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Foreword

This set of notes corresponds to the Advanced Courses on Shimura Varieties and
L-functions, held in October 2009 at the Centre de Recerca Matemàtica (CRM)
in Bellaterra (Barcelona). The Advanced School was one of the main activities
of the Research Programme Arithmetic Geometry, which took place at the CRM
from September 2009 to July 2010. The courses were the following:

- Arithmetic of Shimura curves and the Birch and Swinnerton-Dyer Conjecture,
by Shou-Wu Zhang (Columbia University), and

- A conjecture of André and Oort, by Bas Edixhoven (Universiteit Leiden) and
Andrei Yafaev (University College London)

The two courses deal with questions which pertain to the flourishing field of
number theory and arithmetic geometry.

The aim of the series of lectures delivered by Shou-Wu Zhang is to give a
comprehensive description of some recent work of the author and his students on
generalisations of the Gross-Zagier formula, Euler systems on Shimura curves and
rational points on elliptic curves. More precisely, the course will describe some of
the results obtained in the following articles:

1. X. Yuan, S. Zhang, W. Zhang, Heights of CM -points I: Gross–Zagier
formula (http://www.math.columbia.edu/ szhang/papers/HCMI.pdf). This
article provides a Gross-Zagier formula in a very general setting.

2. X. Yuan, S. Zhang, W. Zhang, Heights of CM -points II: Chowla–Selberg
formula (In preparation). This note provides formulae for logarithmic derivatives
of Dedekind zeta functions of totally real fields and CM-fields.

3. Y. Tian, S. Zhang, Euler systems of CM -points on Shimura curves
(In preparation). This article gives a generalization of Kolyvagin’s work and some
applications to Diophantine equations.

4. X. Yuan, S. Zhang, W. Zhang, Triple product L-series and Gross–Schoen
cycles (In preparation). This paper contains a formula for the derivative of the
triple product L-series and a new construction of rational points on elliptic curves.

The aim of the course delivered by Bas Edixhoven and Andrei Yafaev is to give
an introduction to the proof (under the generalised Riemann hypothesis) of the
so-called Andre-Oort conjecture by Yafaev, Klingler and Ullmo.

More precisely, the main goal of the lectures will be to describe the results
obtained by B. Klingler, E. Ullmo and A. Yafaev in the recent preprints:

1. E. Ullmo, A. Yafaev, Galois orbits and equidistribution: towards the André-
Oort conjecture, available at

http://www.math.u-psud.fr/ ullmo/Prebublications/UllmoYafaev2.pdf

2. B. Klingler, A. Yafaev, The André-Oort conjecture, available at
http://people.math.jussieu.fr/ klingler/papers.html

v
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This conjecture says that if S is a Shimura variety and Z is any subset of special
points of S, then the irreducible components of the Zariski closure of Z are sub-
Shimura varieties. Important examples are the moduli spaces of polarised abelian
varieties, where the special points are the points corresponding to abelian varieties
with (sufficiently many) complex multiplications.

The course will follow the history of the subject, starting with the simplest
non-trivial case, and keeping the most technical parts for the end. The main
ingredients, Galois orbits, Hecke correspondences and equidistribution, will be
introduced. A detailed sketch of the proof mentioned above will be given.

We wish to express our gratitude to the director and the staff of the CRM who
helped us in the organization of these courses. We thank the Ingenio-Mathematica
programme of the Spanish government and the Catalan Research Funding Agency
(AGAUR) for providing financial support for the organization of this Advanced
Courses.

The Coordinators
Francesc Bars,
Luis Dieulefait, and
Vı́ctor Rotger



Arithmetic of Shimura curves and
the Birch and Swinnerton-Dyer

Conjecture
Shou-Wu Zhang

1





Heights of CM points I
Gross–Zagier formula

Xinyi Yuan, Shou-wu Zhang, Wei Zhang

July 27, 2009

Contents

1 Introduction and statement of main results 2
1.1 L-function and root numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Waldspurger’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Gross–Zagier formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Idea of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Weil representation and analytic kernel 15
2.1 Weil representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Shimizu lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Integral representations of L-series . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Proof of Waldspurger formula . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Vanishing of the kernel function . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Derivative of the kernel function 28
3.1 Discrete series of weight two at infinite places . . . . . . . . . . . . . . . . . 28
3.2 Degenerate Schwartz functions at finite places . . . . . . . . . . . . . . . . . 32
3.3 Decomposition of the kernel function . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Non-archimedean components . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Archimedean places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Holomorphic projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Holomorphic kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Shimura curves, Hecke operators, CM-points 57
4.1 Shimura curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Hecke correspondences and generating series . . . . . . . . . . . . . . . . . . 59
4.3 CM-points and height series . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1

3



4.4 Arithmetic intersection pairing . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Decomposition of the height series . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Hecke action on arithmetic Hodge classes . . . . . . . . . . . . . . . . . . . . 73

5 Local heights of CM points 83
5.1 Archimedean case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Supersingular case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Superspecial case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Ordinary case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 The j -part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Proof of the main result 103
6.1 Identity of kernel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Hecke and theta correspondences . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Degree and Siegel–Weil formulae . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Completion of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

1 Introduction and statement of main results

In 1984, Gross and Zagier [GZ] proved a formula that relates the Néron–Tate heights of
Heegner points to the central derivatives of some Rankin L-series under certain ramification
conditions. Since then some generalizations are given in various papers [Zh1, Zh2, Zh3].
The methods of proofs of the Gross–Zagier theorem and all its extensions depend on some
newform theories. There are essential difficulties to remove all ramification assumptions in
this method. The aim of this paper is a proof of a general formula in which all ramifica-
tion condition are removed. Such a formula is an analogue of a central value formula of
Waldspurger [Wa] and has been more or less formulated by Gross [Gr] in 2002 in term of
representation theory. In the following, we want to describe statements of the main results
and main idea of proof.

1.1 L-function and root numbers

Let F be a number field with adele ring A = AF . Let π = ⊗vπv be a cuspidal automorphic
representation of GL2(A). Let E be a quadratic extension of F , and χ : E×\A×E → C× a
finite character. We assume that

χ|A× · ωπ = 1

where ωπ is the central character of π.
Denote by L(s, π, χ) the Rankin-Selberg L-function. Denote by ε(1

2
, πv, χv) = ±1 the

local root number at each place v of F , and denote

Σ =

{
v : ε(

1

2
, πv, χv) 6= χvηv(−1)

}
,

2
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where η is the quadratic character of F×\A× associated to the extension E/F . Then Σ is a
finite set and the global root number is given by

ε

(
1

2
, π, χ

)
=
∏

v

ε(
1

2
, πv, χv) = (−1)#Σ.

The following is a description of root numbers in terms of linear functionals:

Proposition 1.1.1 (Saito–Tunnell [Tu, Sa]). Let v be a place of F and Bv a quaternion
division algebra over Fv. Let π′v be the Jacquet–Langlands correspondence of πv on B×v if πv
is square integrable. Fix embeddings E×v ⊂ GL2(Fv) and E×v ⊂ B×v as algebraic subgroups.
Then v ∈ Σ if and only if

HomE×v (πv ⊗ χv,C) = 0.

Moreover
dim HomE×v (πv ⊗ χv,C) + HomE×v (π′v ⊗ χv,C) = 1.

Here the second space is treated as 0 if π′v is not square integrable.

Arithmetic properties of the L-function depends heavily on the parity of #Σ. When #Σ
is even, the central value L(1

2
, π, χ) is related to certain period integral. Explicit formulae

have been given by Gross, Waldspurger and S. Zhang. We will recall the treatment of
Waldspurger [Wa] in next section.

When #Σ is odd then L(1
2
, π, χ) = 0. Under the assumption that E/F is a CM-extension,

that πv is discrete of weight 2 for all infinite place v, and that χ is of finite order, then
the central derivative L′(1

2
, π, χ) is related to the height pairings of some CM divisors on

certain Shimura curves. Explicit formulae have been obtained by Gross-Zagier and one of
the authors under some unramified assumptions. The goal of this paper is to get a general
explicit formula in this odd case without any unramified assumption.

1.2 Waldspurger’s formula

Assume that the order of Σ is even in this subsection. We introduce the following notations:

1. B is the unique quaternion algebra over F with ramification set Σ;

2. B× is viewed as an algebraic group over F ;

3. T = E× is a torus of G for a fixed embedding E ⊂ B;

4. π′ = ⊗vπ′v is the Jacquet–Langlands correspondence of π on B×(A).

Define a period integral `(·, χ) : π′ → C by

`(f, χ) =

∫

Z(A)T (F )\T (A)

f(t)χ(t)dt, f ∈ π′.

Here the integral uses the Tamagawa measure which is 2L(1, η).
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Assume that ωπ is unitary. Then π′ is unitary with Petersson inner product 〈·, ·〉 using
Tamagawa measure which has volume 2 on A×B×\B×(A). Fix any non-trivial Hermitian
form 〈·, ·〉v on π′v so that their product gives 〈·, ·〉. Waldspurger proved the following formula
when ωπ is trivial:

Theorem 1.2.1 (Waldspurger when ωπ = 1). Assume that f = ⊗vfv ∈ π′ is decomposable
and nonzero. Then

|`(f, χ)|2 =
ζF (2)L(1

2
, π, χ)

2 L(1, π, ad)

∏

v≤∞
α(fv, χv),

where

α(fv, χv) =
L(1, ηv)L(1, πv, ad)

ζv(2)L(1
2
, πv, χv)

∫

F×v \E×v
〈π′v(t)fv, fv〉vχv(t)dt.

Moreover, α(fv, χv) is nonzero and equal to 1 for all but finitely many places v.

We interpret the formula as a result on bilinear functionals. As π′ is unitary, the contra-
gredient π̃′ is equal to π̄′ via integration on A×B×\B×A with an invariant measure of volume
2. Thus we have two bilinear functionals on π′ ⊗ π̃′. The first one is

`(f1, f2) = `(f1, χ)`(f2, χ
−1) =

∫

(Z(A)T (F )\T (A))2
f1(t)f2(t)χ(t1)χ̄(t2)dt1dt2, f1 ∈ π′, f2 ∈ π̃′.

And the second one is the product of local linear functionals:

α(f1, f2) =
∏

v

α(f1v, f2v)

α(f1v, f2v) =
L(1, ηv)L(1, πv, ad)

ζv(2)L(1
2
, πv, χv)

∫

F×v \E×v
〈π′v(t)f1,v, f2,v〉vχv(t)dt.

It is easy to see that both pairings are bilinear and (χ−1, χ)-equivariant under the ac-
tion of T (A) × T (A). But we know such functionals are unique up to scalar multiples by
the uniqueness theorem of the local linear functionals of Saito–Tunnell (Proposition 1.1.1).
Therefore, these two functionals must be proportional. Theorem 1.1 says that their ratio is
recognized as a combination of special values of L-functions.

1.3 Gross–Zagier formula

Now assume that Σ is odd. We further assume that

1. F is totally real and E is totally imaginary.

2. πv is discrete of weight 2 at all infinite places v of F .

3. χ is a character of finite order.

In this case, the set Σ must contain all infinite places. We have a totally definite quaternion
algebra B over A with ramification set Σ which does not have a model over F .
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Shimura curves

For each open subgroup U of B×f := (B⊗A Af )
× which is compact modulo F× ∩ U , we have

a (compact) Shimura curve XU over F . For two open subsets U1 ⊂ U2, one has a surjective
morphism πU1,U2 : XU1−→XU2 which is bijective if and only if

U1 · F× = U2 · F×.

Let X be the projective system of XU . Then X has an action by B×f given by “right

multiplication” Tx. More precisely, any x ∈ B×f induces a bijection

Tx : XxUx−1−→XU .

The action Tx is trivial if and only if x is in the closure F̂× of F× in B×f . We extend the
definition of Tx to whole adeles B× so that the archimedean part B×∞ acts trivially on X.

Then an elements Tx is trivial if and only if x ∈ D := B×∞ · F̂×. By this reason, it will be
more intrinsic to define XU for U an open and compact subgroup of B×/D. The variety XU

can be considered as the quotient of X by U . The induced action of B× on the projective
system π0(XU) of sets of connected components of XU is factor through the norm maps
ν : B×−→A× and makes π0(XU) a principal homogenous space over F×\A×/ν(U).

For an embedding τ : F−→R, the complex points of XU at τ forms a Riemann surface
Xan
U,τ described as

Xan
U,τ = B(τ)×\H ± × B×f /U ∪ {cusps}

where B(τ) is a quaternion algebra over F with ramification set Σ\{τ}, Bf is identified with
B(τ)Af

as an Af -algebra, and B(τ)× acts on H ± through an isomorphism B(τ)τ 'M2(R).
The isomorphism Tx is realized on Xan

τ by right multiplication by x on B×f .

Hodge classes and volumes

On eachXU , there is a Hodge class LU which is characterized by the following two properties:

• LU is the canonical bundle on XU if U is sufficiently small;

• LU is compatible with pull-back morphisms.

As U varies, LU forms an element

L = lim→
U

Pic(XU).

It is known that deg(LU) is also the volume of XU at an archimedean place τ of F for the
measure induced by dxdy/(2πy2) on H . We normalize a measure on B×/D such that for
any open compact subgroup U ,

vol(U) =
1

deg(LU)

where LU is the Hodge bundle of XU .
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Let α ∈ π0(X) which is projective limit of elements αU ∈ π0(XU). Let

ξαU
= deg(LU |XαU

)−1LU |XαU
.

Then ξαU
for a projective limit system and define an element

ξα ∈ lim←
U

Pic(XU)⊗Q.

CM-divisors

Fix embeddings EA → B and E → F̄ , and let C be the set of points on X(F̄ ) which
are fixed by E× such that the induced action on the tangent spaces are given by the fixed
inclusion E−→F̄×. Then C is inX(Eab) and is a principal homogenous space of Gal(Eab/E).
Moreover the projective CU in XU(Eab) has an analytic description at each place τE : E−→C
over τ as follows: CU,τE in XU,τ (C) is represented by (z0, t) with t ∈ E×(Af ) and z0 ∈ H ±

is the unique point fixed by E× such that the action of E× on the tangent space TH ±,z0 is
given by inclusion τE.

CU ' E×\A×E/UE (1.3.1)

with Galois action of Gal(Eab/E) given by left multiplication of A×E and the class field theory.
Fix a point Y ∈ C and define formally

Yχ :=

∫

Gal(Eab/E)

χ(σ)(Y σ − ξY )dσ ∈ lim←
U

Jac(XU) =: Alb(X)⊗ C

where ξY = ξα the normalized Hodge class on the connected component containing Y , and
dσ is a Haar measure on Gal(Eab/E) with volume 2L(1, η) which is the Tamagawa measure
on A×E×\A×E. The projection YU,χ of Yχ on XU can be described analytically at a place τE
of E as follows: we may take Y so that its projection YU on Xan

τ is represented by z0 ∈H ±

fixed by E× and then Yχ,U 6= 0 only if UE is contained in kerχ. In this case

Yχ = τ(U)
∑

t∈E×\A×E/UE

χ(t)([t]− ξt)

where [t] denote the CM-point in CU via identification (1.3.1) and ξt is the Hodge class of
degree 1 in the geometric connected component of XU containing [z0, t], and τ(U) is to make

τ(U)|E×\A×E/UE| = 2L(1, η).

Hecke correspondences

For each x ∈ B×, define a Hecke correspondence Z(x)U as a cycle in Z1(XU × XU) as the
image of the morphism

XU∩xUx−1−→XU ×XU ,
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where the first factor is the natural projection, and the second one is the composition of Tx
and projection. For any function φ ∈ S (B×/D) bi-invariant under U , we can define

T(φ)U =
∑

x∈U\B×/U
φ(x)Z(x)U ∈ Z1(X2

U).

The correspondences T(φ)U is compatible with projection of XU thus forms an element

T(φ) ∈ Z1(X ×X) := lim→
U

Z1(X2
U).

