∫ T

1

∞∑

n=−∞
f2

n(s)ds = C ‖f‖2L2(QT ) ≤ Cǫ4. (13)

7

99



This can be seen by defining yn (t) =
∫ t
1 |fn (s)| en2(s−t)ds. Thus y′n (t)+n2yn (t) = |fn (t)|.

Define
Y (x, t) =

∑

n6=0

yn (t) einx, F (x, t) =
∑

n6=0

|fn (t)| einx.

Then for t ≥ 1, Y solves in I = [0, π] the following equation

Yt = Yxx + F, Y (x, 1) = 0.

Further, classical estimates, using the fact that we do not have a neutral eigenvalue, yield

‖Y (·, t)‖2L2 ≤ C

∫ T

1
‖F (·, t)‖2L2 dt .

With classical regularity theory for the heat equation we obtain
∫ T

(T−1)+

‖Y (·, t)‖2H2 ≤ C sup
t−1≤s≤t

‖Y (·, s)‖2L2 + C

∫ T

(T−1)+

‖F (·, t)‖2L2 dt

≤ C

∫ T

1
‖F (·, t)‖2L2 dt .

Since ∑

n

n4II2
n =

∑

n6=0

n4 |yn (t)|2 = ‖Y (·, t)‖2H2 ,

the estimate (13) follows. Summing up, we obtain

‖v‖T,2 ≤ {linear terms}+

(∫ T

(T−1)+

∞∑

n=−∞
n4I2

n(τ)dτ

) 1
2

+

(∫ T

(T−1)+

∞∑

n=−∞
n4II2

n(τ)dτ

) 1
2

≤ Cδ + Cǫ2.

This shows |||v|||T,2 < ǫ, which contradicts our hypothesis. Thus, T cannot be finite.

Next we show convergence. We will prove that In(t) = ζn/t−An ∈ H2 and In(t) ≤ Cǫ2

for all t. By changing the order of integration and using Hölder’s inequality, we obtain

|In(t)| =
∣∣∣∣∣

∫ t

1
fn(s)sen2s

∫ t

s

e−n2ξ

ξ2
dξds

∣∣∣∣∣ ≤
∫ t

1
|fn(s)| sen2s

∫ t

s

e−n2ξ

ξ2
dξds

≤ C

n2

∫ t

1

|fn(s)|
s

ds ≤ C

n2

(∫ t

1
|fn|2 ds

) 1
2
(∫ t

1
s−2ds

) 1
2

≤ C

n2

(∫ t

1
|fn|2 ds

) 1
2

.

Due to Lemma 2.6, we have that n4 |In(t)|2 ≤ Cǫ4 for all t. This implies that ζ/t is in H2

and converges to v∞ ∈ H2 for t→∞, with

v∞ =
∑

(v∞)neinx, where (v∞)n = An + In(∞),
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and

In(∞) =
∫ ∞

1

e−n2ξ

ξ2

(∫ ξ

1
fn(s)sen2sds

)
dξ.

Now it is direct that
ζ

t
−→ v∞ in H2 for t → ∞. (14)

From (10), we have
∥∥∥∥v(t)− ζ(t)

t

∥∥∥∥
H1

−→ 0 for t → ∞,

∣∣∣∣
∣∣∣∣
∣∣∣∣v(t)− ζ(t)

t

∣∣∣∣
∣∣∣∣
∣∣∣∣
L,2

−→ 0 for L → ∞. (15)

Combining (14) and (15), we obtain that v converges to v∞ in the H1 and the (L, 2)−norm,
since

‖v − v∞‖H1 + |||v− v∞|||L,2 ≤
∥∥∥∥v − ζ

t

∥∥∥∥
H1

+
∥∥∥∥
ζ

t
− v∞

∥∥∥∥
H1

+
∣∣∣∣
∣∣∣∣
∣∣∣∣v −

ζ

t

∣∣∣∣
∣∣∣∣
∣∣∣∣
L,2

+
∣∣∣∣
∣∣∣∣
∣∣∣∣
ζ

t
− v∞

∣∣∣∣
∣∣∣∣
∣∣∣∣
L,2

≤
∥∥∥∥v − ζ

t

∥∥∥∥
H1

+
∣∣∣∣
∣∣∣∣
∣∣∣∣v −

ζ

t

∣∣∣∣
∣∣∣∣
∣∣∣∣
L,2

+
∥∥∥∥
ζ

t
− v∞

∥∥∥∥
H2

.

This completes the proof.

Summarizing the previous estimates, for θ = 1 we obtain our main result of this section,
namely Theorem 2.1.

3 Qualitative behavior of the system for 1 < θ < 3

From now on let I = [−1, 1]. The reason for this change of domain of integration is simply
to fix the expected singularity at the origin and avoid dealing with complicated shifts of
its location. We consider

ut = uxx − θ
(zx

z
u
)

x
, zt = u in I × [0,∞),

u(x, 0) = u0(x), z(x, 0) = z0(x) , with periodic boundary conditions.

First, to get a quick insight, we give a heuristic argument regarding the blow-up asymp-
totics for this system for t→∞. After this we will go into the details of the rigorous analysis.
For the heuristics we assume w.l.o.g. that

∫
I u dx = 1 and consider the simplified equation

z̄t =
z̄θ

∫
I z̄θdx

.

We expect this simplified equation to be a good approximation for the dynamics of the
original problem for t→∞. Assuming that z0(0) > z0(x) for any x ∈ I \ {0} we can solve
this equation and obtain

z̄1−θ(x, t) = z̄1−θ
0 (x)− (θ − 1)

∫ t

0

ds∫
I z̄θ(x, s)dx

.
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We assume further that z0 can be expanded near zero as follows:

z̄1−θ
0 (x) = z̄1−θ

0 (0) + Bx2 + h.o.t. for x → 0.

Here B is a positive constant depending on the initial data. Continuing the heuristic
argument, we thus obtain

z̄1−θ(x, t) ≈ z̄1−θ
0 (0) + Bx2 − (θ − 1)

∫ t

0

ds∫
I z̄θ(x, s)dx

.

Define

ψ(t) := z̄1−θ
0 (0)− (θ − 1)

∫ t

0

ds∫
I z̄θ(x, s)dx

.

Thus z̄1−θ(x, t) ≈ Bx2 + ψ(t), and

z̄(x, t) ≈ 1

(Bx2 + ψ(t))
1

θ−1

.

Direct computations show

−θ − 1
ψ′(t)

≈
∫

I

dx

(Bx2 + ψ(t))
θ

θ−1

.

So we get ψ′(t) ≈ −Kψ
θ+1

2(θ−1) (t), where K is a positive constant. This yields ψ(t) ≈
At−

2(θ−1)
3−θ with a constant A > 0 for t→∞. Since ψ(t)→0 for t→∞, we see that

z̄1−θ
0 (0) ≈ (θ − 1)

∫ ∞

0

ds∫
I z̄θ(x, s)dx

.

Therefore, noting that ψ′(t) ≈ −KA
θ+1

2(θ−1) t−
θ+1
3−θ for t→∞, we obtain

ψ(t) ≈ (θ − 1)
∫ ∞

t

ds∫
I z̄θdx

=⇒
∫

I
z̄θdx ≈ θ − 1

KA
θ+1

2(θ−1)

t
θ+1
3−θ ,

and

z̄(x, t) ≈ 1
(

Bx2 + At−
2(θ−1)
3−θ

) 1
θ−1

=
t

2
3−θ

(
Bx2t

2(θ−1)
3−θ + A

) 1
θ−1

.

Now we are ready to present rigorous arguments which justify the given heuristics. A first
idea for a quasi-steady state approximation of the system under consideration in the given
regime for θ was given by Schwetlick, [10]. The main theorem we will prove in this section
is the following
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Theorem 3.1 There exist initial data u0, z0 ∈ C2,ν such that the corresponding solutions

(u, z) of (1) satisfy u(x, t) → mδ(x) and z(x, t) ≈ t
2

3−θ

(Bx2t
2(θ−1)
3−θ +A)

1
θ−1

for t → ∞, where

m =
∫
I u0(x)dx and A, B are constants depending on the initial data.

Remark: As we will see in Assumption 3.5 later, the condition on the initial data is,
that u0, z0 are symmetric, u0 is concentrated at the origin, and z0 behaves like a power
law at the origin. For convenience we will also assume in the following that m = 1.

To prove this theorem we need several steps.

3.1 The Eigenvalue problem

We define the differential operator

Ãz(f) := fxx − θ
(zx

z
f
)

x
=

(
fx − θ

(zx

z
f
))

x
in [−1, 1].

Consider the eigenvalue problem Ãz(f) = λf , i.e.

fxx − θ
(zx

z
f
)

x
= λf, f(−1) = f(1), fx(−1) = fx(1).

Since we have assumed periodic boundary conditions in R, it is direct that f(−1) = f(1) =
fx(−1) = fx(1) = 0. Now a class of functions A is introduced, which is assumed to contain
z.

Assumption 3.2 Let 0 < ν < 1 and let A be a class of nonnegative functions such that
for g ∈ A the following conditions hold

1. g ∈ C2,ν is nonnegative and symmetric with respect to zero, i.e g(−x) = g(x). Fur-
thermore, there exists M > 0 such that

t−
2

3−θ


t−

θ−1
3−θ

(2+ν) sup
|x1|,|x2|≤t

− θ−1
3−θ

( |gxx (x1)− gxx (x2)|
|x1 − x2|ν

)


+ sup
t
− θ−1

3−θ ≤R≤1

R
2

θ−1

[
R(2+ν) sup

R/2≤|x1|,|x2|≤R

|gxx (x1)− gxx (x2)|
|x1 − x2|ν

]
≤ M .

2. There exist A,B, M > 0 such that

t
2

3−θ

M

(
Bx2t

2(θ−1)
3−θ + A

) 1
θ−1

≤ g(x) ≤ Mt
2

3−θ

(
Bx2t

2(θ−1)
3−θ + A

) 1
θ−1

.
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3. There exist A,B, M > 0 such that

|gx| ≤ M
xt

2θ
3−θ

(
Bx2t

2(1−θ)
3−θ + A

) θ
θ−1

.

4. There exists ǫ0 > 0 such that
∣∣∣∣
gx

g
− 1

θ − 1
1
x

∣∣∣∣ ≤
ǫ0
|x| ,

∣∣∣∣
(

gx

g
− 1

θ − 1
1
x

)

x

∣∣∣∣ ≤
ǫ0

|x|2
.

From now on, and in difference to the previous section, the appearing constants C =
C(θ, M) will depend on θ and on M , as well as the constants denoted by Cδ, Cγ .

Lemma 3.3 The operator Ãz(t) is self-adjoint with respect to the weighted integral dx
zθ .

All eigenvalues are non-positive and the first eigenvalue λ0 is equal to 0 with corresponding
eigenfunction zθ.

Proof. We know that hx − θ zx
z h = ( h

zθ )xzθ for any h and

∫

I
Ãz(f)g

dx

zθ
= −

∫

I
(fx − θ

zx

z
f)

( g

zθ

)
x
dx = −

∫

I

(
f

zθ

)

x

(gx − θ
zx

z
g)dx =

∫

I
fÃz(g)

dx

zθ
.

It follows from standard arguments that all eigenvalues are non-positive (compare [1]). It
is straightforward that zθ is an eigenvector corresponding to the eigenvalue 0.

Proposition 3.4 Let λ1 be the second eigenvalue for the differential operator Ãz(t). Sup-
pose that z(x, t) satisfies Assumption 3.2. Then there exists an absolute constant C > 0
independent of z such that

λ1 ≤ −C for all t.

Proof. Suppose that this is not the case. Then there exist a sequence of tm, functions
zm ∈ A, and eigenvalues λ1,m ր 0 for tm → t∞ (with t∞ being either finite or infinite),
and corresponding eigenfunctions φ1,m such that

Ãzm(φ1,m) = (φ1,m)xx − θ

(
(zm)x

zm
φ1,m

)

x

= λ1,mφ1,m.

Here we assume that the eigenfunction φ1,m is normalized i.e.
∫
|φ1,m|2 dx

zθ
m

= 1.

• If t∞ < ∞, then by Assumption 3.2 we have that ‖zm‖C2,ν is uniformly bounded,
and zm converges to z∞ in C2. Classical regularity theory implies that φm ∈ C2,ν and
‖φm‖C2,ν ≤ C for all m. Due to Sturm-Liouville theory, the eigenfunctions φ1,m satisfy
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φ1,m(0) = 0 and φ1,m(x) > 0 for x ∈ (0, 1). In addition, there exists φ1,∞ such that
φ1,m → φ1,∞ in C2. Then the limiting equation becomes

Ãz∞(φ1,∞) = (φ1,∞)xx − θ

(
(z∞)x

z∞
φ1,∞

)

x

= 0.

This equation can be solved explicitly and we obtain

φ1,∞(x) = Kzθ
∞(x) + C

∫ x

0

zθ
∞(x)

zθ∞(ξ)
dξ.

Since φ1,∞ is periodic and z∞ is nonnegative, the integral term above must vanish, and
thus φ1,∞(x) = Kzθ

∞(x). This yields K = 0, because φ1,∞(0) = 0 and z∞(0) > 0. Hence
φ1,∞ = 0, which contradicts the fact that

∫
|φ1,∞|2 dx

zθ∞
= 1.

• The case t∞ = ∞. For any 0 < δ < 1 we note that ‖zm‖C2,ν(I\[−δ,δ]) ≤ Cδ. Let
δ0 > 0 be sufficiently small. Let ψ(x) = Cγxγ with γ > 1, where Cγ is a constant satisfying
Cγδγ

0 = Cδ in [0, δ0]. We show that ψ ≥ zm for all m. Indeed, for sufficiently small ǫ = ǫ(γ)
we have

Ãzm(ψ) = γ(γ − 1)xγ−2 − θ

θ − 1
(γ − 1)xγ−2 − θ

(
(
(zm)x

zm
− 1

(θ − 1)x
)ψ

)

x

= (γ − 1)
(

γ − θ

θ − 1

)
xγ−2 − θ

(
(zm)x

zm
− 1

(θ − 1)x

)

x

ψ − θ

(
(zm)x

zm
− 1

(θ − 1)x

)
ψx

≤ (γ − 1)
(

γ − θ

θ − 1

)
xγ−2 + θ

ǫ

x2
xγ + θγ

ǫ

x
xγ−1

= (γ − 1)
(

γ − θ

θ − 1
+ θǫ

1 + γ

γ − 1

)
xγ−2 .

So Ãzm(ψ) ≤ 0 in [0, δ0] for 1 < γ < θ
θ−1 and so ψ is a super-solution of φ1,m for all m,

namely, due to the maximum principle,

|φ1,m(x)| ≤ Cγ |x|γ , 0 ≤ x ≤ δ0.

There exists φ1,∞ such that φ1,m → φ1,∞ in C2 over [δ, 1] for any 0 < δ < 1 and thus the
limiting equation becomes

Ãz∞(φ1,∞) = (φ1,∞)xx − θ

(
(z∞)x

z∞
φ1,∞

)

x

= 0.

As in the previous case, this leads to a contradiction and completes the proof.
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For convenience, we denote < g, h >=
∫
I g(x)h(x)dx

zθ for functions g and h which are
integrable with respect to dx/zθ. We define v in terms of u := zθ∫

I zθdx
+ v. Note that

∫
I vdx = 0 and < zθ, v >= 0. Furthermore, v solves

vt = vxx − θ
(zx

z
v
)

x
−

(
zθ

∫
I zθdx

)

t

. (16)

For simplicity we denote

R(x, t) := −
(

zθ

∫
I zθdx

)

t

= −θ
zθ−1u∫
I zθdx

+ θ
zθ

∫
zθ−1udx

(∫
I zθdx

)2 . (17)

Now we make an assumption on v, which will be recovered in the end.

Assumption 3.5 Suppose that z(x, t) satisfies Assumption 3.2. Further suppose that

|v(x, t)| ≤ M
zθ(x, t)∫

I zθ(y, t)dx
,

for a suitable constant M > 0.

Let us first give a useful lemma, which is an adaptation of a result given in [7] and
provides one of the main estimates for the result stated thereafter. For the purpose of
this paper we use a formulation restated in [4], which is more accessible. The proof of our
lemma will be given later in the paper.

Lemma 3.6 Let 1 < θ < 3. Suppose that ζ ∈ C1([0, 1]) with ζ(0) = 0, and z satisfy
Assumption 3.2 for all t ≥ 1. Then

(∫ 1

0
z(p−1)θ |ζ|p dx

) 1
p

≤ C

(∫ 1

0
zθ |ζx|2 dx

) 1
2

, p =
6θ − 2
θ + 1

.

With this result we can show a Sobolev inequality with the weighted norm z−θ.

Lemma 3.7 Suppose that z(x, t) satisfies Assumption 3.2, and that hx ∈ L2(z−θdx) with∫
I h = 0, where I = [−1, 1]. Then

(∫

I
|h|p dx

zθ

) 1
p

≤ C

(∫

I

∣∣∣hx − θ
zx

z
h
∣∣∣
2 dx

zθ

) 1
2

, p =
6θ − 2
θ + 1

. (18)

Here C is an absolute constant independent of t, z, and θ, but depending on M .

Proof. We consider the following variational problem:

−
(
hx − θ

zx

z
h
)

x
= λ

(
|h|p−2 h− zθ

∫
I |h|

p−2 hdx∫
I zθdx

)
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with
∫
I |h|

p dx
zθ = 1. Due to Assumption 3.2, z(x, t) is non-singular for every finite t, and

thus classical theory for semi-linear elliptic boundary value problems with constraints,
compare [12] implies that there exists λ(t) > 0 such that

(∫

I
|h|p dx

zθ

) 1
p

≤ 1√
λ(t)

(∫

I

∣∣∣hx − θ
zx

z
h
∣∣∣
2 dx

zθ

) 1
2

.

Our goal is to show that there exists k > 0 such that λ ≥ k for all t ≥ t0.
Suppose that this not the case. Then there exist tn, zn, hn with

∫
I |hn|p dx

zθ
n

= 1 and
λn(tn) ց 0 for tn →∞, possibly after choosing a suitable subsequence, such that

λn =
∫

I

∣∣∣∣(hn)x − θ
(zn)x

zn
hn

∣∣∣∣
2 dx

zθ
n

.

We introduce a new function ϕn := hn

zθ
n
. Then, since we want to minimize the constant

C in (18), the given problem can be rewritten as an eigenvalue problem

−
(
zθ
n(ϕn)x

)
x

= λn

[
z(p−1)θ
n |ϕn|p−2 ϕn −

∫
I z

(p−1)θ
n |ϕn|p−2 ϕndx∫

I zθ
ndx

zθ
n

]
,

because
∫

I
|hn|p

dx

zθ
n

=
∫

I
|ϕn|p z(p−1)θ

n dx . (19)

Additionally, the normalization and orthogonality condition have to be fulfilled, namely
∫

I
z(p−1)θ
n |ϕn|p dx = 1,

∫

I
zθ
nϕndx = 0, and λn =

∫

I
zθ
n |(ϕn)x|2 dx.

Now expressing ϕn = ϕn(0) + ψn we can estimate (19) by
∫

I
|ϕn|p z(p−1)θ

n dx ≤
∫

I
|ϕn(0, t)|p z(p−1)θ

n dx +
∫

I
|ψn(x, t)|p z(p−1)θ

n dx . (20)

To control the first term on the right hand side of (20), we estimate |ϕn(0, t)|. First, by
Hölder’s inequality we obtain

|ϕn(x, t)− ϕn(0, t)| =
∣∣∣∣
∫ x

0
(ϕn)x(ξ, t)dξ

∣∣∣∣ ≤
(∫ x

0
|(ϕn)x|2 zθ

ndξ

) 1
2
(∣∣∣∣

∫ x

0

dξ

zθ
n

∣∣∣∣
) 1

2

≤
√

λn

(∣∣∣∣
∫ x

0

dξ

zθ
n

∣∣∣∣
) 1

2

. (21)

Therefore, we have

|ϕn(x, t)| ≤ |ϕn(0, t)|+
√

λn

(∣∣∣∣
∫ x

0

dξ

zθ
n(ξ, t)

∣∣∣∣
) 1

2

. (22)

15

107



Due to (21), it is direct that |ψn| ≤
√

λn

(∣∣∣
∫ x
0

dξ
zθ
n(ξ,t)

∣∣∣
) 1

2 . Using 0 =
∫
I zθ

nϕndx =

ϕn(0, t)
∫
I zθ

ndx +
∫
I zθ

nψndx, we obtain due to (22)

|ϕn(0, t)| =
∣∣∣∣∣

∫
I zθ

nψndx∫
I zθ

ndx

∣∣∣∣∣ ≤
√

λn

∫
I zθ

n

(∣∣∣
∫ x
0

dξ
zθ
n

∣∣∣
) 1

2
dx

t
θ+1
3−θ

≤ C
√

λnt−
θ+1
3−θ .

Here we used that
∫
I zθ

n

(∫
I

dξ
zθ
n

) 1
2
dx ≤ C. Due to Assumption 3.2, 2., we compute

∫

I
z(p−1)θ
n |ϕn(0)|p dx ≤ Cλ

p
2
n t−

(θ+1)p
3−θ

∫

I
z(p−1)θ
n dx ≤ Cλ

p
2
n t−

3θ−1
1+θ ,

where we used
∫
I(y

2 + a)−
θ(p−1)

θ−1 dy < ∞. Now we estimate the second term in (20). This
is done by Lemma 3.6. For p > 2 we obtain

(∫

I
z(p−1)θ
n |ϕn|p dx

) 1
p

≤
(∫

I
z(p−1)θ
n |ϕn(0, t)|p dx

) 1
p

+
(∫

I
z(p−1)θ
n |ψn|p dx

) 1
p

≤ Cλ
p
2
n t−

3θ−1
1+θ + C

(∫

I
zθ
n |(ψn)x|2 dx

) 1
2

≤ Cλn → 0 for n →∞ .

This is a contradiction to our hypothesis and thus completes the proof of Lemma 3.7.

Now we give the proof of Lemma 3.6. If z would behave like a power law, we could
have mainly used the estimate given in [4] to obtain our result. But unfortunately this is
not the case everywhere, so that we have to introduce boundary layer estimates.