It follows that the divisors T(φ)UYχ also form a direct limit system thus defines an element

T(φ)Yχ ∈ lim→
U

Jac(XU) =: Jac(X)⊗ C.

The functional
S (B×/D)−→Jac(X)⊗ C, φ 7→ T (φ)Yχ

factors through the maximal cuspidal quotient S̃ (B×/D) as follows.
For any irreducible representation (Vσ, σ) of B×f /D (equivalently, an irreducible represen-

tation of B× with trivial component at infinity and trivial on F×), we have a Hecke operator
ρ(φ) acting on σ:

v−→ρσ(φ) :=

∫

B×/D
φ(g)σ(g)vdg.

Thus we have a well defined B× × B× equivariant map:

ρσ : S (B×/D)−→σ ⊗ σ̃.

Denote
S̃ (B×/D) = S (B×/D)/ ∩σ∈S2(B×) ker ρσ

where S2(B×) runs through the Jacquet–Langlands correspondences of cuspidal representa-
tions of GL2(A) of parallel weight 2 and with trivial central characters at infinities. Then
we have an isomorphism of B× × B×-modules:

S̃ (B×/D) ' ⊕σ∈S2(B×)σ ⊗ σ̃.

We will show that the T (φ)Yχ depends only on the image of φ in S̃ (B×/D). Thus we can
define

T(f ⊗ f̃)Yχ ∈ Jac(X)⊗ C, f ⊗ f̃ ∈ σ ⊗ σ̃, σ ∈ S2(B×).

7
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Gross–Zagier formula

Notice that the Neron–Tate height paring on Jac(XU)(F̄ ) defines a Hermitian pairing on
Jac(X)(F̄ )⊗ C and Alb(X)⊗ C.

Theorem 1.3.1. Let π′ denote the Jacquet–Langlands correspondence of π on B×. Assume
that f = ⊗fv ∈ π′ and f̃ = ⊗f̃v ∈ π̃′ are decomposable. Then

〈T(f ⊗ f̃)Yχ, Yχ〉NT =
ζF (2)L′(1/2, π, χ)

L(1, π, ad)

∏

v

α(fv, f̃v).

Remark. In the case that f and f̃ are new forms, some partial results have been proved in
[Zh1, Zh2, Zh3] with more precise formulae under some unramified assumptions.

1.4 Applications

Let π and χ satisfy the same condition as in §1.3. Then we have an abelian variety A defined
over E such that

L(s, A) =
∏

σ

L(s+
1

2
, πσ, χσ)

where (πσ, χσ) are conjugates of (π, χ) for automorphisms σ of C in the sense that the Hecke
eigenvalues of πσ and χσ are σ-conjugates of those of π and χ. Let Q[π, χ] denote the subfield
generated by Hecke eigenvalues of π and values of χ. Then A has a multiplication by an
order in Q[π, χ]. Replace A by an isogenous one, we may assume that A has multiplication
by Z[π, χ].

Theorem 1.4.1 (Tian–Zhang). Under the assumption above, we have:

1. If ords=1/2L(s, π, χ) = 1, then the Mordell-Weil group A(E) as a Z[π, χ]-module has
rank 1 and the Shafarevich-Tate group X(A) is finite.

2. If ords=1/2L(s, π, χ) = 0 and A is not of CM-type, then the Mordell-Weil group A(E) is
finite. Furthermore, if χ is trivial, and A is geometrically simple, then the Shafarevich-
Tate group X(A) is also finite.

Remark. For π as above, there is an abelian variety Aπ defined over F with L-series given
by

L(s, Aπ) =
∏

σ

L(s+ 1/2, πσ).

We may assume that Aπ has multiplications by the ring Z[π] of the Hecke eigenvalues in π.
The variety A up to an isogeny can be obtained by the algebraic tensor product:

A := Aπ ⊗Z[π] Z[π, χ].

In terms of algebraic points,

A(Ē) = Aπ(Ē)⊗Z[π] Z[π, χ]

with usual Galois action by Gal(Ē/E) on A(Ē) and by character χ on Z[π, χ].
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Example. The theorem applies to all modular F -elliptic curves: the elliptic curve A over a
Galois extension of F such that Aσ is isogenous to A for all σ ∈ Gal(F̄ /F ).

1.5 Idea of proof

Our proof of Theorem 1.3.1 is still based on the idea of Gross–Zagier’s paper [GZ], namely,
to compare the analytic kernel function representing the central derivative of L-series with
the geometric kernel function formed by a generating series of height pairings of CM-points.
Many ideas of [Zh1, Zh2] are also used in this paper. The following are some new ingredients:

• Construct the analytic kernel and the geometric kernel systematically using Weil rep-
resentations. It avoids the use of newform theory and the choice of test vectors. The
construction of the analytic kernel is a variation of the idea of Waldspurger [Wa] com-
bined with the incoherence philosophy of Kudla [Ku2]. The idea to use the “complete”
generating series to construct the geometric kernel is also inspired by Kudla’s work.

• Reduce the problem to a special class of degenerate Schwartz functions by local repre-
sentation theoretical reasons. Then many computations are simplified. For example,
the constant terms of the Eisenstein series are zero, and the geometric kernel function
has no self-intersection involved in that case.

• At bad places, approximate the kernel functions by Eisenstein series or theta series on
the nearby quaternion algebras, and apply a modularity argument to get an equality.
The theta series have no contribution in the integral by the dichotomy result of Tunnell
[Tu] and Saito [Sa] we just recalled. It is similar to the idea of geometric pairing in
[Zh2].

Now we give more details following the logic order of this paper. First of all, for a given
Σ, we will have a quaternion algebra B over A with ramification set Σ. The reduced norm
on B defines an orthogonal space V with group GO of orthogonal similitudes. Then we have
a Weil representation of GL2(A) × GO(A) on the space S (V × A×) of Schwartz functions.
For each φ ∈ S (V × A×) we will construct an automorphic form I(s, g, χ, φ) as a mixed
Eisenstein series and theta series to represent the L-series L(s, π, χ).

If Σ is even, then B = BA for some quaternion algebra B over F . Then by Siegel–Weil
formulae, I(0, g, χ, φ) is equal to a period integral θ(g, χ, φ) of a theta series associate to φ.
This is essentially the Waldspurger formula.

If Σ is odd, I(0, g, χ, φ) = 0 and I ′(0, g, χ, φ) represents L′(1/2, π, χ). We write I ′(0, g, χ, φ)
as a sum of I ′(0, g, χ, φ)(v) according to the place of the derivative is taken in the product
form of the Whittaker functions of I(s, g, χ, φ). Then we compute the holomorphic projec-
tion PrI ′(0, g, χ, φ). It only changes I ′(0, g, χ, φ)(v) for archimedean v, but brings some
extra term due to the fast growth of the kernel function.

The role of theta series in Waldspurger’s work is played by the following generating series
of heights of CM-points:

Z(g, χ, φ) = 〈Z(g, φ)Yχ, Yχ〉NT
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where Z(g, φ) is a generating series of Hecke operators on XU introduced by Kudla-Millson
extending the classic formula

∑
n Tnq

n. The modularity of this generating series is proved in
our previous paper [YZZ]. Using Arakelov theory, we may decompose Z(g, χ, φ) into a sum
of local heights Z(g, χ, φ)(v) over all places v of F , with some extra terms involving of the
Hodge class.

The problem is reduced to compare the kernels PrI ′(0, g, χ, φ) and 2Z(g, χ, φ). For good
v, we show that I ′(0, g, χ, φ)(v) is exactly equal to Z(g, χ, φ)(v) by explicit computations.
For bad v, we show both of them can be approximated by theta series and Eisenstein series.
We also show that the difference of the extra terms can also be approximated by Eisenstein
series.

To illustrate the idea, we make a general definition. We say a function Φ : GL2(A)→ C
is approximated by an automorphic form ϕ on GL2(A) if there exists a finite set S of places
of F such that Φ(g) = ϕ(g) for all g ∈ 1SGL2(AS). Here is a simple fact. If furthermore Φ
is automorphic, then Φ = ϕ identically. It is true since GL2(F )GL2(AS) is dense in GL2(A).

Come back to the comparison of the kernel functions. We have shown that PrI ′(0, g, χ, φ)−
2Z(g, χ, φ) is approximated by a finite sum of theta series and Eisenstein series. By the above
simple consequence of modularity, we conclude that it is exactly equal to the sum of these
theta series and Eisenstein series. It is not zero, but it is perpendicular to π by simple rea-
sons. These Eisenstein series are automatically perpendicular to π. These theta series are
defined on the nearby quaternion algebra B(v) over F obtained by changing the invariant of
B at v. They are perpendicular to π by the result of Saito and Tunnel.

In the end, we explain why these local components can be approximated easily. We
mainly look at I ′(0, g, χ, φ)(v). Note that it is a mixed theta series and Eisenstein series
with local components of its Fourier coefficients at v replaced by the derivatives. By a local
version of the Siegel–Weil formula, it is easy to write it as an integral over E×(Af ) of

K (v)
φ (g) =

∑

u∈µ2
K\F×

∑

y∈B(v)

kφv(g, y, u)r(g)φ
v(y, u).

It is a theta series except that at v the function kφv(g, y, u) is not good, so we call it a pseudo
theta series. The key is to show that kφv(1, y, u) is a Schwartz function of (y, u) ∈ B(v)v×F×v
if φv is degenerate. Then we form the “authentic” theta series

θ(g, kφv ⊗ φv) =
∑

u∈µ2
K\F×

∑

y∈B(v)

r(g)kφv(1, y, u)r(g)φ
v(y, u).

It approximates the original series since they are the same for g ∈ 1vGL2(Av).
As for the local height Z(g, χ, φ)(v), we can also write it as a series over B(v). Roughly

speaking, the local formal neighborhoods of the integral model of Shimura curve XU can
be uniformized as the quotient of some universal deformation space by the action of B(v)×.
Then the local height pairing on the Shimura curve is a summation of intersections of points
in the corresponding orbit indexed by B(v)×.
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1.6 Notation and terminology

Local fields and global fields

We normalize the absolute values, additive characters, and measures following Tate’s thesis.
Let k be a local field of characteristic zero.

• Normalize the absolute value | · | on k as follows:

It is the usual one if k = R.

It is the square of the usual one if k = C.

It takes the uniformizer to the reciprocal of the cardinality of the residue field if k
is non-archimedean.

• Normalize the additive character ψ : k → C× as follows:

If k = R, then ψ(x) = e2πix.

If k = C, then ψ(x) = e4πiRe(x).

If k is non-archimedean, then it is a finite extension of Qp for some prime p. Take
ψ = ψQp ◦trk/Qp . Here the additive character ψQp of Qp is defined by ψQp(x) = e−2πiι(x),
where ι : Qp/Zp ↪→ Q/Z is the natural embedding.

• We take the Haar measure dx on k to be self-dual with respect to ψ. More precisely,

If k = R, then dx is the usual Lebesgue measure.

If k = C, then dx is twice of the usual Lebesgue measure.

If k is non-archimedean, then vol(Ok) = |dk|
1
2 . Here Ok is the ring of integers and

dk ∈ k is the different of k over Qp.

• We take the Haar measure d×x on k× as follows:

d×x = ζk(1)|x|−1
v dx.

Recall that ζk(s) = (1 − N−sv )−1 if v is non-archimedean with residue field with Nv-
elements, and ζR(s) = π−s/2Γ(s/2), ζC(s) = 2(2π)−sΓ(s). With this normalization, if
k is non-archimedean, then vol(O×k ) = vol(Ok).

Now go back to the totally real field F . For each place v, we choose | · |v, ψv, dxv, d×xv as
above. By tensor products, they induce global | · |, ψ, dx, d×x. For non-archimedean v, we
usually use pv to denote the corresponding prime ideal, Nv to denote the cardinality of its
residue field, and $v to denote a uniformizer.
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Notation on GL2

We introduce the matrix notation:

m(a) =

(
a

a−1

)
, d(a) =

(
1

a

)
, d∗(a) =

(
a

1

)

n(b) =

(
1 b

1

)
, kθ =

(
cos θ sin θ
− sin θ cos θ

)
, w =

(
1

−1

)
.

We denote by P ⊂ GL2 and P 1 ⊂ SL2 the subgroups of upper triangular matrices, and by
N the standard unipotent subgroup of them.

For any local field k, the character δ : P (k)→ R× defined by

δ :

(
a b

d

)
7→
∣∣∣a
d

∣∣∣
1
2

extends to a function δ : GL2(k)→ R× by Iwasawa decomposition.
For any global field k, the product δ =

∏
v δv gives a function on GL2(Ak).

Quadratic extensions

Let E/F be a quadratic extension of global fields. We denote by T = E× the algebra group
over F . We view V1 = (E, q = NE/F ) as a two-dimensional vector space over F , which
uniquely determines self-dual measures dx on AE and Ev for each place v of F . We define
the measures on the corresponding multiplicative groups by the same setting as above.

Let E1 = {y ∈ E× : q(y) = 1} act on E by multiplication. It induces an isomorphism
SO(V1) ' E1 of algebraic groups over F . We also have SO(V1) = E×/F× given by

E×/F× → E1, t 7→ t/t̄.

It is an isomorphism by Hilbert Theorem 90. We also denote T 1 = E1.
We have the following exact sequence

1→ E1 → E×
q→ q(E×)→ 1.

For all places v, we endow E1
v the measure such that the quotient measure over q(E×v ) is the

subgroup measure of F×v . On the other hand, we endow E×v /F
×
v with the quotient measure.

It turns out that these two measures induce the same one on SO(V1).
Let v be a non-archimedean place of F , denote by dv ∈ OFv the local different of Fv,

and by Dv ∈ OFv the local discriminant of Ev/Fv. Then vol(OFv) = vol(O×Fv
) = |dv|

1
2
v and

vol(OEv) = vol(O×Ev
) = |Dv|

1
2 |dv|v. Furthermore,

vol(E1
v) =





2 if v | ∞,
|dv|

1
2 if v -∞ inert in E,

2|Dv|
1
2 |dv|

1
2 if v -∞ ramified in E.
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Notation on quaternion algebra

Fix F,E,A,Σ as introduced at the beginning of the introduction.
Recall that Σ is a finite set of places of F . Denote by B the unique quaternion algebra

over A such that for every place v of F , the quaternion algebra Bv := B ⊗A Fv over Fv is
isomorphic to the matrix algebra if and only if v /∈ Σ. Alternatively, one can define Bv

according to Σ, and B as a restricted product of Bv.
We say B is coherent if it is a base change of a quaternion algebra over F ; otherwise, we

say B is incoherent. . It follows that B is coherent if and only if the cardinality of Σ is even.
The reduce norm q makes B a quadratic space V = (B, q) over A. Fix an embedding

EA ↪→ B which always exists. It gives an orthogonal decomposition

B = EA + EAj, j2 ∈ A×.

Then we get two induced subspaces V1 = (EA, q) and V2 = (EAj, q). Apparently V1 is the
base change of the F -space V1 = (E, q). We usually write x = x1 + x2 for the corresponding
orthogonal decomposition of x ∈ V.

Assume that the cardinality of Σ is odd. We will keep this assumption throughout
this paper except in §1.2 and §2.4. Then B is incoherent, but we will get a coherent one
by increasing or decreasing Σ by one element. For any place v of F , denote by B(v) the
quaternion algebra over F obtained from B by switching the Hasse invariant at v. We call
B(v) the nearby quaternion algebra corresponding to v. Throughout this paper, we will fix
an identification B(v) ⊗F Av ∼= Bv. Fix an embedding E ↪→ B(v) if v is non-split in E. In
this case, such an embedding always exists. Then we also have orthogonal decomposition
B(v) = V1 ⊕ V2(v).

For any quaternion algebra B over Fv with a fixed embedding Ev ↪→ B, we define

λ : B×−→Fv, x 7−→ q(x2)

q(x)

where x = x1 + x2 is the orthogonal decomposition induced by Ev ↪→ B. This definition
applies to all the quaternion algebras above locally and globally.

Notation on integrations and averages

For a function f on F×A× which is invariant under F×∞ · U where U is an open compact
subgroup of A×f , we denote the average of f on A× by

∫

A×
f(z)dz := |F×\A×/F×∞ · U |−1

∑

z∈F×\A×/F×∞·U

f(z).

The definition here does not depend on choice of U .
Let G be a reductive group over F with an embedding F×−→G so that the center of

F×\G is anisotropic. We denote

[G] = A×G(F )\G(A).
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Let dg be a measure on [G] and let f be an automorphic function on G(A) with trivial
central character at infinity. We define

∫

[G]

f(g)dg :=

∫

[G]

dg

∫

A×
f(zg)dz.

∫

[G]

f(g)dg := vol([G])−1

∫

[G]

f(g)dg.

Acknowledgement

This research has been supported by some grants from the National Science Foundation and
Chinese Academy of Sciences. The first author is supported by a research fellowship of Clay
Mathematics Institute.

14

16



2 Weil representation and analytic kernel

In this section, we will review the theory of Weil representation and its applications to integral
representations of Rankin–Selberg L-series L(s, π, χ) and to a proof of Waldspurger’s central
value formula. We will mostly follow Waldspurger’s treatment with some modifications
including the construction of incoherent Eisenstein series from Weil representation.

We will start with the classical theory of Weil representation of O(F )×SL2(F ) on S (V )
for an orthogonal space V over a local field F and its extension to GO(F ) × GL2(F ) on

S̃ (V × F×) by Waldspurger. We then define theta function, state Siegel–Weil formulae,
and define normalized local Shimizu lifting. The main result of this section is an integral
formula for L-series L(s, π, χ) using a kernel function I(s, g, χ, φ). This kernel function is a

mixed Eisenstein and theta series attached to each φ ∈ S̃ (V×A×) for V an orthogonal space
obtained form a quaternion algebra over A. The Waldspurger formula is a direct consequence
of the Siegel–Weil formula. We conclude the section by proving the vanishing of the kernel
function at s = 0 using information on Whittaker function of incoherent Eisenstein series.

2.1 Weil representations

Let us start with some basic setup on Weil representation. We follow closely from Wald-
spurger’s paper [Wa].

Non-archimedean case

Let F be a non-archimedean local field and (V, q) a quadratic space over F . Let O = O(V, q)

denote the orthogonal group of (V, q) and S̃L2 the double cover of SL2. Then for any non-

trivial character ψ of F , the group S̃L2(F ) × O(F ) has an action r on the space S (V ) of
locally constant functions with compact support as follows:

• r(h)φ(x) = φ(h−1x), h ∈ O(F );

• r(m(a))φ(x) = χV (a)φ(ax)|a|dimV/2, a ∈ F×;

• r(n(b))φ(x) = φ(x)ψ(bq(x)), b ∈ F ;

• r(w)φ = γ(V, q)φ̂.

Here χV : k → {±1} is the corresponding quadratic character, and γ(V, q), an 8-th root of
unity, is the Weil index.

Archimedean case

When F ' R, we may define an analogous representation of the pair (G ,K ) consisting of the

Lie algebra G and a maximal compact subgroup K = S̃O2(R)×K 0 of S̃L2(R)×O(R). More
precisely, the maximal compact subgroup K 0 stabilizes a unique orthogonal decomposition
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V = V + + V − such that the restrictions of q on V ± are positive and negative definite
respectively. Then we take S (V ) as to be the space of functions of the form

P (x)e−2π(q(x+)−q(x−)), x = x+ + x−, x± ∈ V ±

where P is a polynomial function on V . The action of (G ,K ) on S (V ) can be deduced
formally from the same formulae as above. Notice that the space S (V ) depends on the
choice of the maximal compact subgroup K 0 of O(V ) and ψ.

Extension to GL2

Assume that dimV is even. Following Waldspurger [Wa], we extend this action to an action
r of GL2(F ) × GO(F ) or more precisely their (G ,K ) analogue in real case. In §3.1, we
will see that we are actually using a slightly different space of Schwartz functions in the
archimedean case.

If F is non-archimedean, let S̃ (V × F×) be the space of locally constant and compactly
supported functions on V × F×. We also write it as S (V × F×) in the non-archimedean
case.

If F is archimedean, let S̃ (V ×F×) be the space of finite linear combinations of functions
of the form

H(u)P (x)e−2π|u|(q(x+)−q(x−))

where P is any polynomial function on V , andH is any compactly supported smooth function
on R×.

The Weil representation is extended by the following formulae:

• r(h)φ(x, u) = φ(h−1x, ν(h)u), h ∈ GO(F );

• r(g)φ(x, u) = ru(g)φ(x, u), g ∈ SL2(F );

• r(d(a))φ(x, u) = φ(x, a−1u)|a|− dimV/4, a ∈ F×.

Here ν : GO(F )→ F× denotes the similitude map. In the second formula φ(x, u) is viewed
a function of x, and ru is the Weil representation on V with new norm uq.

By the action of GO(F ) above, we introduce an action of GO(F ) on V × F× given by

h ◦ (x, u) := (hx, ν(h)−1u).

This action stabilizes the subset

(V × F×)a := {(x, u) ∈ V × F× : uq(x) = a}.
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Global case

Now we assume that F is a number field and that (V, q) is an orthogonal space over F .
Then we can define a Weil representation r on S (VA) (which actually depends on ψ) of

S̃L2(A) × O(VA). When dimV is even, we can define an action r of GL2(A) × GO(VA) on

S̃ (VA×A×) which is the restricted tensor product of S̃ (Vv ×Fv) with spherical element as
characteristic function of VOFv

×O×Fv
once a global lattice is chosen.

Notice that the representation r depends only on the quadratic space (VA, q) over A.
We may define representations directly for a pair (V, q) of a free A-module V with non-

degenerate quadratic form q. It still makes sense to define S̃ (V× A×) to be the restricted

tensor product of S̃ (Vv × F×v ). The Weil representation extends in this case.
If (V, q) is a base change of an orthogonal space over F , then we call this Weil represen-

tation is coherent; otherwise it is called incoherent.

Siegel–Weil formula

Let F be a number field, and (V, q) a quadratic space over F . Then for any φ ∈ S (VA), we

can form a theta series as a function on SL2(F )\S̃L2(A)×O(F )\O(A):

θ(g, h, φ) =
∑

x∈V
r(g, h)φ(x), (g, h) ∈ S̃L2(A)×O(A).

Similarly, when V has even dimension we can define theta series for φ ∈ S̃ (VA × A×) as an
automorphic form on GL2(F )\GL2(A)×GO(F )\GO(A):

θ(g, h, φ) =
∑

(x,u)∈V×F×
r(g, h)φ(x, u).

Now we recall the Siegel–Weil formulae. For φ ∈ S (VA), s ∈ C, we have a section

g 7→ δ(g)sr(g)φ(0)

in IndSL2

P 1 (χV | · |dimV/2+s) where δ is the modulo function explained in the introduction. Thus
we can form an Eisenstein series

E(s, g, φ) =
∑

γ∈P 1(F )\SL2(F )

δ(γg)sr(γg)φ(0).

We are interested in the Siegel–Weil formula in the following cases:

(1) (V, q) = (E,NE/F ) with E a quadratic extension of F ;

(2) (V, q) = (B, q) with B a quaternion algebra over F and q the reduced norm;

(3) (V, q) = (B0, q) where B0 is the subspace of trace free elements of a quaternion algebra
B over F and q is induced from the reduced norm on B.
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The Tamagawa number of SO(A) in the above cases are respectively 2L(1, η), 2, 2. Set
m = L(1, η), 2, 2 respectively in these cases.

Theorem 2.1.1 (Siegel–Weil formula). Let V,m be as above, and φ ∈ S (V (A)). Then

∫

SO(F )\SO(A)

θ(g, h, φ)dh = mE(0, g, φ)

where dh is the Tamagawa measure on SO(A).

Notice that the Eisenstein series can be defined for any quadratic space (V, q) over A
with rational detV . Kudla has proposed a connection between the derivative of Eisenstein
series and arithmetic intersection of certain arithmetic cycles on Shimura varieties.

Local Siegel–Weil formula

For any a ∈ F×, the above Siegel–Weil formula yields an identity of the a-th Fourier coeffi-
cients (also called Whittaker function) of the two sides as follows:

vol(SOxa(F )\SOxa(A))

∫

SOxa (A)\SO(A)

r(g, h)φ(xa)dh = m

∫

A
r(wn(b)g)φ(0) ψ(−ab)db.

Here xa ∈ V is any fixed element of norm a, and SOxa denotes the stabilizer of xa in SO. If
such an xa does not exist, the left-hand side is considered to be zero.

Note that both integrals above are products of local integrals. It follows that the identity
induces an identity at every place, and vice versa. Actually Weil [We] proved the Siegel–Weil
formula by first showing the local version below.

We state with a quadratic space (V, q) over a local field k. For any a ∈ F , denote by
V (a) the set of elements of V with norm a. If it is non-empty, then any xa ∈ V (a) gives
a bijection V (a) ∼= SOxa(k)\SO(k). Under this identity, SO(k)-invariant measures of V (a)
correspond to Haar measures of SOxa(k)\SO(k). They are unique up to scalar mutiples.

Theorem 2.1.2 ([We], local Siegel–Weil). Let (V, q) be a quadratic space over a local field
k. Then the following are true:

(1) There is a unique SO(k)-invariant measure dψx of V (a) for every a ∈ k× such that

Φ(a) :=

∫

V (a)

φ(x)dψx

gives a continuous function for a ∈ k×, and such that

∫

k

Φ(a)da =

∫

V

φ(x)dx.

Here da, dx are the self-dual measures on k, V with respect to ψ.

18

20



(2) With the above measure,
∫

k

r(wn(b)g)φ(0) ψ(−ab)db = γ(V, q)

∫

V (a)

r(g)φ(x)dψx, ∀a ∈ k×, φ ∈ S (V ).

The right-hand side is consided to be zero if V (a) is empty.

The measure dµa is very easy to determine for small groups in practice. In the case a = 0,
there is a similar result with some complication caused by analytic continuation. We omit
it here.

2.2 Shimizu lifting

Let F be a local field and B a quaternion algebra over F . Write V = B as an orthogonal
space with quadratic form q defined by the reduced norm on B. Let B× ×B× act on V by

x 7→ h1xh
−1
2 , x ∈ V = B, hi ∈ B×.

Then we have an exact sequence:

1−→F×−→(B× ×B×) o {1, ι}−→GO(F )−→1.

Here ι acts on V = B by the canonical involution, and on B××B× by (h1, h2) 7→ (hι−1
2 , hι−1

1 ),
and here F× is embedded into the middle group by x 7→ (x, x) o 1. The theta lifting of
any representation π of GL2(F ) on GO is induced by the representation JL(π̃) ⊗ JL(π) on
B××B×, where JL(π) is the Jacquet–Langlands correspondence of π. Recall that JL(π) 6= 0
only if B = M2(F ) or π is discrete, and that if JL(π) 6= 0,

dim HomGL2(F )×B××B×(S̃ (V × F×)⊗ π, JL(π)⊗ JL(π̃)) = 1.

This space has a normalized form θ as follows: for any ϕ ∈ π realized as W−1(g) in a

Whittaker model for the additive character ψ−1, φ ∈ S̃ (V × F×), and for F the canonical
form on JL(π)⊗ JL(π̃),

Fθ(φ⊗ ϕ) =
ζ(2)

L(1, π, ad)

∫

N(F )\GL2(F )

W−1(g)r(g)φ(1, 1)dg (2.2.1)

The constant before the integral is used to normalize the form so that Fθ(φ⊗ϕ) = 1 when
every thing is unramified.

Let F be a number field and B a quaternion algebra over F . Then the Shimizu lifting
can be realized as a global theta lifting:

θ(φ⊗ ϕ)(h) =
ζ(2)

2L(1, π, ad)

∫

GL2(F )\GL2(A)

ϕ(g)θ(g, h, φ)dg, h ∈ B×A ×B×A . (2.2.2)

Here is the relation between global theta lifting and normalized local theta lifting:
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Proposition 2.2.1. We have a decomposition θ = ⊗θv in

HomGL2(A)×B×A ×B
×
A
(S̃ (VA × A×)⊗ π, JL(π̃)⊗ JL(π)).

Proof. It suffices to show that for decomposable φ = ⊗φv and ϕ = ⊗ϕv,

Fθ(φ⊗ ϕ) =
∏

Fθv(φv ⊗ ϕv).

The inner product between JL(π) and JL(π̃) is given by integration on the diagonal of
(A×B×\B×A )2. Let V = V0 ⊕ V1 correspond to the decomposition B = B0 ⊕ F with B0 the
subspace of trace free elements. Then the diagonal can be identified with SO′ = SO(V0).
Thus we have globally

Fθ(φ⊗ ϕ) =

∫

SO′(F )\SO′(A)

dh

∫

GL2(F )\GL2(A)

θ(g, h, φ)ϕ(g)dg.

To compute this integral, we interchange the order of integrals and apply the Siegel–Weil
formula:

∫

SO′(F )\SO′(A)

θ(g, h, φ)dh = 2


 ∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x,u)∈V1×F
r(γg)φ(x, u)



s=0

.

Thus we have

Fθ(φ⊗ ϕ) =2

∫

GL2(F )\GL2(A)

ϕ(g)
∑

γ∈P (F )\GL2(F )

∑

(x,u)∈V1×F
r(γg)φ(x, u)dg

=2

∫

P (F )\GL2(A)

ϕ(g)
∑

(x,u)∈V1×F×
r(g)φ(x, u)dg

The sum here can be written as a sum of two parts I1 + I2 invariant under P (F ) where I1 is
the sum over x 6= 0 and I2 over x = 0. It is easy to see that I2 is invariant under N(A) which
contributes 0 to the integral as ϕ is cuspidal. The sum I1 is a single orbit over diagonal
group. Thus we have

2

∫

N(F )\GL2(A)

ϕ(g)r(g)φ(1, 1)dg

=2

∫

N(A)\GL2(A)

W−1(g)r(g)φ(1, 1)dg.
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2.3 Integral representations of L-series

In the following we want to describe an integral representation of the L-series L(s, π, χ). Let
F be a number field with ring of adeles A. Let B be a quaternion algebra with ramification
set Σ. Fix an embedding EA ↪→ B. We have an orthogonal decomposition

B = EA + EAj, j2 ∈ A×.

Write V for the orthogonal space B with reduced norm q, and V1 = EA and V2 = EAj as
subspaces of VA. Then V1 is coherent and is the base change of F -space V1 := E, and V2 is
coherent if and only if Σ is even.

For φ ∈ S̃ (V× A×), we can form a mixed Eisenstein–Theta series

I(s, g, φ) =
∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x1,u)∈V1×F×
r(γg)φ(x1, u)

Define its χ-component:

I(s, g, χ, φ) =

∫

T (F )\T (A)

χ(t)I(s, g, r(t, 1)φ)dt.

For ϕ ∈ π, we want to compute the integral

P (s, χ, φ, ϕ) =

∫

Z(A)GL2(F )\GL2(A)

ϕ(g)I(s, g, χ, φ)dg.

Proposition 2.3.1 (Waldspurger). If φ = ⊗φv and ϕ = ⊗ϕv are decomposable, then

P (s, χ, φ, ϕ) =
∏

v

Pv(s, χv, φv, ϕv)

where

Pv(s, χv, φv, ϕv) =

∫

Z(Fv)\T (Fv)

χ(t)dt

∫

N(Fv)\GL2(Fv)

δ(g)sW−1,v(g)r(g)φv(t
−1, q(t))dg.

Here W denotes the Whittaker function of φ.

Proof. Bring the definition formula of I(s, g, χ, φ) to obtain an expression for P (s, χ, φ, ϕ):

∫

Z(A)P (F )\GL2(A)

ϕ(g)δ(g)s
∫

T (F )\T (A)

χ(t)
∑

(x,u)∈V1×F×
r(g, (t, 1))φ(x, u)dtdg.