Proof of Lemma 3.6
For convenience, we denote α = θ−1

3−θ . First the contributions where z is large are analyzed.
For this, as can be seen from Assumption 3.2, we have to look at a specific domain of
integration. So we show that for a smooth function ζ with ζ(0) = 0

(∫ 2t−α

0
z(p−1)θ |ζ|p dx

) 1
p

≤ C

(∫ 2t−α

0
zθ |ζx|2 dx

) 1
2

. (23)

Indeed, due to Assumption 3.2 and with the change of variables y = tαx and ζ̃(y) =
ζ(t−αy), we have

(∫ 2t−α

0
z(p−1)θ |ζ|p dx

) 1
p

≤




∫ 2t−α

0

t
2(p−1)θ

3−θ

(x2t2α + a)
(p−1)θ

θ−1

|ζ|p dx




1
p
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= t
2(p−1)θ

3−θ
−α

p

(∫ 2

0

1

(y2 + a)
(p−1)θ

θ−1

∣∣∣ζ̃
∣∣∣
p
dy

) 1
p

≤ Ct
2(p−1)θ

3−θ
−α

p

(∫ 2

0

1

(y2 + a)
pθ

θ−1

∣∣∣ζ̃x

∣∣∣
2
dy

) 1
2

≤ Ct
2(p−1)θ

3−θ
−α

p
− θ

3−θ
−α

2

(∫ 2t−α

0
zθ |ζx|2 dx

) 1
2

≤ C

(∫ 2t−α

0
zθ |ζx|2 dx

) 1
2

,

since 2(p−1)θ
3−θ − α

p − θ
3−θ − α

2 = 0 . Next we do a further splitting

ζ(x, t) = η(xtα)ζ(x, t) + (1− η(xtα))ζ(x, t) := ζ̃(x, t) + ζ̂(x, t),

where η is a standard cut-off function such that η(y) = 1 for y ≤ 1 and η = 0 if y ≥ 2.
Then, since ζ̃ is supported in [0, 2t−α) and ζ̃(0) = 0, using (23), we get

(∫ 1

0
z(p−1)θ

∣∣∣ζ̃
∣∣∣
p
dx

) 1
p

≤ C

(∫ 1

0
zθ

∣∣∣ζ̃x

∣∣∣
2
dx

) 1
2

.

Because ζ̃x = η(xtα)ζx + tαη′(xtα)ζ, we obtain

(∫ 1

0
z(p−1)θ

∣∣∣ζ̃
∣∣∣
p
dx

) 1
p

≤ C

(∫ 1

0
zθ |ζx|2 dx

) 1
2

+ C

(∫ 1

0
zθt2α

∣∣η′ζ
∣∣2 dx

) 1
2

. (24)

We now give an estimate for the second term on the right hand side of (24). Noting that
η′ is supported in (t−α, 2t−α), we compute

(∫ 1

0
zθt2α

∣∣η′ζ
∣∣2 dx

) 1
2

≤
(∫ 2t−α

t−α

t
2θ

3−θ

(x2t2α + a)
θ

θ−1

t2α |ζ|2 dx

) 1
2

= t
2θ

3−θ
+β

2

(∫ 2

1

1

(y2 + a)
θ

θ−1

|ζ|2 dy

) 1
2

≤ t
2θ

3−θ
+β

2

(∫ 2

0

1

(y2 + a)
θ

θ−1

|ζ|2 dy

) 1
2

≤ Ct
2θ

3−θ
+β

2

(∫ 2

0

1

(y2 + a)
θ

θ−1

|ζy|2 dy

) 1
2

≤ C

(∫ 2t−α

0
zθ |ζx|2 dx

) 1
2

, (25)

where we used ψn(0) = 0.
Combining (24) and (25), we obtain

(∫

I
z(p−1)θ

∣∣∣ζ̃
∣∣∣
p
dx

) 1
p

≤ C

(∫

I
zθ |ζx|2 dx

) 1
2

.
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It remains to show that
(∫

I
z(p−1)θ

∣∣∣ζ̂
∣∣∣
p
dx

) 1
p

≤ C

(∫

I
zθ |ζx|2 dx

) 1
2

. (26)

Keeping in mind that ζ̂ vanishes in [0, t−α], we note that z is comparable to |x|− 2
θ−1 .

It is direct that z ≤ C |x| 2
θ−1 . On the other hand, since x > t−α, we have |x|− 2

θ−1 ≤
C(x2 + t−α)−

1
θ−1 ≤ Cz. Therefore,

(∫

I
z(p−1)θ

∣∣∣ζ̂
∣∣∣
p
dx

) 1
p

≤ C

(∫

I
x−

2(p−1)θ
θ−1

∣∣∣ζ̂
∣∣∣
p
dx

) 1
p

≤ C

(∫

I
x−

2θ
θ−1

∣∣∣ζ̂x

∣∣∣
2
dx

) 1
2

≤ C

(∫

I
zθ

∣∣∣ζ̂x

∣∣∣
2
dx

) 1
2

,

where we used a known Sobolev inequality with weight (see e.g. [[7], Theorem 1 and
corollaries in 2]).

For ζ̃, we note that ζ̂x = (1− η(xtα))ζx − tαη′(xtα)ζ.
Following a similar procedure as for the estimate (25), we can show without giving further
details, that (∫

I
zθ

∣∣∣ζ̂x

∣∣∣
2
dx

) 1
2

≤ C

(∫

I
zθ |ζx|2 dx

) 1
2

.

Summarizing the above estimates, we obtain

(∫

I
z(p−1)θ

∣∣∣ζ̂
∣∣∣
p
dx

) 1
p

≤ C

(∫

I
zθ |ζx|2 dx

) 1
2

. (27)

Then estimates (26) and (27) lead to

(∫ 1

0
z(p−1)θ |ζ|p dx

) 1
p

≤
(∫ 1

0
z(p−1)θ

∣∣∣ζ̃
∣∣∣
p
dx

) 1
p

+
(∫ 1

0
z(p−1)θ

∣∣∣ζ̂
∣∣∣
p
dx

) 1
p

≤ C

(∫ 1

0
zθ |ζx|2 dx

) 1
2

.

This completes the proof of our lemma on the extension of the result given in [4].

Lemma 3.8 Suppose that z(x, t) and v(x, t) satisfy the Assumption 3.2 and the Assump-
tion 3.5, respectively. Then

〈v, v〉 ≤ C

t
θ+5
3−θ

and |v(x, t)| ≤ C

t
θ+5

2(3−θ)

for |x| > δ.
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Proof. First we see, that
∫

I
vvt

dx

zθ
=

∫

I

(
vxx − θ

(zx

z
v
)

x

)
v
dx

zθ
+

∫

I
R(x, t)v

dx

zθ
=< v, Ãz(v) > + < R, v > .

Now we split the first term on the right hand side into half and since < zθ, v >= 0, due
to Proposition 3.4, we have 1

2 < v, Ãz(v) >≤ −C < v, v > and thus obtain

d

dt
< v, v > +

C

2
< v, v > +

1
2

< vx − θ
zx

z
v, vx − θ

zx

z
v >≤ |< R, v >|+ C

t
< v, v > .

Using Hölder’s inequality and (18), we have

d

dt
‖v‖2L2(z−θdx) + C ‖v‖2L2(z−θdx) + C

∥∥∥vx − θ
zx

z
v
∥∥∥

2

L2(z−θdx)
≤ ‖R‖Lp′ (z−θdx) ‖v‖Lp(z−θdx)

≤ Cǫ ‖R‖2Lp′ (z−θdx)
+ ǫ ‖v‖2Lp(z−θdx) ≤ Cǫ ‖R‖2Lp′ (z−θdx)

+ C · ǫ
∥∥∥vx − θ

zx

z
v
∥∥∥

2

L2(z−θdx)
,

where p is given as in (18) and p′ = (6θ − 2)/(5θ − 3) is its Hölder conjugate. Summing
up, we obtain

d

dt
‖v‖2L2(z−θdx) + C ‖v‖2L2(z−θdx) + C

∥∥∥vx − θ
zx

z
v
∥∥∥

2

L2(z−θdx)
≤ Cǫ ‖R‖2Lp′ (z−θdx)

.

Due to Assumption 3.2, we compute

‖R‖2
Lp′ (z−θdx)

=

(∫ ∣∣∣∣
zθ−1u∫
zθdx

∣∣∣∣
p′

dx

zθ

) 2
p′

≤ C

(
∫

zθdx)4

(∫
z(2θ−1)p′−θdx

) 2
p′

≤ Ct−
4(θ+1)
3−θ t

4(2θ−1)p′−θ(3−θ)−(θ−1)

p′(3−θ) ≤ Ct−
θ+5
3−θ .

Therefore, < v, v >≤ Ct−
θ+5
3−θ and so |v(x, t)| ≤ Ct

− θ+5
2(3−θ) for |x| > δ. This completes the

proof.

3.2 Estimates for the solution near x = 0

We introduce an internal variable in the following way:

ξ = t
θ−1
3−θ x, v(x, t) = t

θ−1
3−θ G(ξ, t), z(x, t) = t

2
3−θ Z(ξ, t) , (28)

and let α = (θ − 1)/(3− θ) and γ = 2/(3− θ). Due to Lemma 3.8, we have

|G (ξ, t)| ≤ Ct
− θ+5

2(3−θ)
− θ−1

3−θ = Ct
−θ−5−2θ+2

2(3−θ) = Ct
− 3(θ+1)

2(3−θ) for |ξ| ≥ tαδ for any δ > 0 .

19

111



If z satisfies Assumption 3.2, then Z(ξ, t) ≈ (ξ2+a)−
1

θ−1 . Furthermore, under Assumption
3.5, one can easily see that

|G(ξ, t)| ≤ M
Zθ

Γ(t)
, with Γ(t) =

∫ tα

−tα
Zθ(ξ, t)dξ.

Since Γ(t) ≤ C for all t > 0, we obtain |G(ξ, t)| ≤ CMZθ. Recalling (17), in terms of the
new variables, simple computations show that

R(ξ, t) = θtα−1

(
Z2θ−1

Γ2(t)
+

Zθ−1G

Γ2(t)
+

ZθΛ(t)
Γ3(t)

+
ZθΥ(t)
Γ2(t)

)
,

where

Λ(t) =
∫ tα

−tα
Z2θ−1(ξ, t)dξ, Υ(t) =

∫ tα

−tα
Zθ−1(ξ, t)G(ξ, t)dξ.

It is direct that Γ(t), Λ(t), and Υ(t) are uniformly bounded for any t as long as z and
v satisfy Assumptions 3.2 and 3.5, respectively. For convenience, denote R = tα−1R1 +
θtα−1Zθ−1Γ−2(t)G, where

R1(ξ, t) = θ

(
Z2θ−1

Γ2(t)
+

ZθΛ(t)
Γ3(t)

+
ZθΥ(t)
Γ2(t)

)
.

By change of variable, due to (16), G solves

θ − 1
3− θ

t
θ−1
3−θ

−1

(
G + ξ

∂G

∂ξ

)
+ t

θ−1
3−θ

∂G

∂t
= t

3(θ−1)
3−θ

[
Gξξ − θ

(
G

Zξ

Z

)

ξ

]
+R(ξ, t). (29)

Simplifying (29), we have

Gξξ − θ

(
G

Zξ

Z

)

ξ

= αt−2α−1

(
G + ξ

∂G

∂ξ

)
+ t−2α ∂G

∂t
− θt−2α−1 Zθ−1

Γ2(t)
G + t−2α−1R1.

The next Lemma shows the asymptotic behavior of u under Assumption 3.2.

Lemma 3.9 If z(x, t) satisfies Assumption 3.2, then
∣∣∣∣u (x, t)− zθ

∫
I zθdx

∣∣∣∣ ≤ ε (t)
zθ

∫
I zθdx

,

where ε (t) ≤ Ct−β for some β > 0.

The proof of Lemma 3.9 relies on

Lemma 3.10 Suppose that z(x, t) and v(x, t) satisfy Assumption 3.2 and Assumption
3.5, respectively. Let G be defined as in (28) so that G solves the equation (29). Then
there exists a super solution for G in the set ξ ≤ δt(θ−1)/(3−θ) with a sufficiently small
δ > 0.
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Proof. First, we look for a super-solution of the form

G1(ξ, t) := Ŝ(ξ, t) + Û(ξ, t) = t−(2α+1)S(ξ, t) + t−2(2α+1)U(ξ, t),

where

S(ξ, t) = Zθ(ξ, t)
∫ ξ

0
Z−θ(y, t)

∫ ∞

y
R1(η, t)dηdy,

and Û solves

Uξξ − θ

(
U

Zξ

Z

)

ξ

=
K1

(ξ2 + a)
1

θ−1

.

Here K1 is a constant, which will be specified later. Since R ≈ Zθ, up to multiplicative
constants depending on M , one can check that Sξξ − θ

(
Zξ

Z S
)

ξ
≈ R1 and

|S|+ |ξSξ| ≈
1

(ξ2 + a)
1

θ−1

, |St| ≈
1

t(ξ2 + a)
1

θ−1

, (30)

again, all up to multiplicative constants depending on M . Similarly, we can show

|U |+ |ξUξ| ≈
1

(ξ2 + a)
2−θ
θ−1

, |Ut| ≈
1

t(ξ2 + a)
2−θ
θ−1

. (31)

Now we define a differential operator HZ as follows:

HZ(f) = −t−2α ∂f

∂t
+ fξξ − θ

(
Zξ

Z
f

)

ξ

− αt−2α−1

(
f + ξ

∂f

∂ξ

)
+ θt−2α−1 Zθ−1

Γ2(t)
f.

And compute

HZ(G1) = −t−2α ∂G1

∂t
+ t−2α−1)R1 + t−2(2α+1) K1

(ξ2 + a)
1

θ−1

−αt−2α−1

(
G1 + ξ

∂G1

∂ξ

)
+ θt−2α−1 Zθ−1

Γ2(t)
G1

= t−2(2α+1)

(
K1

(ξ2 + a)
1

θ−1

− α(S + ξSξ) + θZθ−1S − t2α+2 ∂

∂t
(t−(2α+1)S)

)

+t−3(2α+1)

(
θZθ−1U − α(U + ξUξ)− t2α+2 ∂

∂t
(t−2(2α+1)U)

)
+ t−2α−1R1.

≈ t−2(2α+1)(K1 + 1)(ξ2 + a)−
1

θ−1 + t−3(2α+1)(ξ2 + a)−
2−θ
θ−1 + t−2α−1R1, (32)

where we used (30) and (31) and where Cα,θ is a constant depending on α and θ.
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Next we are looking for a super-solution of (29), which is of the form

Ḡ(ξ, t) = γ(t)Zθ(ξ, t) + t−2α−1γ(t)ψ(ξ, t) + e−µ(t−t̄)Q(ξ, t),

where t̄ in the last term is fixed and

γ(t) = Cδt
− 1

2 , ψ(ξ, t) = K2Z
θ(ξ, t)

∫ ξ

0
Z−θ(y, t)

∫ ∞

y
Zθ(ν, t)dνdy,

with constants K2 and µ, which will be specified later, and Cδ with Cδ > 2C, where C is
the absolute constant appearing in Lemma 3.8. For convenience, denote

G2 := γ(t)Zθ(ξ, t) + t−2α−1γ(t)ψ(ξ, t), G3 := e−µ(t−t̄)Q(ξ, t).

We have

ψξξ − θ

(
Zξ

Z
ψ

)

ξ

=
K2

(ξ2 + a)
θ

θ−1

, (33)

|ψ|+ |ξψξ| ≈
1

(ξ2 + a)
1

θ−1

, |ψt| ≈
1

t(ξ2 + a)
1

θ−1

. (34)

With (33) and (34), we can show that

HZ(G2) = −t−2α ∂G2

∂t
+ t−2α−1γ(t)

K2

(ξ2 + a)
θ

θ−1

− αt−2α−1

(
G2 + ξ

∂G2

∂ξ

)
+ t−2α−1θZθ−1G2

≈ t−2α−1γ(t)
1 + K2

(ξ2 + a)
θ

θ−1

+ t−4α−2γ(t)

(
1

(ξ2 + a)
θ

θ−1

+
1

(ξ2 + a)
1

θ−1

)
. (35)

Finally, choose G3 = e−µ(t−t̄)Q(ξ, t) where Q satisfies

−t−2αQt + Qξξ − θ

(
Q

Zξ

Z

)

ξ

≤ αt−2α−1

(
Q + ξ

∂Q

∂ξ

)
− θt−2α−1 Zθ−1

Γ2(t)
Q− µt−2αQ (36)

as well as Q(ξ, t) > 0 on the boundary |ξ| = δt
θ−1
3−θ . We obtain a solution satisfying (36)

in a perturbative manner. To do this we take Q0(ξ, t) = a(Z(ξ, t))θ, where a is a constant
of order one to be determined. Then Q0 solves

Q0,ξξ − θ

(
Q0

Zξ

Z

)

ξ

= 0. (37)

We look for solutions of (36) of the form

Q (ξ, t) = Q0 (ξ, t) + Q1 (ξ, t) ,
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where Q0 is given in (37) and Q1 satisfies

Q1,ξξ − θ

(
Q1

Zξ

Z

)

ξ

≤ −2
(
αt−2α−1Q0 + αt−2α−1ξ

∣∣∣∣
∂Q0

∂ξ

∣∣∣∣

+θt−2α−1 Zθ−1

Γ2 (t)
Q0 + µt−2αQ0 + t−2α |Q0,t|

)
(38)

with Q1 (0, t) = 0. Now it remains show that Q = Q0 + Q1 satisfies (36). Suppose that δ
is sufficiently small. Assume that Q1 satisfies

|Q1| ≤ Q0 ,

∣∣∣∣
∂Q1

∂ξ

∣∣∣∣ ≤
∣∣∣∣
∂Q0

∂ξ

∣∣∣∣ ,

∣∣∣∣
∂Q1

∂t

∣∣∣∣ ≤
∣∣∣∣
∂Q0

∂t

∣∣∣∣ (39)

in the set |ξ| ≤ δt
θ−1
3−θ . We will check this condition ”a posteriori”. First we prove (36).

We compute the following quantity

J ≡ −t−2αQt + Qξξ − θ

(
Q

Zξ

Z

)

ξ

− αt−2α−1

(
Q +

∂Q

∂ξ

)
+ θt−2α−1 Zθ−1

Γ2 (t)
Q + µt−2αQ.

Using Q = Q0 + Q1 as well as (37), we obtain

J = Q1,ξξ − θ

(
Q1

Zξ

Z

)

ξ

− t−2αQ0,t − t−2αQ1,t − αt−2α−1

(
Q0 +

∂Q0

∂ξ

)

−αt−2α−1

(
Q1 +

∂Q1

∂ξ

)
+ θt−2α−1 Zθ−1

Γ2 (t)
Q0 + θt−2α−1 Zθ−1

Γ2 (t)
Q1 + µt−2αQ0 + µt−2αQ1.

Thus it is immediate that

J ≤ Q1,ξξ − θ

(
Q1

Zξ

Z

)

ξ

+
[
αt−2α−1Q0 + αt−2α−1ξ

∣∣∣∣
∂Q0

∂ξ

∣∣∣∣ + θt−2α−1 Zθ−1

Γ2 (t)
Q0 + µt−2αQ0 + t−2α |Q0,t|

]

+
[
αt−2α−1Q1 + αt−2α−1ξ

∣∣∣∣
∂Q1

∂ξ

∣∣∣∣ + θt−2α−1 Zθ−1

Γ2 (t)
Q10 + µt−2αQ1 + t−2α |Q1,t|

]
.

Using the inequalities in (39), we have

J ≤ Q1,ξξ − θ

(
Q1

Zξ

Z

)

ξ

+ 2
[
αt−2α−1Q0 + αt−2α−1ξ

∣∣∣∣
∂Q0

∂ξ

∣∣∣∣ + θt−2α−1 Zθ−1

Γ2 (t)
Q0 + µt−2αQ0 + t−2α |Q0,t|

]
.
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With (38), we obtain J ≤ 0, thus (36) follows.

Now we need to verify (39). We decompose Q1 as a sum of Q1,1 and Q1,2, which solve

Q1,1,ξξ − θ

(
Q1,1

Zξ

Z

)

ξ

= −2
[
αt−2α−1Q0 + αt−2α−1ξ

∣∣∣∣
∂Q0

∂ξ

∣∣∣∣ + θt−2α−1 Zθ−1

Γ2 (t)
Q0 + t−2α |Q0,t|

]
,

Q1,2,ξξ − θ

(
Q1,2

Zξ

Z

)

ξ

= −2µt−2αQ0 ,

Q1,1 (0, t) = Q1,2 (0, t) = 0 .

We will focus just on Q1,2 since the analysis of Q1,1 is similar and understanding Q1,2 is
more important in order to judge the role of µ. We are interested in obtaining a particular
solution for this differential equation. Because the equation for Q1,2 can be rewritten as(
Zθ

(
Z−θQ1,2

)
ξ

)
ξ

= −2µt−2αQ0, after integration we choose

(
Z−θQ1,2

)
ξ

= 2µt−2αZ−θ

∫ δ(t̄)
( θ−1
3−θ

)

ξ
Q0 (η, t) dη.

Using Q1,2 (0, t) = 0, we have

Q1,2 (ξ, t) = 2µt−2α (Z (ξ, t))θ
∫ ξ

0
dλ


(Z (λ, t))−θ

∫ δ(t̄)
( θ−1
3−θ

)

λ
Q0 (η, t) dη


 .

We can now estimate the behavior of Q1,2 (ξ, t) for ξ ≫ 1 and see how we choose µ. Using

Assumption 3.2, it follows that Q0 behaves like ξ−
2θ

θ−1 for large ξ. It is then easy to see
that Q1,2, up to multiplicative constants, behaves like

Q1,2 ≈ µt−2α 1

ξ
2θ

θ−1

ξ2 ≈ µt−2αξ−
2

θ−1

for large ξ, by recalling that α = θ−1
3−θ . Now we can compare Q0 with Q1,2. Note that

Q0 > 0 for |ξ| ≈ δt
θ−1
3−θ . Moreover

Q0 ≈ ξ−
2θ

θ−1 , Q1,2 ≈ µt−2αξ−
2

θ−1 .

Therefore, for µ of order one and δ small it follows that |Q1,2| ≪ Q0. In a similar manner,
we can show that |(Q1,2)ξ| ≪ |(Q0)ξ| and |(Q1,2)t| ≪ |(Q0)t|. Details are omitted. This
completes the estimate (39).
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So, we conclude that HZ(G3) ≤ 0, which yields HZ(G) ≤ 0. Indeed, together with (32),
(35), we obtain

HZ(G1 + G2 + G3 −G) ≤ HZ(G1) +HZ(G2)−HZ(G)

≈ t−2(2α+1)(K1 + 1)(ξ2 + a)−
1

θ−1 + t−3(2α+1)(ξ2 + a)−
2−θ
θ−1

+t−2α−1γ(t)
1 + K2

(ξ2 + a)
θ

θ−1

+ t−4α−2γ(t)

(
1

(ξ2 + a)
θ

θ−1

+
1

(ξ2 + a)
1

θ−1

)
,

where we used that HZ(G) = t−2α−1R1. Suppose that t is as large as needed, which can
be obtained by setting t̄ ≥ t0 for an arbitrary large number t0. By choosing constants K1

and K2 such that K1+1 < 0 and K2+1 < 0, we can obtain that HZ(G1+G2+G3−G) < 0.
In order to apply the maximum principle, we need G1 + G2 + G3 > G for t = t̄ and

G ≥ Ct
− 3(θ+1)

2(3−θ) for |ξ| = δtα.
The positivity of G1 + G2 + G3 − G for t = t̄ is due to the fact that G3 is the largest

term among {Gi : i = 1, 2, 3} and G3 > G for t = t̄. On the other hand, at the boundary

|ξ| = δtα the inequality G ≥ Ct
− 3(θ+1)

2(3−θ) results from the fact that G3 > 0 and G2 > Ct
− 3(θ+1)

2(3−θ)

for |ξ| = δtα. Note that G1 is added to control the “small nonlinear terms”, which are very
small compared with G2. Summing up all above given, we conclude that G1 +G2 +G3 ≥ G
is a super-solution for G.