We decompose the first integral as a double integral:

∫

Z(A)P (F )\GL2(A)

dg =

∫

Z(A)N(A)P (F )\GL2(A)

∫

N(F )\N(A)

dndg
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and perform the integral on N(F )\N(A) to obtain:

∫

Z(A)N(A)P (F )\GL2(A)

δ(g)sdg

∫

T (F )\T (A)

χ(t)
∑

(x,u)∈V1×F×
W−q(x)u(g)r(g, (t, 1))φ(x, u)dt.

Here as ϕ is cuspidal, the term x = 0 has no contribution to the integral. In this way, we
may change variable (x, u) 7→ (x, q(x−1)u) to obtain the following expression of the sum:

∑

(x,u)∈E××F×
W−u(g)r(g, (t, 1))φ(x, q(x−1)u)

=
∑

(x,u)∈E××F×
W−u(g)r(g, (tx, 1))φ(1, u).

The sum over x ∈ E× collapses with quotient T (F ) = E×. Thus the integral becomes

∫

Z(A)N(A)P (F )\GL2(A)

δ(g)sdg

∫

T (A)

χ(t)
∑

u∈F×
W−u(g)r(g, (t, 1))φ(1, u)dt.

The expression does not change if we make the substitution (g, au) 7→ (gd(a)−1, u). Thus we
have

∫

Z(A)N(A)P (F )\GL2(A)

δ(g)sdg

∫

T (A)

χ(t)
∑

u∈F×
W−u(d(u

−1)g)r(d(u−1)g, (t, 1))φ(1, u)dt.

The sum over u ∈ F× collapses with quotient P (F ), thus we obtain the following expression:

P (s, χ, φ, ϕ) =

∫

Z(A)N(A)\GL2(A)

δ(g)sdg

∫

T (A)

χ(t)W−1(g)r(g)φ(t−1, q(t))dt.

We may decompose the inside integral as
∫

Z(A)\T (A)

∫

Z(A)

and move the integral
∫
Z(A)\T (A)

to the outside. Then we use the fact that ωπ · χ|A× = 1 to

obtain

P (s, χ, φ, ϕ) =

∫

Z(A)\T (A)

χ(t)dt

∫

N(A)\GL2(A)

δ(g)sW−1(g)r(g)φ(t−1, q(t))dg.

When everything is unramified, Waldspurger has computed these integrals:

Pv(s, χv, φv, ϕv) =
L((s+ 1)/2, πv, χv)

L(s+ 1, ηv)
.
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Thus we may define a normalized integral P ◦v by

Pv(s, χv, φv, ϕv) =
L((s+ 1)/2, πv, χv)

L(s+ 1, ηv)
P ◦v (s, χv, φv, ϕv).

This normalized local integral P ◦v will be regular at s = 0 and equal to

L(1, ηv)L(1, πv, ad)

ζv(2)L(1/2, πv, χv)

∫

Z(Fv)\T (Fv)

χv(t)F (JL(π)(t)θ(φv ⊗ ϕv)) dt.

We may write this as αv(θ(φv ⊗ ϕv)) with

αv ∈ Hom(JL(π)⊗ JL(π̃),C)

given by the integration of matrix coefficients:

αv(f ⊗ f̃) =
L(1, ηv)L(1, πv, ad)

ζv(2)L(1/2, πv, χv)

∫

Z(Fv)\T (Fv)

χv(t)(π(t)f, f̃)dt. (2.3.1)

And we define an element α := ⊗vαv in Hom(JL(π)⊗ JL(π̃),C).
We now take value or derivative at s = 0 to obtain

Proposition 2.3.2.

P (0, χ, φ, ϕ) =
L(1/2, π, χ)

L(1, η)

∏

v

αv(θ(φv ⊗ ϕv)).

If Σ is odd, then L(1/2, π, χ) = 0, and

P ′(0, χ, φ, ϕ) =
L′(1/2, π, χ)

2L(1, η)

∏

v

αv(θ(φv ⊗ ϕv)).

Remark. Let AΣ(GL2, χ) denote the direct sum of cusp forms π on GL2(A) such that
Σ(π, χ) = Σ. If Σ is even, let I (g, χ, φ) be the projection of I(0, g, χ, φ) on AΣ(GL2, χ

−1).
If Σ is odd, let I ′(g, χ, φ) denote the projection of I ′(0, g, χ, φ) on AΣ(GL2, χ

−1). Then have
shown that I (g, χ, φ) and I ′(g, χ, φ) represent the functionals

ϕ 7→ L(1/2, π, χ)

L(1, η)
α(θ(φ⊗ ϕ)) if Σ is even

ϕ 7→ L′(1/2, π, χ)

2L(1, η)
α(θ(φ⊗ ϕ)) if Σ is odd

on π respectively.
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2.4 Proof of Waldspurger formula

Assume that Σ is even and we recall Waldspurger’s proof of his central value formula. Now

the space V = V (A) is coming from a global V = B over F . For φ ∈ S̃ (V×A×) and ϕ ∈ π,
we want to compute the double period integral of θ(φ⊗ ϕ):

∫

(T (F )Z(A)\T (A))2
θ(φ⊗ ϕ)(t1, t2)χ(t1)χ

−1(t2)dt1dt2.

Using definition, this equals

ζ(2)

2L(1, π, ad)

∫

Z(A)GL2(F )\GL2(A)

ϕ(g)θ(g, φ, χ)dg

where

θ(g, χ, φ) =

∫

Z∆(A)T (F )2\T (A)2
θ(g, (t1, t2), φ)χ(t1t

−1
2 )dt1dt2,

where Z∆ is the image of the diagonal embedding F× → (B×)2. We change variable t1 = tt2
to get a double integral

θ(g, χ, φ) =

∫

T (F )\T (A)

χ(t)dt

∫

Z(A)T (F )\T (A)

θ(g, (tt2, t2), φ)dt2,

Notice that the diagonal embedding Z\T can be realized as SO(Ej) in the decomposition
V = B = E + Ej. Thus we can apply Siegel–Weil formula 2.1.1 to obtain

θ(g, χ, φ) = L(1, η)I(0, g, χ, φ).

Here recall
I(s, g, φ) =

∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x,u)∈E×F×
r(γg, (t, 1)φ)(x, u).

Combining with Proposition 2.3.2, we have

∫

(T (F )Z(A)\T (A))2
θ(φ⊗ ϕ)(t1, t2)χ(t1)χ

−1(t2)dt1dt2 =
ζ(2)L(1/2, π, χ)

2L(1, π, ad)
α(θ(φ⊗ ϕ)).

This is certainly an identity as functionals on JL(π)⊗ JL(π̃):

`χ ⊗ `χ−1 =
ζ(2)L(1/2, π, χ)

2L(1, π, ad)
· α. (2.4.1)
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2.5 Vanishing of the kernel function

We want to compute the Fourier expansion of I(s, g, φ) in the case that Σ is odd, and prove

that they vanish at s = 0. We will mainly work on φ ∈ S̃ (V× A×).
Recall that we have the orthogonal decomposition V = V1 ⊕ V2, where V1 = EA and

V2 = EAj. It yields a decomposition

S̃ (V× A×) = S̃ (V1 × A×)⊗ S̃ (V2 × A×).

More precisely, any φ1 ∈ S̃ (V1 × A×) and φ2 ∈ S̃ (V2 × A×) gives φ1 ⊗ φ2 ∈ S̃ (V × A×)
defined by

(φ1 ⊗ φ2)(x1 + x2, u) := φ1(x1, u)φ2(x2, u).

And any element of S̃ (V×A×) is a finite linear combination of functions of the form φ1⊗φ2.
More importantly, the decomposition preserves Weil representation in the sense that

r(g, (t1, t2))(φ1 ⊗ φ2)(x, u) = r1(g, (t1, t2))φ1(x1, u) r2(g, (t1, t2))φ2(x2, u)

for any (g, (t1, t2)) ∈ GL2(A) × E×(A) × E×(A). Here we write r1, r2 for the Weil repre-
sentation associated to the vector spaces V1,V2. The group E×(A)× E×(A) acts on V` by
(t1, t2) ◦ x` = t1x`t

−1
2 . It is compatible with the action on V.

By linearity, we may reduce the computation to the decomposable case φ = φ1 ⊗ φ2.
Then we have

I(s, g, φ) =
∑

u∈F×
θ(g, u, φ1)E(s, g, u, φ2),

where

θ(g, u, φ1) =
∑

x∈E
r1(g)φ1(x, u),

E(s, g, u, φ2) =
∑

γ∈P (F )\GL2(F )

δ(γg)sr2(γg)φ2(0, u).

It suffices to study the behavior of Eisenstein series at s = 0. The work of Kudla-Rallis
in more general setting shows that the incoherent Eisenstein series E(s, g, u, φ2) vanishes at
s = 0 by local reasons. For reader’s convenience, we will show this fact by detailed analysis
of the local Whittaker functions. We will omit φ1 and φ2 in the notation.

We start with the Fourier expansion of Eisenstein series:

E(s, g, u) = E0(s, g, u) +
∑

a∈F×
Ea(s, g, u)

where the a-th Fourier coefficient is

Ea(s, g, u) =

∫

F\A
E

(
s,

(
1 b

1

)
g, u

)
ψ(−ab)db, a ∈ F.

An easy calculation gives the following result.
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Lemma 2.5.1.

E0(s, g, u) = δ(g)sr2(g)φ2(0, u)−
∫

A
δ(wn(b)g)s

∫

V2

r2(g)φ2(x2, u)ψ(buq(x2))dux2db,

Ea(s, g, u) = −
∫

A
δ(wn(b)g)s

∫

V2

r2(g)φ2(x2, u)ψ(b(uq(x2)− a))dux2db, a ∈ F×.

Here the measure dux2 on V2 is the self-dual Haar measure with respect to uq.

Proof. It is a standard result that the constant term is given by

E0(s, g, u) = δ(g)sr2(g)φ2(0, u) +

∫

N(A)

δ(wng)sr2(wng)φ2(0, u)dn.

By definition, we have

r2(wn(b)g)φ2(0, u) = γ(V2)

∫

V2

r2(n(b)g)φ2(x2, u)dux2

= γ(V2)

∫

V2

r2(g)φ2(x2, u)ψ(buq(x2))dux2.

Here γ(V2) is the Weil index of the quadratic space (V2, uq), which is apparently independent
of u ∈ F×. By the orthogonal decomposition V = V1 ⊕ V2, we have γ(V) = γ(V1)γ(V2).
Here γ(V1) = 1 since V1 = E(Af ) is coherent, and γ(V) =

∏
v γ(Vv, q) = (−1)#Σ = −1 since

Σ is assumed to be odd. It follows that γ(V2) = −1. So we get the result for E0(s, g, u).
The formula for Ea(s, g, u) is computed similarly.

Notation. We introduce the following notations:

Wa(s, g, u, φ2) =

∫

A
δ(wn(b)g)s

∫

V2

r2(g)φ2(x2, u)ψ(b(uq(x2)− a))dux2db,

Wa,v(s, g, u, φ2) =

∫

Fv

δ(wn(b)g)s
∫

V2,v

r2(g)φ2,v(x2, u)ψv(b(uq(x2)− a))dux2db,

W ◦
0,v(s, g, u, φ2) =

L(s+ 1, ηv)

L(s, ηv)
|Dv|−

1
2 |dv|−

1
2W0,v(s, g, u),

W ◦
0 (s, g, u, φ2) =

∏

v

W ◦
0,v(s, g, u, φ2).

We usually omit the dependence on φ2 if no confusion occurs. Notice that the normalizing

factor
L(s+ 1, ηv)

L(s, ηv)
has a zero at s = 0 when Ev is split, and is equal to π−1 at s = 0 when

v is archimedean. Note that we use the convention that |Dv| = |dv| = 1 if v is archimedean.
Now we list the precise values of these local Whittaker functions when s = 0. They follow

from the local Siegel–Weil formula. In the incoherent case, they will lead to the vanishing of
our kernel function at s = 0.
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Proposition 2.5.2. (1) In the sense of analytic continuation for s,

W ◦
0,v(0, g, u) = r2(g)φ2,v(0, u), W0(0, g, u) = r2(g)φ2(0, u).

Furthermore, for almost all places v,

W ◦
0,v(s, g, u) = δv(g)

−sr2(g)φ2,v(0, u).

(2) Assume a ∈ F×v .
(a) If au−1 is not represented by (V2,v, q2,v), then Wa,v(0, g, u) = 0.

(b) Assume that there exists ξ ∈ V2,v satisfying q(ξ) = au−1. Then

Wa,v(0, g, u) =
1

L(1, ηv)

∫

E1
v

r2(g)φ2,v(ξτ, u)dτ.

Proof. By the action of d(F×v ), it suffices show all the identities for g ∈ SL2(Fv).
All the equalities at s = 0 are consequences of the local Siegel–Weil formula in Theorem

2.1.2. We immediately know that they are true up to constant multiples independent of g
and φv. Many cases are in the literature. See [KRY1] for example.

As forW ◦
0,v(s, g, u), it is the image of the normalized intertwining operator of δ(g)sr2(g)φ2,v(0, u)

for g ∈ SL2(Fv). Hence we know the equality for almost all places.

Proposition 2.5.3. E(0, g, u) = 0, and thus I(0, g, φ) = 0.

Proof. It is a direct corollary of Proposition 2.5.2. The Eisenstein series has Fourier expan-
sion

E(0, g, u) =
∑

a∈F
Ea(0, g, u).

The vanishing of the constant term easily follows Proposition 2.5.2. For a ∈ F×,
Ea(0, g, u) = −

∏

v

Wa,v(0, g, u)

is nonzero only if au−1 is represented by (Ev, q2,v) at each v.
In fact, Bv is split if and only if there exists a non-zero element ξ ∈ V2,v (equivalently,

for all nonzero ξ ∈ V2,v) such that −q(ξ) ∈ q(E×v ). In another word, the following identities
hold:

ε(Bv) = ηv(−q(ξ)),
where ε(Bv) is the Hasse invariant of Bv and ηv is the quadratic character induced by Ev.

Now the existence of ξ at v such that q2,v(ξ) = au−1 is equivalent to

ε(Bv) = ηv(−au−1).

If this is true for all v, then
∏

v

ε(Bv) =
∏

v

ηv(−au−1) = 1.

It contradicts to the incoherence condition that the order of Σ is odd.
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3 Derivative of the kernel function

In this section, we want to study the derivative of the kernel function for L-series when Σ is
odd and π has discrete components of weight 2 at archimedean places. The main content of
this section is various local formulae.

In §3.1, we extend the result in the last section to functions in φ ∈ S (V × A×), the

maximal quotient of S̃ (V× A×) with trivial action by GO(F∞).
In §3.2, we introduce the space S 0(Vv × F×v ) of degenerate Schwartz functions for any

non-archimedean place v. The main result ensures that this space is sufficient in our proof.
In §3.3, we decompose the kernel function I ′(0, g) into a sum of infinite many local terms

I ′(0, g)(v) indexed by places v of F non-split in E. Each local term is a period integral of
some kernel function K (v)(g, (t1, t2)).

In §3.4, we deal with the v-part I ′(0, g)(v) for non-archimedean v. An explicit formula is
given in the unramified case, and an approximation is given in the ramified case assuming
the Schwartz function is degenerate.

In §3.5, we show an explicit result of the v-part I ′(0, g)(v) for archimedean v.
In §3.6, we review a general formula of holomorphic projection, and estimate the growth

of the kernel function.
In §3.7, we compute the holomorphic projection of the kernel I ′(0, g, χ). It has the main

part, and the part coming from the fast growth of the kernel function.

3.1 Discrete series of weight two at infinite places

In §2, we reviewed the result of Waldspurger, especially his extension of Weil representations

to the Schwartz function space S̃ (V × F×). In this paper, we will use the same spaces for
non-archimedean places, but different spaces for archimedean spaces.

In the case that (V, F ) is non-archimedean, we still consider Weil representations over

the space S (V ×F×) = S̃ (V ×F×) consisting of locally constant and compactly supported
functions on V × F×.

In the archimedean case, our space S (V × F×) is different from S̃ (V × F×). We make
this change mainly because the generating series to be introduced in next section uses the
standard Schwartz function which is not in the original space.

Discrete series of weight two at infinity

Let V be a positive definite quadratic space of even dimension 2d over a local field F ' R.
Let S (V × F×) denote the space of functions on V × F× of the form

(P1(uq(x)) + sgn(u)P2(uq(x))) e
−2π|u|q(x)

with polynomials Pi on R. Here sgn(u) = u/|u| denotes the sign of u ∈ F×.
The Weil representation r acts on S (V ×F×) by the same method in §2. Apparently, all

functions in S (V × F×) are invariant under GO(F ). The space actually gives the discrete
series of weight d of GL2(F ).
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We can also find the connection between S (V × F×) and S̃ (V × F×). For example,

S (V × F×) can be a quotient of S̃ (V × F×) (resp. S̃ (V × F×)O(F )) via integration over
GO(F ) (resp. Z(F )):

φ 7→
∫

GO(V )

r(h)φdh, (resp.

∫

Z(F )

r(h)φdh).

Here S̃ (V × F×)O(F ) denotes the subspace of functions in S̃ (V × F×) which are invariant
under O(F ). It can be obtained by integrals over O(F ) in a similar way.

The the standard Schwartz function φ ∈ S (V × F×) is the Gaussian

φ(x, u) =
1

2
(1 + sgn(u))e−2π|u|q(x).

Then one verifies that if q(x) 6= 0, then

r(g)φ(x, u) = W
(d)
uq(x)(g).

Here W
(d)
a (g) is the standard Whittaker function of weight d for character e2πiax:

W (d)
a (g) =





|y0|
d
2 ediθ if a = 0

|y0|
d
2 e2πia(x0+iy0)ediθ if ay0 > 0

0 if ay0 < 0

for any a ∈ R and

g =

(
z0

z0

)(
y0 x0

1

)(
cos θ sin θ
− sin θ cos θ

)
∈ GL2(R)

in the form of Iwasawa decomposition. Here we normalize z0 > 0.
In the end, we introduce some global notations. For any (coherent or incoherent)

quadratic space V over A which is positive definite of dimension 2d at infinity, denote re-
stricted tensor product

S (V× A×) := ⊗vS (Vv × F×v ).

For any a ∈ A× and x ∈ V with q(x) 6= 0, denote

r(g, h)φ(x)a := r(g, h)φ(x, aq(x)−1).

Use similar notations in the local case. Note that if φ∞ is standard, the archimedean part

r(g, h)φ∞(x, aq(x)−1) = W (d)
a,∞(g∞)

is independent of x∞, h∞. Thus we use the notation

r(g, h)φ(x)a := r(gf , hf )φf (x, aq(x)
−1)W (d)

a,∞(g∞)

even for h ∈ GO(Vf ) and x ∈ Vf as long as a and g have infinite components.
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Theta series

First let us consider the definition of theta series. Let V be a positive definite quadratic
space over a totally real field F . Let φ ∈ S (V (A)×A×). There is an open compact subgroup
K ⊂ GO(Af ) such that φf is invariant under the action of K by Weil representation. Denote
KZ = K ∩A× and µK = F× ∩K. Then µK is a subgroup of the unit group O×F , and thus is
a finitely generated abelian group. Our theta series is of the following form:

θ(g, h, φ) =
∑

(x,u)∈µK\(V×F×)

r(g, h)φ(x, u).

The definition here depends on the choice of K. A normalization is given by

θ̃(g, h, φ) = [A×f : F×KZ ]vol(KZ)θ(g, h, φ)

By choosing a different fundamental domain, we can rewrite the sum as

ε−1
K

∑

u∈µ2
K\F×

∑

x∈V
r(g, h)φ(x, u).

Here εK = |{1,−1}∩K| ∈ {1, 2}. In particular, εK = 1 for K small enough. The summation
over u is well-defined since φ(x, u) = r(α)φ(x, u) = φ(αx, α−2u) for any α ∈ µK . It is an
automorphic form on GL2(A)×GO(A), provided the absolute convergence.

To show the convergence, we claim that the summation over u is actually a finite
sum depending on (g, h). For fixed (g, h), there is a compact subset K ′ ⊂ A×f such that
r(g, h)φf (x, u) 6= 0 only if u ∈ K ′. Thus the summation is taken over u ∈ µ2

K\(F× ∩ K ′),
which is a finite set since both µ2

K and F× ∩K ′ are finite-index subgroups of the unit group
O×F .

Alternatively, we may construct theta series for above φ ∈ S (V (A) × A×) by some

function φ̃ = φ̃∞ ⊗ φf ∈ S̃ (V× A×)O(F∞) such that
∫

Z(F∞)

r(h)φ̃dh = φ.

In this case,

θ̃(g, h, φ) =[A×f : F×KZ ]vol(KZ)

∫

Z(F∞)/µK

θ(g, zh, φ̃)dz

=[A× : F×(F×∞ ·KZ)]

∫

F×\F×(F×∞·KZ)

θ(g, zh, φ̃)dz.

Kernel functions

For φ ∈ S (V×A×), we may define the mixed Eisenstein-theta series and their normalizations
as

I(s, g, φ) =
∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x1,u)∈µK\V1×F×
r(γg)φ(x1, u),
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Ĩ(s, g, φ) = [A×f : F×KZ ]vol(KZ)I(s, g, φ).

If χ has trivial component at infinity, then we may define

I(s, g, χ, φ) = [A×f : F× ·KZ ]−1

∫

T (F )\T (A)/Z(F∞)KZ

χ(t)Ĩ(s, g, r(t, 1)φ)dt.

Here KZ = Z(A) ∩K. It is clear that I(s, g, φ) is a finite linear combination of I(s, g, χ, φ).
In terms of integration

∫
[G]

introduced in Introduction, the above definition is written as

I(s, g, χ, φ) =

∫

[T ]

χ(t)I(s, g, r(t, 1)φ)dt.

Now we explain our reason for this normalization. We claim that if

φ̃ = φ̃∞ ⊗ φf ∈ S̃ (V× A×)O(F∞)

such that

φ∞ =

∫

Z(F∞)

r(z)φ̃∞dz,

then

Ĩ(s, g, φ) = [A×f : F× ·KZ ]vol(KZ)

∫

Z(F×∞)/µF

I(s, g, r(z)φ̃)dz

I(s, g, χ, φ) = I(s, g, χ, φ̃).

Indeed, in the definition of I(s, g, χ, φ) in section 2.4, we may decompose the inte-
gral over T (F )\T (A) into double integrals over T (F )\T (A)/Z(F∞)KZ and integrals over
Z(F∞)KZT (F )/T (F ) to obtain

I(s, g, χ, φ̃) =

∫

T (F )\T (A)/Z(F∞)KZ

χ(t)dt

∫

T (F )\T (F )Z(F∞)KZ

I(s, g, r(tz, 1)φ̃)dz

=

∫

[T ]

χ(t)dt · [A×f : F×KZ ]

∫

T (F )\T (F )Z(F∞)KZ

I(s, g, r(tz, 1)φ̃)dz

The inside integral domain can be identified with

T (F )\T (F )Z(F∞)KZ ' µK\Z(F∞)KZ

with has a fundamental domain Z(F∞)/µK ×KZ . Thus the second integral can be written
as

vol(KZ)

∫

Z(F∞)/µK

I(s, g, r(tz, 1)φ̃)dz.

For this last integral, we write the sum over V1 × F× in the definition of I(s, g, φ̃) as a
double sum over µK\V1 × F× and a sum of µK . The first sum commutes with integral
over Z(F∞)/µK while the second the sum collapse with quotient Z(F∞)/µK to get a simple

integral over Z(F∞) which changes φ̃ to φ.
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3.2 Degenerate Schwartz functions at finite places

In this subsection we introduce a class of “degenerate” Schwartz functions at a non-archimedean
place. It is generally very difficult to obtain an explicit formula of I ′(0, g)(v) for a ramified
finite prime v. When we choose a degenerate Schwartz function at v, the function I ′(0, g)(v)
turns out to be easier to control. The same phenomena happens in the geometric side. The
main result roughly says these degenerate functions generate the space of all functions in
some sense.

Let v be a finite place of F . Recall that dv is the local different of F at v. If v is split in
E, define

S 0(Bv × F×v ) = {φv ∈ S (Bv × F×v ) :

φv(x, u) = 0 if v(uq(x)) ≥ −v(dv)}.

If v is non-split in E, define

S 0(Bv × F×v ) = {φv ∈ S (Bv × F×v ) :

φv(x, u) = 0 if v(uq(x)) ≥ −v(dv) or v(uq(x2)) ≥ −v(dv)}.

Here x2 denotes the orthogonal projection of x in V2,v = Evjv. We say such Schwartz
functions are degenerate.

A global φ ∈ S (B×A×) is degenerate at v if φv is degenerate. This is an assumption we
usually need to deal with singularities. The following is another assumption we will make
in §3-5 to simplify computation. It will kill the constant terms of Eisenstein series of weight
one and weight two, self-intersections in the geometric kernel, and local heights at ordinary
points.

Global Degeneracy Assumption. Fix two different non-archimedean places v1, v2 of F
which are non-split in E. Assume that g ∈ P (Fv1,v2)GL2(Av1,v2) and φ ∈ S (V × A×) is
degenerate at v1, v2.

The rest of this subsection is dedicated to prove the following result, which allows us to
extend our final result from degenerate Schwartz functions to general Schwartz functions in
the last section.

Proposition 3.2.1. Let v be a non-archimedean place and πv an infinite dimensional ir-
reducible representation of GL2(Fv). Then for any nonzero GL2(Fv)-equivariant homomor-
phism S (Bv × F×v )→ πv, the image of S 0(Bv × F×v ) in πv is nonzero.

For convenience, we introduce

S 0
weak(Bv × F×v ) =

{
{φv ∈ S (Bv × F×v ) : φv|(Bv

sing∪Ev)×F×v = 0}, if Ev/Fv is nonsplit;

{φv ∈ S (Bv × F×v ) : φv|Bv
sing×F×v = 0}, if Ev/Fv is split.

Here Bv
sing = {x ∈ Bv : q(x) = 0}. By compactness, for any φv ∈ S 0

weak(Bv × F×v ), there
exists a constant c such that φv(x, u) = 0 if v(uq(x)) > c. The some result holds for uq(x2) in
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the non-split case. Then it is easy to see that S 0(Bv×F×v ) generates S 0
weak(Bv×F×v ) under

the action of the group m(F×v ) ⊂ GL2(Fv) of elements

(
a

a−1

)
. Thus the former can be

viewed as an effective version of the later. In particular, it suffices to prove the proposition
for S 0

weak(Bv × F×v ).
We will prove a more general result. For simplicity, let F be a non-archimedean local

field and let (V, q) be a non-degenerate quadratic space over F of even dimension. Then
we have the Weil representation of GL2(F ) on S (V × F×), the space of Bruhat-Schwartz
functions on V × F×. Let

α : S (V × F×)→ σ

be a surjective morphism to an irreducible and admissible representation σ of GL2(F ). We
will prove the following result which obviously implies Proposition 3.2.1.

Proposition 3.2.2. Let W be a proper subspace of V of even dimension. Assume that σ
is not one-dimensional, and that in the case W 6= 0, W is non-degenerate, and that its
orthogonal complement W ′ is anisotropic. Then there is a function φ ∈ S (V × F×) with a
nonzero image in σ such that the support supp(φ) of φ contains only elements (x, u) such
that q(x) 6= 0 and that

W (x) := W + Fx

is non-degenerate of dimension dimW + 1.

Let us start with the following Proposition which allows us to modify any test function
to a function with support at points (x, u) ∈ V × F× with components x of nonzero norm
q(x) 6= 0.

Proposition 3.2.3. Let φ ∈ S (V × F×) be an element with a nonzero image in σ. Then

there is a function φ̃ ∈ S (V × F×) with a nonzero image in σ such that

supp(φ̃) ⊂ supp(φ) ∩
(
Vq 6=0 × F×

)
.

The key to prove this proposition is the following lemma. It is well-known but we give a
proof for readers’ convenience.

Lemma 3.2.4. Let σ be an irreducible admissible representation of GL2(F ) whose dimension
is greater than one. Then the only vector in σ invariant under the action of the unipotent
group N(F ) is zero.

Proof. Let v be such an invariant vector. By smoothness, it is also fixed by some compact
open subgroup U of SL2(F ). Then v is invariant under the subgroup generated by N(F ) and
U . It is easy to see that U −P 1(F ) is non-empty, and let γ ∈ U −P 1(F ) be one element. A
basic fact asserts that SL2(F ) is generated by N(F ) and γ as long as γ is not in P 1(F ). It
follows that v is invariant under SL2(F ).

If v 6= 0, then by irreducibility σ is generated by v under the action of GL2(F ). It follows
that all elements of σ are invariant under SL2(F ). Thus the representation σ factors through
the determinant map, which implies it must be one-dimensional. Contradiction!
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Proof of Proposition 3.2.3. Applying the lemma above, we obtain an element b ∈ F such
that

σ(n(b))α(φ)− α(φ) 6= 0.

The left hand side is equal to α(φ̃) with

φ̃ = r(n(b))φ− φ.

By definition, we have
φ̃(x, u) = (ψ(buq(x))− 1)φ(x).

Thus such a φ̃ has support

supp(φ̃) ⊂ supp(φ) ∩
(
Vq 6=0 × F×

)
.

Proof of Proposition 3.2.2. If W = 0, then the result is implied by Proposition 3.2.3. Thus
we assume that W 6= 0. We have an orthogonal decomposition V = W ⊕ W ′, and an
identification

S (V × F×) = S (W × F×)⊗S (W ′ × F×).

The action of GL2(F ) is given by actions on S (W × F×) and S (W ′ × F×) respectively.
Choose any φ ∈ S (V × F×) such that α(φ) 6= 0. We may assume that φ = f ⊗ f ′ is a pure
tensor.

Since W ′ is anisotropic, S (W ′
q 6=0 × F×) is a subspace in S (W ′ × F×) with quotient

S (F×). The quotient map is given by evaluation at (0, u). Thus

S (W ′ × F×) = S (W ′
q 6=0 × F×) + r(w)S (W ′

q 6=0 × F×)

as w acts as the Fourier transform up to a scale multiple. In this way, we may write

f ′ = f ′1 + r(w)f ′2, f ′i ∈ S (W ′
q 6=0 × F×).

Then we have a decomposition

φ = φ1 + r(w)φ2, φ1 := f ⊗ f ′1, φ2 := r(w−1)f ⊗ f ′2.

One of α(φi) 6= 0, and the support of this φi consists of points (x, u) such that W (x) is
non-degenerate. Applying Proposition 3.2.3 to this φi, we get the function we want.

3.3 Decomposition of the kernel function

We now compute the derivative of the kernel function I(s, g, φ) for φ ∈ S (V×A×). We will
decompose it to a sum of local parts I(s, g, φ)(v) under the global degeneracy assumption
introduced in the last subsection.
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It suffices to assume φ = φ1 ⊗ φ2 with φi ∈ S (Vi × A×) and φ1, φ2 are pure tensors of
local Schwartz functions. All definitions and results here can be extended by linearity. In
this case,

I(s, g, φ) =
∑

u∈µ2
K\F×

θ(g, u, φ1)E(s, g, u, φ2).

It amounts to compute the derivative of the Eisenstein series E(s, g, u, φ2). We may further
assume that both φi have standard components at infinity. As before we will suppress the
dependence on φ.

Let us start with the Fourier expansion:

E(s, g, u) = E0(s, g, u)−
∑

a∈F×
Wa(s, g, u),

where the constant term

E0(s, g, u) = δ(g)sr2(g)φ2(0, u)−W0(s, g, u).

Denote by F (v) the set of a ∈ F× that is represented by (E(Av), uqv2) but not by
(Ev, uq2,v). Then F (v) is non-empty only if E is non-split at v. By Proposition 2.5.2,
Wa,v(0, g, u) = 0 for any a ∈ F (v). Then taking the derivative yields

W ′
a(0, g, u) = W ′

a,v(0, g, u)W
v
a (0, g, u).