With this construction of a super-solution above, we can now prove Theorem 3.9.
Proof of Lemma 3.9 : Since the super-solution given above is bounded by Ct−

1
2 Zθ(ξ, t)

for large t with t ≥ t̄ + K log(t̄), it follows that there exists β > 0 such that the super-
solution is bounded by Ct−βZθ(ξ, t) for any t ≥ t0, and thus, back in the original variable,
we obtain

∣∣∣∣u (x, t)− zθ

∫
I zθdx

∣∣∣∣ = t
θ−1
3−θ |G(ξ, t)| ≤ Ct−βt

θ−1
3−θ

Zθ(ξ, t)∫
I Zθ(ξ, t)dξ

= Ct−β zθ(x, t)∫
I zθ(x, t)dx

,

where we used
∫
I Zθ(ξ, t)dξ ≤ C, with C = C(θ, M) depends on. This completes the proof

of our lemma.

Finally we conclude the proof of the main theorem in this section with

Lemma 3.11 There exist solutions u, z which satisfy all conditions of Assumption 3.2 for
all t ≥ t0.

Proof. Without loss of generality, the initial time of our problem is t0, since the system
under consideration is invariant under time translations t → t − t0. Our choice of initial
data u(·, t0) and z(·, t0) is sufficiently smooth and moreover, u(·, t0) is assumed to be very

close to the expected asymptotic behavior t
θ−1
3−θ

(
Bx2t

2(θ−1)
3−θ + A

)− 1
θ−1

.

25

117



We begin proving the L∞-estimate for z according to Assumption 3.2, 2. By Lemma
3.9 we have ∣∣∣∣zt −

zθ

∫
I zθdx

∣∣∣∣ ≤ ε (t)
zθ

∫
I zθdx

.

Integrating this equation starting from t = t0, exactly as we did in the formal computations
at the begining of Section 3 we obtain 2. in Assumption 3.2, which implies that z blows
up in infinite time. More precisely, if for the initial data we have

∣∣∣∣∣∣∣∣∣∣

z0(x, t0)−
t

2
3−θ

0(
Bx2t

2(θ−1)
3−θ

0 + A

) 1
θ−1

∣∣∣∣∣∣∣∣∣∣

≤ 1
2

t
2

3−θ

0(
Bx2t

2(θ−1)
3−θ

0 + A

) 1
θ−1

.

Therefore we recover 2. in Assumption 3.2 with M replaced by M
2 for t0 ≤ t < ∞ , if M

is sufficiently large and then t0 chosen accordingly large enough.

Finally we derive the estimates for the derivatives and the Hölder norms in 1.,3., and
4. of Assumption 3.2. The arguments are similar as those given in [2] and [3]. Suppose
that t̄ ≥ t0. We introduce a characteristic length R satisfying 1

(t̄)
(
2(θ−1)
3−θ

)
≤ R < 1. Using

the new variables y = x/R and τ = (t− t̄)/R2, we define

vR(y, τ) := R
2θ

θ−1 v(Ry, t̄ + R2τ), zR(y, τ) := R
2

θ−1 z(Ry, t̄ + R2τ).

Then, for τ ∈ (0, 1) and |y| ∈ (1/2, 3/2), we have

|vR (y, τ)| ≤ 2ǫ (t̄)

(t̄)
θ+1
3−θ

, |zR (y, τ)| ≤ 2.

On the other hand vR and zR satisfy

vR,τ = vR,yy − θ

(
zR,y

zR
vR

)

y

− 1
R2

(
zθ
R

α (τ)

)

τ

, (40)

zR,τ =
zθ
R

α (τ)
+ vR, (41)

with
α (τ) =

∫

I
zθdx ≈ (t̄)(

θ+1
3−θ

).

The term
(

zθ
R

α(τ)

)
τ

can be shown to be sufficiently smooth and small by using (41), since

(
zθ
R

α(τ)

)

τ

=
θzθ−1

R

α(τ)

(
zθ
R

α(τ)
+ vR

)
− α′(τ)

α2(τ)
zθ
R.
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Note that α′(τ) ≈ (t̄)
2(θ−1)
3−θ . One can easily see that the above terms are small contributions

compared to other terms on the right hand side of (40). In order to obtain C2+ν estimates,
we first take two spatial derivatives in (41) and obtain

(
∂2zR

∂y2

)

τ

=
θ (θ − 1) zθ−2

R

α (τ)

(
∂zR

∂y

)2

+
θzθ−1

R

α (τ)
∂2zR

∂y2
+

∂2vR

∂y2
.

The above equation indicates that we have to control ∂2vR
∂y2 . In fact, an interior regularity

result for vR in the region 3
4 ≤ |y| ≤ 5

4 is needed. We introduce a cutoff ξ (y) which equals
1 for 3

4 ≤ |y| ≤ 5
4 and vanishes for |y − 1| > 1

2 . Then for ξ(y)vR =: v̄R it follows

v̄R,τ = v̄R,yy − θ

(
zR,y

zR
v̄R

)

y

− 2vR,yξy − vRξyy + θ

(
zR,y

zR
vRξy

)
− 1

R2

(
zθ
Rξ

α (τ)

)

τ

.

The equation for v̄R is similar to the one for vR except for some source terms that are of
order ǫ(t̄)

t̄
θ+1
3−θ

. Since v̄R vanishes, it follows that as long as zR satisfies Assumption 3.1, the

fundamental solution of the equation satisfied by v̄R decreases exponentially in τ, and the
C2,ν-derivatives in space also decay exponentially by standard regularizing effects. More
precisely, we obtain two types of contributions for the derivatives of v̄R, one of which is
the part associated to the initial data starting at t = t̄ that decreases exponentially, and
a second part associated to the source term which is of order ǫ(t̄)

(t̄)
θ+1
3−θ

. Due to the decay of

the function 1
α(τ) , we can obtain a similar decay for the derivatives of zR and the Hölder

estimates, by using derivatives of vR as source terms in the equation (41). This gives the
desired estimate for any t ≥ 2. If t ≤ 2 we obtain similar results for ‖vR(t)‖C2,ν , ‖zR‖C2,ν

using the regularity of the initial data v0(x), z0(x). In particular for t ∈ [t̄, t̄ + 1] we can
derive

‖vR (t̄ + 1)‖C2,ν ≤ σ ‖vR (t̄)‖C2,ν +
Cǫ (t̄)

(t̄)
θ+1
3−θ

,

‖zR (t̄ + 1)‖C2,ν ≤ σ ‖zR (t̄)‖C2,ν + Cǫ (t̄) ,

where 0 < σ < 1 due to the exponential decay of the solutions for the initial data mentioned
above. The main contribution is due to the sources. Usual iterative methods yield the
global smallness estimates as desired. Taking the supremum for all the admissible values of
R and returning to the original variables (x, t), we obtain estimates for the Hölder norms
defined in Assumption 3.2. This completes the proof of our main theorem.
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Louis Tao, Beijing University

David H. Terman, Ohio State University
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Foreword

This set of notes arises from the generous effort and the material provided by the
speakers both of the Advanced Course and the Workshop on “Deterministic and
Stochastic Modeling in Computational Neuroscience and Other Biological Topics”,
to be held between May 11th to 15th, 2009, at the Centre de Recerca Matemàtica
(CRM) in Bellaterra (Barcelona).

The three short-courses of the Advanced Course are thought of as an intro-
duction to modeling, simulation and analysis in the different biological areas
of this research programme. We want to open the scope not only to experts
but also to young researchers (from master/doctorate programmes on applied
mathematics, physics, bioengineering, biology,. . . ), by showing some aspects of
mathematical modeling through stochastic differential equations and facilitating
the follow-up of the Workshop. Gustavo Deco’s course, “The neurodynamics of
attention, memory and decision-making”, will dive in on more cognitive aspects
of brain modeling and their simulation and analysis; under the title “Modelling
large-scale dynamics in the primary visual cortex”, Louis Tao will explain the
modeling and the analytic treatment of this specific area of the visual path-
way; finally, the course by Juan José L. Velázquez, “Stochastic processes and
PDEs in mathematical biology”, is intended to cover other aspects (both biological
and mathematical) of modeling in biology based on stochastic partial differential
equations.

The idea of this double event (Advanced Course+Workshop) emerged after
the interaction among the organizers around common topics in different areas
of mathematical biology; namely, the use of mean-field techniques. In mathe-
matical and computational neuroscience, this topic has become one of the ma-
jor streams in the theoretical treatment of populations of neurons, but we can
also find instances in the other branches of this research programme: tumour
growth and cancer modeling, population dynamics and adaptive dynamics. We
found, thus, interesting to gather specialists in these problems in the Workshop,
together with other specialists both from different approaches to the same biologi-
cal problems and from more theoretical fields like stochastic differential equations
or dynamical systems. Therefore, this Workshop is thought of as a meeting point
for discussion on intersecting research problems. A major goal is to visualize
the mathematical transversality across biology; that is, to see how similar math-
ematical tools apply to different biological problems. The speakers are invited
to guide a session consisting of a lecture about some hot topic of their prefer-
ence, followed by a discussion with the audience after each session. This format
is intended to strengthen interactions among participants and, hopefully, to pro-
mote future collaborations. We want to express our gratitude to the direction
and the staff of the CRM who helped us in the organization of the thematic
research program “Mathematical Biology: Modelling and Differential Equations”.
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We thank the Ingenio Mathematica programme of the Spanish government
for providing financial support to the organization of this event.

We wish a fruitful scientific experience to all the participants, coming both from
biology, computational and mathematical areas, but all of you eager to explore
the intersections of your research with other fields. We wish you, as well, a very
pleasant stay in Barcelona.

Co-ordinators:

Àngel Calsina,
Universitat Autònoma de Barcelona

José A. Carrillo,
Institució Catalana de Recerca i Estudis Avançats - Universitat Autònoma de
Barcelona
Toni Guillamon,
Universitat Politècnica de Catalunya
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1. Practical Information

Lodging arrangements:
Those of you who have to pay the lodging (written on the list) will need to do

it on Tuesday (April 14) at the CRM Administration with Mrs. Consol
Roca. We only accept payments in cash (we do not accept credit cards).

Lecture room:
The Workshop will take place in the CRM Auditori located in the Sciences

Building (Edifici de Ciències), Universitat Autònoma de Barcelona in Bellaterra
(http://www.crm.es/General/LocationEng.htm). The lecture room is equipped
with a multimedia projector connected to a computer. An overhead projector and
blackboards are also available. Please check the following map to know where the
following places are: CRM, Vila Universitària and Hotel Serhs Campus.

Administration:
The CRM Administration will be available to the participants from Monday to

Friday from 9:00 am to 5:00 pm.

Computer facilities:
The computer space of the CRM will be available for the participants of the

Course with the following login information:

username: crmactivities

password: participant

The CRM premises as well as most of the UAB campus have wireless access.
The CRM wireless login information is: crmwifikey

Breaks:
Coffee and cookies will be served during the breaks to all participants.

Lunch∗:
We will post a list of restaurants where you can use your lunch tickets on the

Workshop’s bulletin board.