It follows that

E ′(0, g, u) = E ′0(0, g, u)−
∑

v nonsplit

∑

a∈F (v)

W ′
a,v(0, g, u)W

v
a (0, g, u).

Notation. For any non-split place v, denote the v-part by

E ′(0, g, u, φ2)(v) :=
∑

a∈F (v)

W ′
a,v(0, g, u, φ2)W

v
a (0, g, u, φ2).

I ′(0, g, φ)(v) :=
∑

u∈µ2
K\F×

θ(g, u, φ1)E
′(0, g, u, φ2)(v).

For simplicity, we usually write I ′(0, g)(v) for I ′(0, g, φ)(v). By definition, we have a
decomposition

I ′(0, g) = −
∑

v nonsplit

I ′(0, g)(v) +
∑

u∈µ2
K\F×

θ(g, u)E ′0(0, g, u).

We first take care of I ′(0, g)(v) for any fixed non-split v. Denote by B = B(v) the nearby
quaternion algebra, the unique quaternion algebra over F obtained from B by changing the
Hasse invariant at v. Then we have a splitting B = E + Ej. Let V = (B, q) be the corre-
sponding quadratic space with the reduced norm q, and V = V1 + V2 be the corresponding
orthogonal decomposition. We identify the quadratic spaces V2,w = V2,w unless w = v. It
follows that for a ∈ F×, a ∈ F (v) if and only if a is represented by (V2, uq).
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Proposition 3.3.1. For non-split v,

I ′(0, g, φ)(v) = 2

∫

Z(A)T (F )\T (A)

K (v)
φ (g, (t, t))dt,

where the integral

∫
employs the Haar measure of total volume one, and

K (v)
φ (g, (t1, t2)) = K (v)

r(t1,t2)φ(g) =
∑

u∈µ2
K\F×

∑

y∈V−V1

kr(t1,t2)φv(g, y, u)r(g, (t1, t2))φ
v(y, u).

Here for any y = y1 + y2 ∈ Vv − V1v,

kφv(g, y, u) =
L(1, ηv)

vol(E1
v)
r(g)φ1,v(y1, u)W

′
uq(y2),v(0, g, u).

Proof. By Proposition 2.5.2,

E ′(0, g, u)(v) =
∑

y2∈E1\(V2−{0})
W ′
uq(y2),v(0, g, u)W

v
uq(y2)(0, g, u)

=
1

Lv(1, η)

∑

y2∈E1\(V2−{0})
W ′
uq(y2),v(0, g, u)

∫

E1(Av)

r(g)φv2(y2τ, u)dτ

=
1

vol(E1
v)L

v(1, η)

∑

y2∈E1\(V2−{0})

∫

E1(A)

W ′
uq(y2τ),v

(0, g, u)r(g)φv2(y2τ, u)dτ

=
1

vol(E1
v)L

v(1, η)

∫

E1\E1(A)

∑

y2∈V2−{0}
W ′
uq(y2τ),v

(0, g, u)r(g)φv2(y2τ, u)dτ.

Therefore, we have the following expression for I ′(0, g)(v):

I ′(0, g)(v) =
1

vol(E1
v)L

v(1, η)

∑

u∈µ2
K\F×

∑

y1∈V1

r(g)φ1(y1, u)·

·
∫

E1\E1(A)

∑

y2∈V2−{0}
W ′
uq(y2τ),v

(0, g, u)r(g)φv2(y2τ, u)dτ

Move two sums inside integral to obtain:
∫

A×E×\A×E

∑

u∈µ2
K\F×

∑

y=y1+y2∈V
y2 6=0

r(g)φ1,v(y1, u)W
′
uq(y2t−1 t̄),v(0, g, u)r(g)φ

v(t−1yt, u)dt

By definition of kφv and K (v)
φ , we have

I ′(0, g)(v) =
1

Lv(1, η)

∫

Z(A)T (F )\T (A)

∑

u∈µ2
K\F×

∑

x∈V−V1

kφv(g, t
−1yt, u)r(g)φv(t−1yt, u)dt

=
1

L(1, η)

∫

Z(A)T (F )\T (A)

K (v)
φ (g, (t, t))dt.
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Since vol(Z(A)T (F )\T (A)) = 2L(1, η), we get the result. Here we have used the relation
kφv(g, t

−1yt, u) = kr(t,t)φv(g, y, u) in the lemma below.

Lemma 3.3.2. The function kφv(g, y, u) behaves like Weil representation under the action
of P (Fv) and E×v × E×v . Namely,

kφv(m(a)g, y, u) = |a|2kφv(g, ay, u), a ∈ F×v
kφv(n(b)g, y, u) = ψ(buq(y))kφv(g, y, u), b ∈ Fv
kφv(d(c)g, y, u) = |c|−1kφv(g, y, c

−1u), c ∈ F×v
kr(t1,t2)φv(g, y, u) = kφv(g, t

−1
1 yt2, q(t1t

−1
2 )u), (t1, t2) ∈ E×v × E×v

Proof. These identities follow from the definition of Weil representation and some transfor-
mation of integrals. We will only verify the first identity. By definition, we can compute the
transformation of m(a) on Whittaker function directly:

Wa0,v(s,m(a)g, u) =

∫

Fv

δ(wn(b)m(a)g)sr2(wn(b)m(a)g)φ2,v(0, u)ψv(−a0b)db

=

∫

Fv

δ(m(a−1)wn(ba−2)g)sr2(m(a−1)wn(ba−2)g)φ2,v(0, u)ψv(−a0b)db

= |a|−s
∫

Fv

δ(wn(ba−2)g)sr2(wn(ba−2)g)φ2,v(0, u)|a|−1ηv(a)ψv(−a0b)db

= |a|−s−1ηv(a)

∫

Fv

δ(wn(b)g)sr2(wn(b)g)φ2,v(0, u)ψv(−a0a
2b)|a|2db

= |a|−s+1ηv(a)Wa2a0,v(s, g, u).

It follows that
W ′
a0,v

(0,m(a)g, u) = |a|ηv(a)W ′
a2a0,v

(0, g, u).

This implies the result by combining

r(m(a)g)φ1,v(y1, u) = |a|ηv(a)φ1,v(ay1, u).

Now we take care of the contribution from the constant term E ′0(0, g, u). It will simply
vanish in some degenerate case.

Proposition 3.3.3. Under the global degeneracy assumption in §3.2,

I ′(0, g, φ) =−
∑

v nonsplit

I ′(0, g, φ)(v), ∀g ∈ P (Fv1,v2)GL2(Av1,v2).

Proof. We want to check that

E ′0(0, g, u) = log δ(g)r2(g)φ2(0, u)−W ′
0(0, g, u)

37

39



vanishes if gv`
∈ P (F`) for ` = 1, 2.

Recall that the degeneration condition gives φv`
(Ev, F

×
v ) = 0 for ` = 1, 2. By linearity

we can assume that φv`
= φ1,v`

⊗ φ2,v`
with φ2,v`

(0, F×v ) = 0. Then it is immediate that
r2(g)φ2(0, u) = 0 since r(gv1)φ2,v1(0, u) = 0 by our degeneration assumption.

Take derivative on

W0(s, g, u) =
L(s, η)

L(s+ 1, η)
W ◦

0 (s, g, u)
∏

v

|Dv|
1
2 |dv|

1
2 =

L(s, η)/L(0, η)

L(s+ 1, η)/L(1, η)

∏

v

W ◦
0,v(s, g, u).

We obtain

W ′
0(0, g, u) =

d

ds
|s=0

(
log

L(s, η)

L(s+ 1, η)

)
W ◦

0 (0, g, u) +
∑

v

W ◦
0,v
′(0, g, u)

∏

v′ 6=v
W ◦

0,v′(0, g, u).

By Proposition 2.5.2, we get

W ′
0(0, g, u) =

d

ds
|s=0

(
log

L(s, η)

L(s+ 1, η)

)
r(g)φ2(0, u) +

∑

v

W ◦
0,v
′(0, g, u)r(gv)φv2(0, u).

Then r(g)φ2(0, u) = 0 as above, and r(gv)φv2(0, u) = 0 for any v since it has r(gv`
)φ2,v`

(0, u)
as a factor for at least one `.

3.4 Non-archimedean components

Assume that v is a non-archimedean place non-split in E. Resume the notations in the last
section. We now consider the local kernel function kφv(g, y, u), which has the expression

kφv(g, y, u) =
L(1, ηv)

vol(E1
v)
r(g)φ1,v(y1, u)W

′
uq(y2),v(0, g, u, φ2,v), y = y1 + y2 ∈ Vv − V1v

if φv = φ1,v ⊗ φ2,v.

Main results

Let v be a non-archimedean place non-split in E, and Bv be the quaternion division algebra
over Fv non-isomorphic to Bv.

Proposition 3.4.1. The following results under different assumptions are true:

(1) Assume that v is unramified in E, unramified in B, and unramified over Q. Assume
further that φv is the characteristic function of OBv ×O×Fv

. Then

kφv(1, y, u) = 1OBv
(y)1O×Fv

(u)
v(q(y2)) + 1

2
logNv.
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(2) Assume that φv ∈ S 0(Bv × F×v ). Then kφv(1, y, u) extends to a Schwartz function of
(y, u) ∈ Bv × F×v .

We consider its consequences. We first look at (1). In that unramified case, it is easy to
see that

kφv(1, y, u) = kφv(g, y, u), g ∈ GL2(OFv).

Then by Iwasawa decomposition and Lemma 3.3.2, we know kr(t1,t2)φv(g, y, u) explicitly for
all (g, (t1, t2)). It will cancel the local height of CM points at v.

Now we consider a place v that does not satisfy the conditions in (1). Then the compu-
tation of kφv may be very complicated or useless. It is better to consider the whole series

K (v)
φ (g, (t1, t2)) =

∑

u∈µ2
K\F×

∑

y∈V−V1

kr(t1,t2)φv(g, y, u) r(g, (t1, t2))φ
v(y, u).

It looks like a theta series. We call it a pseudo-theta series. It has a strong connection with
the usual theta series.

In the proposition, we have shown that kφv(y, u) = kφv(1, y, u) extends to a Schwartz
function for (y, u) ∈ Vv × F×v if φv is degenerate. We did this because we want to compare
the above pseudo-theta series with the usual theta series

θ(g, (t1, t2), kφv ⊗ φv) =
∑

u∈µ2
K\F×

∑

y∈V
r(g, (t1, t2))kφv(y, u) r(g, (t1, t2))φ

v(y, u).

It seems that these two series have a good chance to equal if gv = 1. In fact, it is supported
by the equality

r(t1, t2)kφv(y, u) = kr(t1,t2)φv(1, y, u)

shown in Lemma 3.3.2.
Another difficulty for them to be equal is that the summations of y are over different

spaces. This problem is solved by the global degeneracy assumption in §3.2. In fact, if
φ is degenerate at v1, v2. Assume that v1 6= v and keep in mind that gv1 = 1. Then
r(t1, t2)φv1(y, u) = 0 for all y ∈ Ev. In particular, it forces r(g, (t1, t2))φ

v(y, u) = 0 for
y ∈ V1. Therefore, the two series are equal if gv,v1,v2 = 1. We can also extend the equality to
P (Fv,v1,v2)GL2(Av,v1,v2) by Lemma 3.3.2.

Corollary 3.4.2. Let v be a non-archimedean place non-split in E. Assume that φ is de-
generate at v. Assume the global degeneracy assumption. Then

K (v)
φ (g, (t1, t2)) = θ(g, (t1, t2), kφv ⊗ φv)

for all
(g, (t1, t2)) ∈ P (Fv,v1,v2)GL2(Av,v1,v2)× T (A)× T (A).

In that situation, we say K (v)
φ is approximated by θ(kφv ⊗ φv). They are usually not

equal, unless we know the modularity of the pseudo-theta series.
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The computation

To prove Proposition 3.4.1, we first show a formula for the Whittaker function Wa,v(s, 1, u)
in the most general case.

Proposition 3.4.3. Let v be any non-archimedean place of F .

(1) For any a ∈ Fv,

Wa,v(s, 1, u) = |dv|
1
2 (1−N−sv )

∞∑

n=0

N−ns+nv

∫

Dn(a)

φ2,v(x2, u)dux2,

where dux2 is the self-dual measure of (V2,v, uq) and

Dn(a) = {x2 ∈ V2,v : uq(x2) ∈ a+ pnvd
−1
v }.

(2) Assume that φ2,v(x2, u) = 0 if v(uq(x2)) > −v(dv). Then there is a constant c > 0
such that Wa,v(s, 1, u) = 0 identically for all a ∈ Fv satisfying v(a) > c or v(a) < −c.

Proof. We first compute (1). Recall that

Wa,v(s, 1, u) =

∫

Fv

δ(wn(b))s
∫

V2,v

φ2,v(x2, u)ψv(b(uq(x2)− a))dux2db.

It suffices to verify the formulae for Whittaker functions under the condition that u = 1.
The general case is obtained by replacing q by uq and φ2,v(x2) by φ2,v(x2, u). We will drop
the dependence on u to simplify the notation. Then we write

Wa,v(s, 1) =

∫

Fv

δ(wn(b))s
∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db.

By

δ(wn(b)) =

{
1 if b ∈ OFv ,
|b|−1 otherwise,

we will split the integral over Fv into the sum of an integral over OFv and an integral over
Fv −OFv . Then

Wa,v(s, 1) =

∫

OFv

∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db

+

∫

Fv−OFv

|b|−s
∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db
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The second integral can be decomposed as

∞∑

n=1

∫

p−n
v −p−n+1

v

N−nsv

∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db

=
∞∑

n=1

∫

p−n
v

N−nsv

∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db

−
∞∑

n=1

∫

p
−(n−1)
v

N−nsv

∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db.

Combine with the first integral to obtain

Wa,v(s, 1) =
∞∑

n=0

∫

p−n
v

N−nsv

∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db

−
∞∑

n=0

∫

p−n
v

N−(n+1)s
v

∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db

=(1−N−sv )
∞∑

n=0

N−nsv

∫

p−n
v

∫

V2,v

φ2,v(x2)ψv(b(q(x2)− a))dx2db.

As for the last double integral, change the order of the integration. The integral on b is
nonzero if and only if q(x2)− a ∈ pnvd−1

v . Here dv is the local different of F over Q, and also
the conductor of ψv. Then we have

Wa,v(s, 1) = (1−N−sv )
∞∑

n=0

N−nsv vol(p−nv )

∫

Dn(a)

φ2,v(x2)dx2

= |dv|
1
2 (1−N−sv )

∞∑

n=0

N−ns+nv

∫

Dn(a)

φ2,v(x2)dx2.

It proves (1).
Now we show (2) using (1). The key is that only those Dn(a) with n ≥ 0 are involved in

the formula. Recall that

Dn(a) = {x2 ∈ V2,v : uq(x2) ∈ a+ pnvd
−1
v }.

If v(a) < −v(dv), then for every x2 ∈ Dn(a), we have v(uq(x2)) = v(a). Then φ2,v(x2, u) =
0 if v(a) is too small. It follows that Wa,v(s, 1, u) = 0 if v(a) is too small. This is apparently
true for all Schwartz function φv.

If v(a) ≥ −v(dv), then for every x2 ∈ Dn(a), we have v(uq(x2)) ≥ −v(dv). By the
assumption, φ2,v(·, u) is zero on Dn(a). In that case, Wa,v(s, 1, u) = 0 identically. It proves
the result.
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Proof of Proposition 3.4.1. Both results are obtained as consequence of Proposition 3.4.3.
We first look at (2). It suffices to consider the case that φv = φ1,v⊗φ2,v with φ2,v satisfies the
condition of Proposition 3.4.3 (2). In deed, any degenerate φv is a finite linear combination
of such φ1,v ⊗ φ2,v. Set kφv(1, y, u) to be zero if y2 = 0. It is easy to see that it gives a
Schwartz function by Proposition 3.4.3 (2).

Now we consider (1). It suffices to show that for any a ∈ F (v),

W ′
a,v(0, 1, u) = 1OFv

(a)1O×Fv
(u)

v(a) + 1

2
(1 +N−1

v ) logNv.

Use the formula in Proposition 3.4.3. We need to simplify

Dn(a) = {x2 ∈ V2,v : uq(x2)− a ∈ pnv}.

We first have v(a) 6= v(q(x2)) because a is not represented by uq(x2). Actually v(q(x2)) is
always even and v(a) must be odd. Then

v(q(x2)− a) = min{v(a), v(q(x2))}, ∀ x2 ∈ V2,v.

We see that Dn(a) is empty if v(a) < n. Otherwise, it is equal to

Dn := {x2 ∈ V2,v : uq(x2) ∈ pnv}.

It follows that

Wa,v(s, 1, u) = (1−N−sv )

v(a)∑

n=0

N−ns+nv

∫

Dn

φ2,v(x2, u)dux2.

It is a finite sum and we don’t have any convergence problem. Then

W ′
a,v(0, 1, u) = logNv

v(a)∑

n=0

Nn
v

∫

Dn

φ2,v(x2, u)dux2.

It is nonzero only if u ∈ O×Fv
and a ∈ OFv . Identify V2,v with Ev. Then

Dn = {x2 ∈ Ev : q(x2) ∈ pnv} = p
[n+1

2
]

v OEv .

And vol(Dn) = N
−2[n+1

2
]

v . Note that v(a) is odd since it is not represented by q2. Then it is
easy to have

W ′
a,v(0, 1, u) = logNv

v(a)∑

n=0

N
n−2[n+1

2
]

v =
v(a) + 1

2
(1 +N−1

v ).
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3.5 Archimedean places

For an archimedean place v, the quaternion algebra Bv is isomorphic to the Hamiltonian
quaternion. We will compute kφv(g, y, u) for standard φv introduced in §3.1. The computa-
tion here is done by [KRY1].

The result involves the exponential integral Ei defined by

Ei(z) =

∫ z

−∞

et

t
dt, z ∈ C.

Another expression is

Ei(z) = γ + log(−z) +

∫ z

0

et − 1

t
dt,

where γ is the Euler constant. It follows that it has a logarithmic singularity near 0. This
fact is useful when we compare the result here with the archimedean local height, since we
know that Green’s functions have a logarithmic singularity.

Proposition 3.5.1.

kφv(g, y, u) =




−1

2
Ei(4πuq(y2)y0) |y0|e2πiuq(y)(x0+iy0)e2iθ if uy0 > 0

0 if uy0 < 0

for any

g =

(
z0

z0

)(
y0 x0

1

)(
cos θ sin θ
− sin θ cos θ

)
∈ GL2(Fv)

in the form of the Iwasawa decomposition.

Proof. It suffices to show the formula in the case g = 1. The general case is obtained by
Proposition 3.3.2 and the fact that r(kθ)φv = e2iθφv.

Now we show that

kφv(1, y, u) =

{
−1

2
Ei(4πuq(y2))e

−2πuq(y) if u > 0;

0 if u < 0.

It amounts to show that, for any a ∈ F (v),

W ′
a,v(0, 1, u) =

{
−πe−2πaEi(4πa) if u > 0;

0 if u < 0.

Assume u > 0 since the case u < 0 is trivial. Then a < 0 by the condition a ∈ F (v).
We compute explicitly as follows. First of all, it is easy to check δ(wn(b)) = 1/(1 + b2). It
follows that

Wa,v(s, 1, u) =

∫

Fv

δ(wn(b))s
∫

V2v

φ2,v(x2, u)ψv(b(uq(x2)− a))dux2db

=

∫

R

(
1

1 + b2

) s
2
∫

C
e−2πuq(x2)+2πib(uq(x2)−a)dux2db
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Take an isometry of quadratic space (V2v, uq) ' (C, | · |2) to obtain

∫

R

(
1

1 + b2

) s
2
∫

C
e−2π|x2|2e2πib(|x2|2−a)dux2db

=

∫

R

(
1

1 + b2

) s
2
∫

C
e−2π(1−ib)|x2|2e−2πiabdux2db =

∫

R

(
1

1 + b2

) s
2 1

1− ibe
−2πiabdb

=

∫

R
(1 + ib)−

s
2 (1− ib)− s

2
−1e−2πiabdb.

By the computation in [KRY1], page 19,

d

ds
|s=0

∫

R
(1 + ib)−

s
2 (1− ib)− s

2
−1e−2πiabdb = −πe−2πaEi(4πa).

Thus
W ′
a,v(0, 1, u) = −πe−2πaEi(4πa).

3.6 Holomorphic projection

In this subsection we consider the general theory of holomorphic projection which we will
apply to the form I ′(0, g, χ) in the next subsection. Denote by A (GL2(A), ω) the space of
automorphic forms of central character ω, by A0(GL2(A), ω) the subspace of cusp forms,

and by A (2)
0 (GL2(A), ω) the subspace of holomorphic cusp forms of parallel weight two.

The usual Petersson inner product is just

(f1, f2)pet =

∫

Z(A)GL2(F )\GL2(A)

f1(g)f2(g)dg, f1, f2 ∈ A (GL2(A), ω).

Denote by Pr : A (GL2(A), ω) → A (2)
0 (GL2(A), ω) the orthogonal projection. Namely, for

any f ∈ A (GL2(A), ω), the image Pr(f) is the unique form in A (2)
0 (GL2(A), ω) such that

(Pr(f), ϕ)pet = (f, ϕ)pet, ∀ϕ ∈ A (2)
0 (GL2(A), ω).

We simply call Pr(f) the holomorphic projection of f . Apparently Pr(f) = 0 if f is an
Eisenstein series.

A General Formula

For any automorphic form f for GL2(A) we define a Whittaker function

fψ,s(g) = (4π)degFW (2)(g∞)

∫

Z(F∞)N(F∞)\GL2(F∞)

δ(g)sfψ(gfh)W (2)(h)dh.

Here W (2) is the standard holomorphic Whittaker function of weight two at infinity, and fψ
denotes the Whittaker function of f . As s → 0, the limit of the integral is holomorphic at
s = 0.
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Proposition 3.6.1. Let f ∈ A (GL2(A), ω) be a form with asymptotic behavior

f

((
a 0
0 1

)
g

)
= Og(|a|1−ε)

as a ∈ A×, |a| → ∞ for some ε > 0. Then the holomorphic projection Pr(f) has Whittaker
function

Pr(f)ψ(g∞gf ) = lim
s→0

fψ,s(g).

Proof. For any Whittaker functionW of GL2(A) with decompositionW (g) = W (2)(g∞)Wf (gf )
such that W (2)(g∞) is standard holomorphic of weight 2 and that Wf (gf ) is compactly sup-
ported modulo Z(Af )N(Af ), the Poincaré series is defined as

ϕW (g) := lim
s→0+

∑

γ∈Z(F )N(F )\G(F )

W (γg)δ(γg)s,

where

δ(g) = |a∞/d∞|
1
2 , g =

(
a b
0 d

)
k, k ∈ U

where U is the standard maximal compact subgroup of GL2(A). Assume that W and f have
the same central character. Since f has asymptotic behavior as in the proposition, their
inner product can be computed as follows:

(f, ϕW )pet =

∫

Z(A)GL2(F )\GL2(A)

f(g)ϕW (g)dg

= lim
s→0

∫

Z(A)N(F )\GL2(A)

f(g)W (g)δ(g)sdg

= lim
s→0

∫

Z(A)N(A)\GL2(A)

fψ(g)W (g)δ(g)sdg. (3.6.1)

We may apply this formula to Pr(f) which has the same inner product with ϕW as f .
Write

Pr(f)ψ(g) = W (2)(g∞)Pr(f)ψ(gf ).

Then the above integral is a product of integrals over finite places and integrals at infinite
places: ∫

Z(R)N(R)\GL2(R)

|W (2)(g)|2dg =

∫ ∞

0

y2e−4πydy/y2 = (4π)−1.

In other words, we have

(f, ϕW )pet = (4π)− degF

∫

Z(Af )N(Af )\GL2(Af )

Pr(f)ψ(gf )W (gf )dgf . (3.6.2)

As W can be any Whittaker function with compact support modulo Z(Af )N(Af ), the com-
binations of the above formulae give the proposition.
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We introduce an operator Pr′ formally defined on the function space of N(F )\GL2(A).
For any function f : N(F )\GL2(A)→ C, denote as above

fψ,s(g) = (4π)degFW (2)(g∞)

∫

Z(F∞)N(F∞)\GL2(F∞)

δ(g)sfψ(gfh)W (2)(h)dh

if it has meromorphic continuation around s = 0. Here fψ denotes the first Fourier coefficient
of f . Denote

Pr′(f)ψ(gfg∞) = l̃ims→0fψ,s(g),

where the “quasi-limit” l̃ims→0 denotes the constant term of the Laurent expansion at s = 0.
Finally, we write

Pr′(f)(g) =
∑

a∈F×
Pr′(f)ψ(d∗(a)g).

The the above result is just Pr(f) = Pr′(f) under the growth condition. In general, Pr′(f)
is not automorphic when f is automorphic but fails the growth condition of Proposition 3.6.1.

Growth of the kernel function

Now we want to consider the growth of I ′(0, g, χ) so that we can apply the formula. Recall
that

I(s, g, χ) =

∫

[T ]

I(s, g, r(t, 1)φ)χ(t)dt = vol(KZ)

∫

T (F )\T (A)/Z(F∞)KZ

χ(t)Ĩ(s, g, r(t, 1)φ)dt

It has central character χ|A×F = ω−1
π . It is equal to a finite linear combination of some

I(s, g, r(t, 1)φ). The growth does not satisfy the condition of Proposition 3.6.1, but can be
canceled by several Eisenstein series. We will write down those Eisenstein series explicitly.

Recall that
I(s, g, φ) =

∑

u∈µ2
K\F×

θ(g, u, φ1)E(s, g, u, φ2).

In their explicit Fourier expansions, the non-constant terms of θ(g, u, φ1) and E(s, g, u, φ2)
decay exponentially. So the growth of I(s, g, φ) and its derivative is determined by the
“absolute constant term”

I00(s, g, φ) =
∑

u∈µ2
U\F×

I00(s, g, u, φ)

where
I00(s, g, u, φ) = θ0(g, u, φ1)E0(s, g, u, φ2)

is the product of the constant terms of the theta series and the Eisenstein series. Note that
we use the notation I00 since it is only a part of the constant term I0 of I.
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Let J (s, g, u, φ) be the Eisenstein series formed by I00(s, g, u, φ):

J (s, g, u, φ) =
∑

γ∈P (F )\GL2(F )

I00(s, γg, u, φ).

Then we denote
J (s, g, φ) =

∑

u∈µ2
U\F×

J (s, g, u, φ),

J (s, g, χ, φ) =

∫

[T ]

J (s, g, r(t, 1)φ)χ(t)dt.

We will see that J ′(0, g, χ) cancels the growth of I ′(0, g, χ). But let us first look at its
structure.

By definition

I00(s, g, u, φ) = δ(g)sr(g)φ(0, u)− δ(g)sr1(g)φ1(0, u)W0(s, g, u, φ2).

Recall that the computation in Proposition 3.3.3 gives

W ′
0(0, g, u) = c0r(g)φ2(0, u) +W ◦

0
′(0, g, u)

with the constant

c0 =
d

ds
|s=0

(
log

L(s, η)

L(s+ 1, η)

)
.

Thus the absolute constant term I ′00(0, g, u, φ) has three parts:

I ′00(0, g, u, φ) = log δ(g)r(g)φ(0, u)− c0r(g)φ(0, u)− r1(g)φ1(0, u)W
◦
0
′(0, g, u).

Hence we introduce

J(s, g, u, φ) =
∑

γ∈P (F )\GL2(F )

δ(γg)sr(γg)φ(0, u),

J̃(s, g, u, φ) =
∑

γ∈P (F )\GL2(F )

r1(γg)φ1(0, u)W
◦
0 (s, γg, u, φ2).

By the above manners of summation and integration for J , we introduce the series

J(s, g, φ), J(s, g, χ), J̃(s, g, φ), J̃(s, g, χ).

Finally, we have

J ′(0, g, χ) =J ′(0, g, χ)− J̃ ′(0, g, χ)− c0J(0, g, χ).

We remark that the behavior of J̃ is not that different from J . For example, it is
easy to have J̃(0, g, u) = J(0, g, u) by Proposition 2.5.2. The proposition also implies that

the sections defining J̃(s, g, u) and J(−s, g, u) are equal at almost all places. Thus their

Whittaker functions match at almost all places. It follows that J̃ ′(0, g, u) is very close to
−J ′(0, g, u). This property will be used later.
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Proposition 3.6.2. (1) The growth of

I ′
(

0,

(
a

1

)
g, χ

)
−J ′

(
0,

(
a

1

)
g, χ

)

has asymptotic behavior O(|a|1−ε).

(2) If χ does not factor through the norm map q : A×E → A×, then J (s, g, χ) = 0 identi-
cally.

Otherwise, χ can be induced from two different finite characters µi on F×\A×, i.e.,

χ = µ1 ◦ q = µ2 ◦ q.

Then the Eisenstein series J(s, g, χ) is equal to the sum of two Einstein series associ-
ated to principal series with characters

(
a ∗
0 b

)
7→
∣∣∣a
b

∣∣∣
1+ s

2
µi(ab), i = 1, 2.

The result is true for J̃(s, g, χ) if we replace the above exponent 1 +
s

2
by 1− s

2
.

Proof. We first look at the characters of J(s, g, χ). Equivalently, we consider

f(s, g, χ) =

∫

[T ]

χ(t)
∑

u∈µ2
U\F×

δ(g)sr(g)φ(0, uq(t))dt.

It apparently vanishes if χ is non-trivial on T 1(A) = {t ∈ T (A) : q(t) = 1}.
Assume that χ is trivial on T 1(A), so the integral is invariant on T 1(A). It is essentially

an integration on

T (F )\T (A)/Z(F∞)KZT
1(A)

q−→ q(E×)\q(A×E)/F×∞,+K
2
Z ,

where the norm map above is an isomorphism. Thus we have

f(s, g, χ) = vol(KZ)

∫

q(E×)\q(A×E)/F×∞,+K
2
Z

µi(α)
∑

u∈µ2
U\F×

δ(g)sr(g)φ(0, uα)dα.

Note that the image of F×q(A×E) has index two in A× by class field theory, so there are
exactly two µ1, µ2 extending χ. Furthermore,

µi|F×q(A×E) =
1

2
(µ1 + µ2).

Thus we can write

f(s, g, χ) =
1

2
(f1(s, g, χ) + f2(s, g, χ))
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where

fi(s, g, χ) =

∫

F×∞,+\A×
µi(α)δ(g)sr(g)φ(0, α)dα.

Note that the measure on F×∞,+\A× to make the above equality is different from the natural
one. It is clear that

fi

(
s,

(
a ∗
0 b

)
g, χ

)
=
∣∣∣a
b

∣∣∣
1+ s

2
µi(ab)fi(s, g, χ).

They define Einsenstein series J(s, g, µi) and give the decomposition

J(s, g, χ) =
1

2
(J(s, g, µ1) + J(s, g, µ2)).

The vanishing of J̃(s, g, χ) when χ does not factor through the norm map follows the
same reason by noting that W ◦

0 (s, g, u, φ2) actually transfers similarly under the action of T .
Otherwise, by the character µ1, µ2, we can similarly decompose

J̃(s, g, χ) =
1

2
(J̃(s, g, µ1) + J̃(s, g, µ2))

where J̃(s, g, µi) is the Eisenstein series associated to some principal series with the character

(
a ∗
0 b

)
7−→

∣∣∣a
b

∣∣∣
1− s

2
µi(ab).