Social programme∗:
The social programme of the Workshop and Advanced Course includes:
1. A social dinner, Thursday, May 14, at 20:30h at Citrus Restaurant in

Barcelona. Free for registered participants not receiving grants. Registered partic-
ipants receiving grants will be asked to pay a 5 euros registration fee. A fee of 40
euros will be applied to accompanying persons who would like to attend the dinner.
Everyone interested in attending (both participants and accompanying persons)
should sign up before Tuesday, May 12 at noon at the Administration.

2. A guided visit to the Gothic Quarter, Friday, May 15, at 17:00 free for all
registered participants. However, you need to sign for it before Wednesday, May
13 at noon at the Administration (a minimum of 10 participants).
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Picture:
A group picture will be taken on Wednesday, May 13 before the coffee break. We

will inform you of the place to meet. The picture will be posted on the Workshop’s
web page.

Questionnaire:
Following the directions of the CRM Governing Board, we give a questionnaire

to all the people participating in activities at the CRM in order to assess their
level of satisfaction. The questionnaire is anonymous and not mandatory, but we
would greatly appreciate it if you could answer the questions and return it to us.
Thank you for your cooperation.

Local emergency numbers:

Medical emergency campus number 1800 / 1900 during office hours
2525 at other times

UAB’s Science Faculty reception
office

1055

General emergency (police,
fire-fighters, ambulances)

112

∗ CRM Visitors come to the Administration and talk to Núria Hernández about
the lunch tickets and the social dinner.
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2. Schedule

Wednesday, May 13

9:30 – 10:10 Mean-field descriptions of populations of neurons

Olivier Faugeras, INRIA Sophia-Antipolis-Mediterranée

10:10 – 10:50 Stochastic neuronal dynamics

Vincent Hakim, École Normale Supérieure, Paris

10:50 – 11:20 Coffee Break

11:20 – 12:00 Irregular persistent activity in a model of a local cortical
network

Francesca Barbieri, Hospital Cĺınic - IDIBAPS

12:00 – 12.40 Fluid limit theorems for stochastic hybrid systems with
application to neuron models

Gilles Wainrib, Université Paris VII

12:40 – 13:10 DISCUSSION

13:10 – 15:00 Lunch

15:00 – 15:40 Nested oscillations in the emergent activity of cortical networks

Albert Compte, Hospital Cĺınic - IDIBAPS

15:40 – 16:20 Modeling neural networks with activity dependent synapses

Joaquin J. Torres, Universidad de Granada

16:20 – 16:40 Break

16:40 – 17:20 Dynamical insigths on the history-dependence during continu-
ous presentation of rivaling stimuli

Pedro E. Garćıa, CRM-Universitat Pompeu Fabra

17:20 – 17:50 Exploring the specificity of the relationship between cortical
network function and biological simulation parameters with a
Particle Swarm Optimization algorithm

David Gómez-Cabrero, IDIBAPS

17:50 – 18:20 DISCUSSION
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Thursday, May 14

9:30 – 10:10 Stochastic models of excitable systems

Nils Berglund, Université d’Orléans

10:10 – 10:50 Fokker-Planck models in neuroscience

Maria J. Cáceres, Universidad de Granada

10:50 – 11:20 Coffee Break

11:20 – 12:00 A Fokker-Planck equation for interacting neurons

Simona Mancini, Université d’Orléans

12:00 – 12.30 The use of stochastic differential equations in recovering
synchronization dynamics from macroscopic recordings of
neuronal activity

Rikkert Hindriks, Vrije Universiteit Amsterdam

12:30 – 13:00 DISCUSSION

13:00 – 15:00 Lunch

15:00 – 15:40 Analyzing neuronal networks using discrete-time dynamical
systems

David H. Terman, Ohio State University

15:40 – 16:20 Dynamics of Morris-Lecar models

Stephen Coombes, University of Nottingham

16:20 – 16:40 Break

16:40 – 17:10 Numerical computation of slow manifolds and canard orbits
near a folded node - Application to neuronal systems

Mathieu Desroches, University of Bristol

17:10 – 17:40 Modeling the dynamics of calcium-triggered cell exocytosis:
a Monte Carlo approach

Virginia González-Vélez, Universidad Autónoma
Metropolitana México

17:40 – 18:10 DISCUSSION

20:30 – 23:52 Workshop dinner at Restaurant Citrus

(Passeig de Gràcia, 44. Barcelona 08007)
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Friday, May 15

9:30 – 10:10 Physics of viral entry

Tom Chou, University of California at Los Angeles

10:10 – 10:50 Axon growth in neural development: sensing, transduction and
movement

Giovanni Naldi, Università degli Studi di Milano

10:50 – 11:20 Coffee Break

11:20 – 12:00 United by noise: randomness helps swarms stay together

Carlos Escudero, Instituto de Matemáticas y F́ısica Funda-
mental - CSIC

12:00 – 12.40 Patterns, stability and collapse for two-dimensional biological
swarms

Maria R. d’Orsogna, California State University at
Northridge

12:40 – 13:20 Excitable dynamics of cell regulation

Jordi Garćıa-Ojalvo, Universitat Politècnica de Catalunya

13:20 – 14:00 DISCUSSION and Closing Session

14:00 Lunch

17:00 – 19:15 Social Activity
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3. Abstracts of Speakers

Francesca Barbieri
Irregular persistent activity in a model of a local cortical network .

Abstract: Recent neuro-physiological experiments on monkeys (Compte et al.
2003) have reported highly irregular persistent activity during the performance
of an oculomotor delayed-response task. These experiments show that during the
delay period the ISI’s coefficient of variation (CV) of prefrontal neurons is above 1,
on average, and larger than during the fixation period, regardless of whether
the cue is preferred or nonpreferred. Previous models (Amit and Brunel 1997,
Brunel 2000) of spontaneous and selective persistent activity in the cortex based
on excitatory synaptic feedback do not reproduce this feature because the excita-
tory feedback during persistent activity brings neurons in a region of the f-I curve
in which the firing is relatively independent from fluctuations and hence the CV is
small. To overcome this problem, we introduced two ingredients: (1) a high post-
spike reset potential (close to threshold), (2) a non-linear relationship between
synaptic efficacy and pre-synaptic firing rate via a short-term depression (STD)
mechanism. We show that when the reset potential is close enough to the thresh-
old, the CV-I curve has a maximum above 1 for a sub-threshold mean current.
The range of the mean synaptic input values for which the CV is greater than 1 is
always in the sub-threshold regime in which firing is dominated by fluctuations of
the mean synaptic input. With short-term depression, synaptic efficacies saturate
at a certain limiting value of the presynaptic frequency; this is turn provokes a
saturation of the mean synaptic current to a neuron at the same limiting presy-
naptic frequency. This allows the persistent state solution to reach the region of
the f-I curve which corresponds to high values of the CV. We tested this idea both
with numerical simulations and analytical techniques. For the analytical studies
we used mean- field techniques, recently extended in presence of STD (Romani et
al. 2006), that involves the use of the distribution of the interspikes intervals of an
integrate-and-fire neuron receiving a Gaussian current in input; this permits to ob-
tain an accurate estimate of the statistic of the postsynaptic current in presence of
STD and hence to find the stationary states in a self-consistent way. We simulated
a fully connected excitatory network of leaky integrate-and-fire neurons endowed
with STD and we found a very good agreement with theoretical prediction for a
large range of synaptic efficacies.

Contact address: barbierifrancesc@gmail.com

Nils Berglund
Stochastic models of excitable systems.

Abstract: The generation of action potentials in neurons is sometimes described
by differential equations with two well-separated time scale. We shall describe the
effect of noise on such equations, in particular on the statistics of interspike times.
(Joint work with Barbara Gentz, University of Bielefeld.)
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References:

N.B. and Barbara Gentz, Noise-Induced Phenomena in Slow-Fast Dynamical Sys-
tems. A Sample-Paths Approach. Springer, Probability and its Applications
(2005).

N.B. and Barbara Gentz, Stochastic dynamic bifurcations and excitability, in C.
Laing and G. Lord, (Eds.) Stochastic methods in Neuroscience, Oxford University
Press (2009).

Contact address: nils.berglund@univ-orleans.fr

Maŕıa J. Cáceres,
Fokker-Planck models in neuroscience.

Abstract: We are interested in a Fokker-Planck model, which describes the be-
havior of neuronal networks in the mammalian neocortex. In the mammalian
brains there are around 1010 neurons, which represents a sufficiently large num-
ber to think of a kinetic approach as appropriate. In [1], the authors presented a
detailed theorical framework for statistical descriptions of neuronal networks and
derived 2-dimensional kinetic equations directly from conductance-based integrate-
and-fire neuronal networks (see [2]). They reduced the dimension via moment clo-
sures and also described different limits of these kinetic equations. In our present
work we are studying a numerical method to simulate the Fokker-Planck equations
developed for these models. We try to numerically validate the moment clousures
and limits presented in [1], comparing numerically the stationary solutions of these
models with the stationary distribution function of the Fokker-Planck equations.
Our solver allows us to obtain the numerical evolution of the solution and to
consider the distribution function depending of all the variables.

References:

[1] Cai, D., Tao, L., Rangan, A. V. and Mclaughlin, D. W., Kinetic theory for
neuronal network dynamics, Comm. Math. Sci., 4(1) (2006), 97–127.

[2] Koch, C., Biophysics of Computation, Oxford University Press, Oxford, 1999.

Contact address: caceresg@ugr.es

Tom Chou
Physics of viral entry.

Abstract: I will develop and analyze three stochastic models used to describe how
certain viruses enter the cell. The first model concerns the stochastic engagement
of receptors and the entry mechanisms of viruses. The second model describes the
transport of virus material to to the host cell nucleus, while the third model is
a revisit of the classic translocation problem used to model how polymers enter
through membrane pores.

Contact address: tomchou@ucla.edu
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Albert Compte
Nested oscillations in the emergent activity of cortical networks.

Abstract: Neural activity in the cerebral cortex is characterized by temporal dy-
namics at a variety of temporal frequencies. Two frequency bands have been shown
to rely primarily on mechanisms of the local cortical circuit: the slow oscillation
band (< 1 Hz) and the beta/gamma-frequency band (20-80 Hz). I will present
simulation results from a computational model of the cortical microcircuit show-
ing the generation of these nested oscillations, in agreement with the experimental
data obtained in cortical slices in vitro. The model consists of 1,000 excitatory
neurons and 250 inhibitory neurons modeled according to the Hodgkin-Huxley for-
malism, including physiologically identified ion channels of cortical neurons, and
interconnected through conductance-based synapses. The model identifies key
physiological mechanisms that underlie the generation of the various rhythms and
their propagation across the network.

Contact address: acompte@clinic.ub.es

Stephen Coombes
Dynamics of Morris-Lecar models.

Abstract: The Morris-Lecar (ML) neuron model is a two dimensional conduc-
tance based model that is often used as an idealised fast-spiking pyramidal neuron.
Its planar nature has encouraged much analysis of the single neuron model using
tools from phase-plane analysis and the “geometry of excitability”. When treat-
ing synaptic or gap junction coupled networks of oscillating ML neurons these
techniques are the natural basis for developing a weakly-coupled oscillator theory.
However, to probe network dynamics in the strong coupling regime requires an
alternative approach. I will show how results in this area can be obtained by using
a piece-wise linear caricature of the ML model. In illustration of the usefulness of
such an approach I will first consider gap junction coupling and show how to anal-
yse emergent fluctuations in the mean membrane potential (as instabilities of an
asynchronous network state). Next I will treat synaptically coupled networks with
a phenomenological form of retrograde second messenger signalling that can sup-
port depolarisation induced suppression of excitation. In this case I will describe
a mechanism for the emergence of ultra-low frequency synchronised oscillations

Contact address: stephen.coombes@nottingham.ac.uk

Mathieu Desroches
Numerical computation of slow manifolds and canard orbits near a
folded node - Application to neuronal systems.

Abstract: We investigate the geometry of two-dimensional slow manifolds and the
organisation of associated canard solutions in three-dimensional slow-fast vector
fields with two slow variables. To this end, we introduce a numerical method,
based on the numerical solution of families of two-point boundary value problems
using continuation techniques, that allows to compute the slow manifolds. We can
then identify and compute canard orbits as individual objects and follow them in
parameter space, that is, we compute one-parameter families of canard solutions
in dependence of a given system’s parameter. In this way we get new insight into
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their underlying bifurcation structure. We will present this numerical method
in the case of two neuronal systems, namely, the self-coupled FitzHugh-Nagumo
system and a three-dimensional reduction of the Hodgkin-Huxley equation. We
show how canard orbits organise the geometry and the dynamics of associated
mixed-mode oscillations.

Contact address: m.desroches@bristol.ac.uk

Maria R. D’Orsogna
Patterns, stability and collapse for two-dimensional biological swarms.

Abstract: Schools of fish, flocks of birds and swarms of insects self-organize in
response to external stimuli or by direct interaction, forming beautiful, coherent
patterns. How do these arise?

What are their properties?
How are individual characteristics linked to collective behaviours?
In this talk we discuss the swarming of a non-linear system of self propelled

agents that interact via pairwise attractive and repulsive potentials. We are able
to predict distinct aggregation morphologies, such as flocks and vortices, by uti-
lizing statistical mechanics tools. We also relate the interaction potential to the
collapsing or dispersing behaviour of agents. A kinetic theory is derived and we
analyze the continuum limit of our model. Finally, we also discuss possible appli-
cations to the development of artificial swarming teams.

Contact address: dorsogna@math.ecla.edu

Carlos Escudero
United by noise: randomness helps swarms stay together.
(With C. A. Yates, R. Erban, I. D. Couzin, J. Buhl, I. G. Kevrekidis,
P. K. Maini, and D. J. T. Sumpter).

Abstract: Amongst the most striking aspects of the movement of many ani-
mal groups are their sudden coherent changes in direction. Recent observations
of locusts and starlings have shown that this directional switching is an intrinsic
property of their motion. Similar direction switches are seen in self-propelled par-
ticle (SPP) and other models of group motion. Comprehending the factors which
determine such switches is key to understanding the movement of these groups.
Here we adopt a coarse-grained approach to the study of directional switching
in a SPP model assuming an underlying one-dimensional Fokker-Planck equation
(FPE) for the mean velocity of the particles. We continue with this assumption in
analysing experimental data on locusts and use a similar systematic FPE coeffi-
cient estimation approach to extract the relevant information for the assumed FPE
underlying that data. We determine the mean time between direction switches as
a function of group density for the SPP model. This systematic approach allows
us to identify key differences between the SPP model and the data, revealing that
individual locusts increase the randomness of their movements in response to a
loss of alignment by the group. We give a quantitative description of how locusts
use noise to maintain swarm alignment. We discuss further how properties of indi-
vidual animal behaviour, inferred using the FPE coefficient estimation approach,
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can be implemented in the SPP model in order to replicate qualitatively the group
level dynamics seen in the experimental data.
Reference:
C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G. Kevrekidis,
P. K. Maini, and D. J. T. Sumpter, Inherent noise can facilitate coherence in
collective swarm motion, Proc. Natl. Acad. Sci. USA 106 (2009), 5464–5469.

Contact address: cel@imaff.cfmac.csic.es

Olivier Faugeras
Mean-field descriptions of populations of neurons.

Abstract: We present a general approach to the analysis of large sets of neurons.
It is firmly grounded in the mathematics of stochastic analysis and principles of
large deviations. We start from a description of individual neurons as obeying a
set of stochastic differential equations (SDEs) such as those of Hodgkin-Huxley,
a description of their synaptic interactions, and proceed to develop a mean-field
analysis and description of the activity of each neuronal population when the num-
ber of neurons in each population becomes very large. Unlike other approaches,
we rigorously establish the SDESs that describe each individual population.

These SDEs turn out to be non-Markovian and display a strong coupling be-
tween the moments of the probabilistic laws describing the population membrane
potentials. We relate them to some popular neural-mass equations such as those
established by Jansen and Rit that are quite heavily used in the modeling of such
signals as EEG and MEG. In doing so we discover that the coupling between the
mean membrane potentials and their covariances that results from our equations
significantly alters the time response of the populations to a given stimulus. This
fact seems to have been overlooked in previous work. We discuss some of the
consequences of our analysis on the modeling of neural populations.

Contact address: Olivier.Faugeras@inria.fr

Jordi Garcia-Ojalvo
Excitable dynamics of cell regulation.

Abstract: Excitability is a paradigmatic dynamical state that has been found to
have important implications in biology, especially in the field of neuronal dynamics.
In this talk I will discuss examples of excitable dynamics in a different type of
biological process, namely gene regulation. In particular, I will first consider the
competence response to stress of the bacterium Bacillus subtilis. Experimental
analysis of this behavior via time-lapse fluorescence microscopy, together with
mathematical modeling, has allowed us to identify an excitable genetic circuit
module that behaves in an excitable way. The study shows that competence
for DNA uptake arises in this circuit as a noise-driven excitable state, with the
corresponding quiescent state representing vegetative growth. Identification of
this excitable module allows us to devise ways to control the excitable dynamics,
which could shed light on the evolutionary origin of this phenotypic behavior.
As a second example of excitable dynamics in gene regulation, I will discuss the
maintenance of pluripotency in mouse embryonic stem cells.

Contact address: jordi.g.ojalvo@upc.edu
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Pedro E. Garćıa
Dynamical insigths on the history-dependence during continuous pre-
sentation of rivaling stimuli.

(With G. Deco, A. Pastukhov, J. Braun, T. Guillamon).

Abstract: The presence of memory effects during the perception of interrupted
presentation of images, which allow two or more incompatible interpretations,
is well established [1, 2]. A recent work tackling the role of adaptation in bi-
stable perception has demonstrated that consecutive dominances phases reported
during continuous presentation of rivaling stimuli are neither statistically inde-
pendent [3]. The generality of the result was confirmed by using different kind of
stimuli (binocular rivalry, kinetic-depth effect, and Necker cube). The research is
based on a novel concept in which a cumulative history for each reported percept
during a session is computed by the exponential convolution – with time constant
τdecay – of the previous perceptual trace. Then a no monotonic profile for the
history-dominance times correlation vs. τdecay is obtained, reaching a significant
maximum of 0.2− 0.5 at values 0.3 < τdecay/Tdom < 1 (Tdom− average dominance
duration of the complete session). Amazingly, a significant influence of such an
integral measure of history on transition times and transition direction is also de-
tected. When the respective cumulative histories of both percepts were balanced,
transition durations and the likelihood of return (failed) transitions peaked.

In contrast with the classic framework mainly described by adaptation and
inhibition variables [4], the modest degree of the history dependence for the domi-
nance phases, coupled with extended transitions in the event of balanced histories,
seems to reveal an essentially noise driven nature of the perceptual reversals [5].
To clarify this hypothesis we carry out intensive computational simulations of a
simple rate model in the adaptation (ΦH) inhibition (β) strengths variables. Then
we checked the capacity of the system to simultaneously fulfill various experimen-
tal constraints, such as a Tdom value of the order of seconds and a coefficient of
variation (CV) of about 0.5, together with the observed ranges in 10 observers
of the data collected for the history-dependence of dominance times, transitions
durations and probability of uncompleted transition phases. The significant re-
gions in the (ΦH) − β for each observable is shown in the first two columns of
Figure 1, by a pair of isolines delimiting the range of experimental values ob-
served. Third column always shows the overlap of the two preceding figures in the
same row, with the goal to find a parameters region fulfilling both constraints. An
additional line indicates the boundary between two essentially different regimes:
bi-stable, where noise is indispensable to get alternations between two states that
represent the two possible interpretations of an ambiguous stimulus, and oscilla-
tory, where it is just the source of dispersion in dominance time distribution as
experimentally observed. As it can be observed, even when the data related with
transitions remains difficult to be reproduced, such a simple model can account
for the constraints related with Tdom, CV and the new ones about the correlation
data. Additionally, the results obtained in [3] restricts even more the zone allowed
by the previous known data about Tdom and CV. Coincidently, it can be seen that
the system should operate in the vicinity of the bifurcation line and inside the
bi-stable regime, extending the validity of the results of recent theoretical studies
[6] to new parametric spaces. Further validation tests of the model includes the
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capacity to reproduce the general trends of history-dependencies shown by tran-
sition durations, frequency of failed transitions and Tdom time series, as observed
in [3].

Figure 1. Computational simulations of a simple model in the
“ΦH − β” parametric space. First row: Mean and Variation co-
efficient of dominance time; Second row: the maximum of H − T
correlation, and its position (F = τ/Tmean); Third row: Normal-
ized transition duration and probability of a failed transition. An
additional line in this third figure defines the boundary between
bistable and oscillatory regions.

References:

[1] Pastukhov A., Braun J., A short-term memory of multi-stable perception,
J. Vision 2008, 8(13) (2008), 1–14.

[2] Brascamp JW., Knapen THJ., Kanai R., Noest AJ., van den Berg AV., Multi-
timescale perceptual history resolves visual ambiguity, PLoS One 2008, 3(1): e1497.

[3] Pastukhov A., Braun J., Garcia P., Deco G., History-dependence of multi-stable
perception, 2009 (to be submitted).

[4] Shpiro A., Curtu R., Rinzel J., Rubin N., Dynamical characteristics common
to neuronal competition models, J. Neurophysiol. 2007, 97(1) (2007), 462–473.

[5] Brascamp JW., Van Ee R., Noest AJ., Jacobs RHAH., van den Berg AV.,
The time course of binocular rivalry reveals a fundamental role of noise, J. Vision
6(11) (2006), 1244–1256.
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[6] Shpiro A., Moreno-Bote R., Rubin N. and Rinzel J., Balance between noise and
adaptation in competition models of perceptual bistability, J. Comput. Neurosc.,
2009 (in press).

Contact address:pedroernesto.garcia@gmail.com

David Gómez-Cabrero
Exploring the specificity of the relationship between cortical network
function and biological simulation parameters with a Particle Swarm
Optimization algorithm.

Abstract: Mechanistic aspects of brain function can be studied with the use of
biologically detailed computational models. Often, a critical question that arises
from these computational models is how critically the conclusions depend on a
particular choice of the simulation parameters. It is difficult to establish that the
presented network model is unique in producing the relevant phenomenology. This
issue has been approached before for the case of single neurons or small networks
of neurons. Here, we design a computational strategy to explore this for the case
of large-scale biological neural network simulations. We focus on a specific neural
function: visuo-spatial working memory, and we construct a biological neural net-
work that mimics the cortical network. We search for sets of parameters such that
the network sustains persistent activity. We design several evaluation functions
that quantify this ability and weigh them in a proper way. To guide the search
we rely on the Particle Swarm Optimization. The first objective is to find if there
exists a unique solution or a set of significant different solutions. In the second
case, we explore and typify the different areas of solutions. Analysis identify dif-
ferent types of solutions separated in the parameter space; this allow us to identify
the main parameters associated with each behaviour, and give further insights of
the model.

Contact address: david.gomez@uv.es

Virginia González-Vélez
Modelling the dynamics of calcium-triggered cell exocytosis: a Monte
Carlo approach.

Abstract: The diffusion of different types of ions in the cytosol of living cells
play a key role in their function. In particular, much attention has been paid to
the diffusion of Ca2+ in intracellular media and for modeling this process there is
a vast number of biological publications which rely on differential methods. The
diffusion of calcium in the cytosol is also referred as calcium buffered diffusion.
Models to describe buffered diffusion based on differential equations need dras-
tic geometrical simplifications in order to be solved with ease. Depending on the
geometrical assumptions considered most differential models lie within two cat-
egories: shell models, in which it is assumed that ions enter uniformly over the
cell membrane and only the radial diffusion is of relevance (for spherical cells) and
microdomain models, which solve the reaction diffusion equations in the vicinity
of a channel pore, assuming azimuthal symmetry around the pore; in this last
case it is necessary to assume that all channel pores are equidistant. However, it
is well known that ions do not enter uniformly given that the channel pores are
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not regularly spaced. These departures from symmetry may have an important
impact on the functionality of the cells. In [1] it was described how the clustering
of channels gives rise to calcium profiles which can not be obtained as a super-
position of calcium concentrations developed by each individual channel. This
non-linearity amplifies the effect of irregular distributions of calcium channels on
the formation of submembrane calcium concentration profiles. With the idea in
mind to overcome the geometrical simplifications imposed by differential methods,
we developed a Monte Carlo simulation for the problem of 3-D buffered calcium
diffusion [1, 2]. This scheme, which has proved to be successful in the study
of the influence of the geometry in the exocytotic response of neuroendocrine
cells [3, 4], is perfectly suitable for modelling exocytosis in presynaptic terminals,
like the Calyx of Held synapse. We discuss resemblances and differences in the
modelling of the exocytotic dynamics in both prototype cells.
References:
Gil A., Segura J., Pertusa JAG., and Soria B., Monte Carlo simulation of
3-D buffered Ca2+ diffusion in neuroendocrine cells, Biophys. J., 78(1) (2000),
13–33.
[2]. Carrera G., Gil A., Segura J. and Soria B., Software for simulating calcium-
triggered exocytotic processes, Am. J. Physiol. Cell. Physiol. 292 (2007),
C749–C755.
[3] Segura J., Gil A., and Soria B., Modeling study of exocytosis in neuroen-
docrine cells: inflluence of the geometrical parameters, Biophys. J. 79(4) (2000),
1771–1786.
[4] Gil A., González-Vélez V. and Segura J., Stochastic modeling of L-type cal-
cium channels and exocytosis in chromaffin cells, European Biophysics Journal
(to appear).

Contact address: vgv@correo.azc.uam.mx

Vincent Hakim
Stochastic neuronal dynamics.

Abstract: Neurons operate in vivo under strongly fluctuating inputs. I will intro-
duce important quantities that help to analyze the ensuing stochastic dynamics. I
will then show how they can be used to describe correlations between spike trains
as well as oscillations in neuronal networks. Recent data on cerebellar cell networks
will serve as an illustration.

Contact address: hakim@lps.ens.fr

Rikkert Hindriks
The use of stochastic differential equations in recovering synchroniza-
tion dynamics from macroscopic recordings of neuronal activity.

Abstract: To study the mechanisms underlying large-scale synchronization pro-
cesses in the human brain we fit coupled stochastic differential equations directly
to human magnetoencephalographic (MEG) recordings. The used model allows for
a characterization between neuronal interactions in phase and amplitude as well
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as between interactions arising from deterministic and stochastic forces. We dis-
cuss the general applicability of coupled stochastic differential equations to model
EEG/MEG recordings and address the statistical issues that arise.

While the use of stochastic differential equations in computational neuroscience
is becoming widespread [1] their use in the analysis of macroscopic recordings of
neural activity is still very limited. Most currently used EEG/MEG data-analysis
methods focus on the detection and quantification of synchronization and do not
provide insight into the dynamical mechanisms underlying the measurements. For
this purpose, neuronal interaction is modeled explicitly and is directly fitted to
the data. While deterministic synchronization models are increasingly used [2] the
use of stochastic dynamical models is still very limited [3]. However, since noise
is inherent to biophysical systems and given the meanfield nature of EEG/MEG
recordings, models with a stochastic component are expected to provide a more
realistic description of the electrophysiological processes underlying EEG/MEG
recordings.

We fit a system of coupled stochastic differential equations to human MEG
recordings of healthy subjects and Parkinsonian patients during a finger tapping
task, localized to left and right primary motor cortices. We discuss the statistical
issues that arise, like, an appropriate method to estimate drift and diffusion coef-
ficients, how to check the goodness of fit, and how to assess the Markov property.
The results provide insight into the dynamical mechanisms underlying interac-
tion between primary motor cortices and their degradation as a consequence of
Parkinson’s disease.
References:
[1] Deco, G., Jirsa, V.K., Robsinson, P.A., Breakspear, M., Friston, K., The dy-
namic brain: from spiking neurons to neural masses and cortical fields, PLoS
Comb. Biol. vol. 4, Issue 8, (2008).
[2] Hindriks, R., Bijma, F., van Dijk, B.W., Stam, C.J., van der Werf, Y.Y.,
van Someren, E.J.W., de Munck, J.C., van der Vaart, A. Uncovering neuronal
synchronization mechanisms from oscillatory data, (submitted, December, 2008).

[3] Prusseit, J., Lehnerts, K. (2008): Measuring interdependencies in dissipative
dynamical systems with estimated Fokker-Planck coefficients, Phys. Rev. E 77,
041914.

Contact address: hindriks@few.vu.nl

Simona Mancini
A Fokker-Planck equation for interacting neurons.

Abstract: We are interested in the study of the statistical properties of a large
set of interacting neurons. Their behaviour is described in terms of the evolu-
tion of respective frequencies, whose dynamics is modelled by coupled stochastic
ordinary differential equations, (ods), as done by Deco et al. From this system,
we classically obtain a Fokker-Planck equation, describing the evolution in time
of the distribution function with respect to the two family frequencies. We shall
prove the existence, uniqueness and positivity of the solution at equilbrium for the
Fokker- Planck model. Moreover, numerical simulations show that, at the equi-
librium, the solution has double gaussian profile, which is the same obtained by
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Deco et al. by means of moment analysis on the ods. Finally, we can compute the
“escaping” time for differents values of the diffusion coefficient, and show that it
has an exponential behaviour with respect to the diffusion coefficient.

Contact address: simona.mancini@univ-orleans.fr

Giovanni Naldi
Axon growth in neural development: sensing, transduction and
movement.

Abstract: In the embryo, undifferentiated sets of cells form organized patterns
following pathways marked by chemical cues. At this small scale, cues are rep-
resented by single molecules, displaced from their release location by diffusion.
Diffusion is the movement of matter from areas with higher concentrations (near
the source) to areas of lower concentrations. This works very much like the spread-
ing by the grapevine of a metropolitan legend: news travel at a given speed and are
subject to a progressive degradation. Cells crawl along the positive gradient, to-
wards the direction of increasing chemical signal, from the periphery to the source.
This establishes the controlled flow of material needed to build structured tissues.
We may ask how far from its birthplace can we hear the metropolitan legend. Anal-
ogously, how far from its source can a chemical cue be found? The mathematics
of diffusion shows that there exists a characteristic maximum reachable distance,
called diffusion length, that depends on the volume (or on the weight) of the dif-
fused molecule and on its activity time. Another aspect that we should consider
is the fact that in the embryo, very much like in a noisy square, different cues are
present at the same time. Following the chemical gradients can thus be as difficult
as trying to localize (without a cell phone!) a friend who is calling us, lost in the
crowd. How should we look for our friend and reach him? Cells work out the right
direction sensing the chemical cues released in the environment, filtering out noise.
To understand this mechanism, it is essential to dig into the process of gradient
sensing. Cells try to detect very small differences in molecule concentration across
their tiny diameter. With this respect, they behave like an instrument that counts
molecules in its surroundings and is allowed only a limited number of probings.
The study of the measurement errors of such an instrument can explain the shape
of the trajectories. Moreover, we know that repeating the measure can reduce
uncertainty, but it requires more time. A mathematical model of the measuring
process and of the subsequent cell motion sheds light on the balance between the
unevenness of trajectories and the time span of the motion in different conditions.
This analysis can explain why neurons grow more slowly when the surrounding
environment is more complex, for example when they have to perform sharp turns
like when they approach the developing spinal cord. The model also suggests that
some sort of amplification of the signal must occur inside the cell. This effect
stems from a cascade of intracellular biochemical reactions that are only partially
known to biologists. Mathematics can predict the magnitude of the amplification
needed to separate a weak, but coherent signal, from the background noise and
explain how even a couple of molecules in more in a certain direction can make
the difference for life.
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This is a joint work with P. Causin, G. Aletti (University of Milano, Italy),
A. Zaghetto (Dulbecco Telethon Institute CNR-ITB, Italy), and G. Merlo (Uni-
versity of Torino, Italy).

Contact address: Giovanni.Naldi@mat.unimi.it

David H. Terman
Analyzing neuronal networks using discrete-time dynamical systems.

Abstract: We describe mathematical techniques for analyzing detailed biophysi-
cal models for excitatory-inhibitory neuronal networks. While these networks arise
in numerous applications, the focus of this talk will be to better understand mech-
anisms that underlie temporally dynamic responses in the olfactory system. Our
strategy is to first reduce the model to a discrete-time dynamical system. Using
the discrete model, we can systematically study how the emergent firing patterns
depend on parameters including the underlying network architecture.

Contact address: terman@math,ohio-state.edu

Joaqúın J. Torres
Modeling neural networks with activity dependent synapses.

Abstract: In this talk, I review some of our recent work over the effect of activity-
dependent synaptic processes, such as short-time depression and facilitation, on
the emergent behavior of recurrent neural networks.

Depending on the synapse dynamics, different types of behavior can emerge,
including a standard recall phase, a novel oscillatory regime, and a non-recall
phase. In the oscillatory phase, the activity of the network continously jumps
between different attractors associated to previously stored patterns. Our study
have shown that the interplay between synaptic depression and stochasticity is
important for destabilizing the attractors. This property is enhanced by synaptic
facilitation which, therefore, improves the adaptation of the system to external
stimuli. A detailed analysis of the network also reflects an efficient (more rapid
and with less error) access to the memories when facilitation is increased. We also
investigated the influence of facilitation and depression on the maximum storage
capacity of the network. Our study shows that synaptic depression drastically
reduces the capacity of the system to store an retrieve memories. Facilitation,
however, enhances the memory capacity in different situations. In particular, we
found optimal values of the relevant synaptic parameters for which the storage
capacity can be maximal and similar to the one obtained with “static” synapses.
We conclude that depressing synapses with a certain level of facilitation allow
to recover the good retrieval properties of neural networks with static synapses
while maintaining the nonlinear properties of dynamic synapses, convenient for
dynamical information processing and coding.

Contact address: jtorres@ugr.es
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Gilles Wainrib
Fluid limit theorems for stochastic hybrid systems with application to
neuron models.

Abstract: Neurons are subject to various source of noise, both extrinsic and
intrinsic. The main source of intrinsic noise is the stochastic behaviour of ion
channels. Within the framework of stochastic hybrid processes, we establish math-
ematical results describing the limit of large number of ion channels.

Contact address: wainrib.gilles@ ijm.jussieu.fr
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Perthame, Benôıt École Normale Supérieure de Paris, France

Polania, Rafael Göttingen Universität, Germany

Rivas Cañas, Manolo Universitat Politècnica de Catalunya, Spain
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