Now we look at the growth of I ′(0, g, χ)−J ′(0, g, χ). Since the non-constant parts always
have exponential decay, we only need to consider the growth of I ′00(0, g, χ)−J ′

0(0, g, χ). By
definition, this difference is equal to the part coming form the intertwining operators in those
four Eisenstein series J(s, g, µi), J̃(s, g, µi), i = 1, 2.

We look that the intertwining part M(s)fi in J(s, g, µi) for example. We have

(M(s)fi)

(
s,

(
a ∗
0 b

)
g, χ

)
=
∣∣∣a
b

∣∣∣
− s

2
µ−1
i (ab)f̃i(s, g, χ).

The derivative

(M(s)fi)
′
(

0,

(
a ∗
0 b

)
g, χ

)
= −1

2
log
∣∣∣a
b

∣∣∣µ−1
i (ab)f̃i(0, g, χ) +µ−1

i (ab)f̃ ′i(0, g, χ) = O(log
∣∣∣a
b

∣∣∣).

Similarly, we can take care of J̃(s, g, µi).
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3.7 Holomorphic kernel function

By Proposition 3.6.2, we can apply Proposition 3.6.1 to the form I ′(0, g, χ) −J ′(0, g, χ).
The result gives

Pr(I ′(0, g, χ)) = Pr′(I ′(0, g, χ)−J ′(0, g, χ)) = Pr′(I ′(0, g, χ))−Pr′(J ′(0, g, χ))

where the operator Pr′ is defined after Proposition 3.6.1. It is reduced to compute Pr′(I ′(0, g, χ))
and Pr′(J ′(0, g, χ)). Of course, it suffices to compute Pr′(I ′(0, g)) and Pr′(J ′(0, g)).
They are the goal below.

The main part

We now apply the holomorphic projection formula to I ′(0, g). Recall that in Proposition
3.3.3, we have the simple decomposition

I ′(0, g) = −
∑

v nonsplit

I ′(0, g)(v)

under the global degeneracy assumption in §3.2.

Proposition 3.7.1. Assume the global degeneracy assumption. Then

Pr′(I ′(0, g, φ)) =−
∑

v|∞
I ′(0, g, φ)(v)−

∑

v-∞ nonsplit

I ′(0, g, φ)(v), ∀g ∈ P (Fv1,v2)GL2(Av1,v2).

Here I ′(0, g, φ)(v) is the same as in Proposition 3.3.1, and for any archimedean v,

I ′(0, g, φ)(v) = 2

∫

Z(A)T (F )\T (A)

K
(v)

φ (g, (t, t))dt,

K
(v)

φ (g, (t1, t2)) =
∑

a∈F×
l̃ims→0

∑

y∈µK\(B(v)×+−E×)

r(g, (t1, t2))φ(y)a kv,s(y),

kv,s(y) =
Γ(s+ 1)

2(4π)s

∫ ∞

1

1

t(1− ξv(y)t)s+1
dt.

Proof. It suffices to check that Pr′(I ′(0, g)(v)) = I ′(0, g)(v) for finite v, and Pr′(I ′(0, g)(v)) =
I ′(0, g)(v) for infinite v. They actually hold for all g ∈ GL2(A).

By Proposition 3.3.1,

I ′(0, g)(v) = 2

∫

Z(A)T (F )\T (A)

K (v)
φ (g, (t, t))dt

with
K (v)
φ (g, (t1, t2)) =

∑

u∈µ2
K\F×

∑

y∈B(v)−E
kr(t1,t2)φv(g, y, u)r(g, (t1, t2))φ

v(y, u).

50

52



Note that the integral above is just a finite sum.
We have a simple rule

r(n(b)g, (t1, t2))φ
v(y, u) = ψ(uq(y)b) r(g, (t1, t2))φ

v(y, u),

and its analogue
kr(t1,t2)φv(n(b)g, y, u) = ψ(uq(y)b)kr(t1,t2)φv(g, y, u)

showed in Proposition 3.3.2. By these rules it is easy to see that the first Fourier coefficient
is given by

K (v)
φ (g, (t1, t2))ψ =

∑

(y,u)∈µK\((B(v)−E)×F×)1

kr(t1,t2)φv(gv, yv, uv)r(g, (t1, t2))φ
v(y, u).

If v is non-archimedean, all the infinite components are already holomorphic of weight
two. So the operator Pr′ doesn’t change K (v)

φ (g, (t1, t2))ψ at all. Thus

Pr′(K (v)
φ (g, (t1, t2))) =

∑

a∈F×
K (v)
φ (d∗(a)g, (t1, t2))ψ.

It is easy to check that it is exactly equal to K (v)
φ (g, (t1, t2)) by Proposition 3.3.2 that

kr(t1,t2)φv transforms according to the Weil representation under upper triangular matrices.

We conclude that Pr′ doesn’t change K (v)
φ (g, (t1, t2)), and thus we have Pr′(I ′(0, g)(v)) =

I ′(0, g)(v).
Now we look at the case that v is archimedean. The only difference is that we need to

replace kφv(g, y, u) by some k̃φv ,s(g, y, u), and then take a “quasi-limit” l̃im. It suffices to
consider the case that uq(y) = 1, it is given by

k̃φv ,s(g, y, u) = 4πW (2)(gv)

∫

Fv,+

ys0e
−2πy0kφv(d

∗(y0), y, u)
dy0

y0

.

Then k̃φv ,s(g, y, u) 6= 0 only if u > 0, since kφv(d
∗(y0), y, u) 6= 0 only if u > 0.

Assume that u > 0, which is equivalent to q(y) > 0 since we assume uq(y) = 1 for the
moment. By Proposition 3.5.1,

∫

Fv,+

ys0e
−2πy0kφv(d

∗(y0), y, u)
dy0

y0

= −1

2

∫

Fv,+

ys0e
−2πy0 Ei(4πuq(y2)y0) y0e

−2πy0
dy0

y0

=− 1

2

∫ ∞

0

ys+1
0 e−4πy0 Ei(−4παy0)

dy0

y0

(α = −uq(y2) = −q(y2)

q(y)
> 0)

=
1

2

∫ ∞

0

ys+1
0 e−4πy0

∫ ∞

1

t−1e−4παy0tdt
dy0

y0

=
1

2

∫ ∞

1

t−1

∫ ∞

0

ys+1
0 e−4π(1+αt)y0

dy0

y0

dt

=
Γ(s+ 1)

2(4π)s+1

∫ ∞

1

1

t(1 + αt)s+1
dt.
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Hence,

k̃φv ,s(g, y, u) = W (2)(gv)
Γ(s+ 1)

2(4π)s

∫ ∞

1

1

t(1− q(y2)
q(y)

t)s+1
dt = W (2)(gv)kv,s(y).

This matches the result in the proposition. Since kv,s(y) is invariant under the multiplication
action of F× on y, it is easy to get

Pr′(K (v)
φ (g, (t1, t2))) = K

(v)

φ (g, (t1, t2)), Pr′(I ′(0, g)(v)) = I ′(0, g)(v).

Holomorphic projection of the Einsenstein series

Now we compute Pr′(J ′(0, g, φ)). Recall that in last section we have obtained

J ′(0, g, φ) =J ′(0, g, φ)− J̃ ′(0, g, φ)− c0J(0, g, φ).

Here

J(s, g, φ) =
∑

u∈µ2
U\F×

J(s, g, u, φ),

J(s, g, u, φ) =
∑

γ∈P (F )\GL2(F )

δ(γg)sr(γg)φ(0, u).

And J̃(s, g, φ) has a similar formula. We have Fourier expansion

J(s, g, u) =
∑

a∈F
Ja(s, g, u)

where

Ja(s, g, u) =

∫

A
δ(wn(b)g)s r(wn(b)g)φ(0, u) ψ(−ab)db, a ∈ F×;

Ja,v(s, g, u) =

∫

Fv

δv(wn(b)g)s r(wn(b)g)φv(0, u) ψv(−ab)db, a ∈ F×v .

We also introduce the normalization:

J◦a,v(s, g, u) = ζv(s+ 2) Ja,v(s, g, u), a ∈ F×v .

We will obtain a precise formula for Ja,v(s, g, u) at unramified v later. Then we can see
that J◦a,v(s, g, u) = 1 for almost all v. It explains the reason to introduce the normalization.

Proposition 3.7.2. (1) The Whittaker function of J ′(0, g, φ) + J̃ ′(0, g, φ) is holomorphic
of weight two.
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(2) There exists a constant c such that

Pr′(J ′(0, g, φ)) = c J∗(0, g, φ)− (J ′∗(0, g, φ) + J̃ ′∗(0, g, φ)) + 2
∑

v-∞
J ′(0, g, φ)(v).

Here J∗ (resp. J̃∗) denotes the non-constant part of J (resp. J̃), and

J ′(0, g, φ)(v) =
1

ζv(2)

∑

u∈µ2
U\F×

∑

a∈F×
J◦

′
1,v(0, d

∗(a)g, au, φ)Jva (0, g, u, φ).

Proof. We first show that J ′(0, g, φ) + J̃ ′(0, g, φ) is holomorphic. It suffices to show the

Whittaker function of J ′(0, g, u)+J̃ ′(0, g, u) is holomorphic. By linearity, assume φ = φ1⊗φ2.

By definition, J ′(0, g, u) + J̃ ′(0, g, u) is formed by the section

Φ(g, u) := log δ(g) r(g)φ(0, u) + r(g)φ1(0, u)W
◦′
0 (0, g, u, φ2)

by summing over P (F )\GL2(F ). By the product formula,

W ◦′
0 (0, g, u) =

∑

v

W ◦′
0,v(0, gv, u)W

v,◦
0 (0, gv, u) =

∑

v

W ◦′
0,v(0, gv, u)r(g

v)φv2(0, u).

Here the second identity follows from Proposition 2.5.2. Thus

Φ(g, u) = r(gv)φv(0, u) r(gv)φ1,v(0, u)
∑

v

(
log δ(gv) r(gv)φ2,v(0, u) +W ◦′

0 (0, gv, u, φ2,v)
)
.

Proposition 2.5.2 asserts that

log δ(g) r(g)φ2(0, u) +W ◦′
0 (0, g, u, φ2) = 0

for almost all places v. More importantly, it is true for all archimedean places v since we are
assuming φ is standard at infinity. Therefore, the summation above for Φ(g, u) is actually
for finitely many non-archimedean places v. In particular, the archimedean part

Φ∞(g, u) = r(g∞)φ∞(0, u)

is holomorphic. It proves that J ′(0, g, φ) + J̃ ′(0, g, φ) is holomorphic.
Now we consider the holomorphic projection. We regroup the expression as

J ′(0, g, φ) =2J ′(0, g, φ)− (J ′(0, g, φ) + J̃ ′(0, g, φ))− c0J(0, g, φ).

Since the Whittaker functions of J ′(0, g, φ) + J̃ ′(0, g, φ) and J(0, g, φ) are already holomor-
phic, the holomorphic projection doesn’t change them except dropping their constant terms.

It remains to obtain Pr′J ′(0, g, φ). Look at the Whittaker function

J ′1(0, g, φ) =
∑

u∈µ2
U\F×

J ′1(0, g, u).
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By

J1(s, g, u) =
1

ζF (s+ 2)

∏

v

J◦1,v(s, g, u),

we have

J ′1(0, g, u) =− ζ ′F (2)

ζF (2)2

∏

v

J◦1,v(0, g, u) +
1

ζF (2)

∑

v

J◦
′

1,v(0, g, u)
∏

w 6=v
J◦1,w(0, g, u)

=− ζ ′F (2)

ζF (2)
J1(0, g, u) +

∑

v

1

ζv(2)
J◦

′
1,v(0, g, u)J

v
1 (0, g, u).

The holomorphic projection doesn’t change the first term since it is already holomorphic.
Similarly, it doesn’t change J◦

′
1,v(0, g, u)J

v
1 (0, g, u) for all non-archimedean v. If v is archimedean,

then the holomorphic projection formula turns J◦
′

1,v(0, g, u) into some multiple of the standard

W
(2)
v (gv). Since W

(2)
v (gv) is proportional to J1,v(0, g, u), we obtain

Pr′
(
J◦

′
1,v(0, g, u)J

v
1 (0, g, u)

)
= (∗)J◦′1,v(0, g, u)J

v
1 (0, g, u) = (∗)J1(0, g, u).

Here (∗) denotes some constant. In summary, we have obtained

Pr′J ′1(0, g, u) =(∗)J1(0, g, u) +
∑

v-∞

1

ζv(2)
J◦

′
1,v(0, g, u)J

v
1 (0, g, u).

It follows that

Pr′J ′(0, g, u) =(∗)J∗(0, g, u) +
∑

v-∞

∑

a∈F×

1

ζv(2)
J◦

′
1,v(0, d

∗(a)g, u)Jv1 (0, d∗(a)g, u).

By the relation
J1,v(0, d

∗(a)g, u) = Ja,v(0, g, a
−1u),

we see that the sum over u gives

Pr′J ′(0, g, φ) =(∗)J∗(0, g, φ) +
∑

v-∞
J ′(0, g, φ)(v).

Remark. (1) The behavior of J ′(0, g, φ) + J̃ ′(0, g, φ) is quite similar to J(0, g, φ). Their
Whittaker functions are the same at all archimedean place and almost all non-archimedean
places.

(2) After integration against χ, the infinite sum
∑

v-∞ J
′(0, g, φ)(v) gives a finite linear

combinations of Eisenstein series and their derivations in the sense of [Zh1]. Another
derivation is the infinite sum in Proposition 4.6.5 coming from height pairings of Hodge
bundles. Lemma 4.5.2 of [Zh1] asserts that these derivations cancel each other for al-
most all v. In this paper, we would rather show the cancellation by explicit calculation.
See Proposition 4.6.6 (1).
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In the end, we show a result that will be used in the comparison with the geometric kernel
related to the Hodge class. It computes the unramified case, and controls the singularities
of the ramified case for some degenerate Schwartz functions.

Lemma 3.7.3. Let v be a non-archimedean place of F . Then the following results under
different assumptions are true:

(1) Assume that v is unramified in B and unramified over Q, and assume that φv is stan-
dard. Then for any a, u ∈ F×v ,

J◦a,v(s, 1, u) = 1OFv
(a)1O×Fv

(u)

v(a)∑

n=0

N−n(s+1)
v .

It follows that

J◦
′

1,v(0, d
∗(a), au) = 1OFv

(a)1O×Fv
(u)


v(a)

2

v(a)∑

n=0

N−nv −
v(a)∑

n=0

nN−nv


 logNv.

(2) Assume that φv is degenerate. Then there is a constant c > 0 such that Ja,v(s, 1, u) = 0
identically for all a ∈ F×v satisfying v(a) > c or v(a) < −c.

Proof. It is analogous to Proposition 3.4.1 and Proposition 3.4.3. We first prove (2). The
formula in Proposition 3.4.3 (1) is actually applicable for any quadratic space. In the case
here, we have

Ja,v(s, 1, u) = γ(Bv)|dv|
1
2 (1−N−sv )

∞∑

n=0

N−ns+nv

∫

Dn(a)

φv(x, u)dx,

where
Dn(a) = {x ∈ Bv : uq(x)− a ∈ pnvd−1

v }.
The only difference is the appearance of the Weil index γ(Bv) = ±1 due to a different
normalization. Then proof is exactly the same.

Now we consider (1). It is easy to see

J1,v(s, d
∗(a)g, u) = |a|− s

2Ja,v(s, g, a
−1u).

Then

J◦
′

1,v(0, d
∗(a), au) = J◦

′
a,v(0, 1, u)−

1

2
log |a|vJ◦a,v(0, 1, u).

So the second equality is a consequence of the first one.
The first identity in (1) is essentially a standard result. The computation is very simple

since everything is unramified. We still include it here. Since φv is standard, it is invariant
under the action of GL2(OFv). By Iwasawa decomposition, it is very easy to obtain

r(g)φv(0, u) = δ(g)2 φv(0, det(g)−1u), g ∈ GL2(Fv).
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Then Ja,v(s, 1, u) is nonzero only if u ∈ O×Fv
. In that case,

Ja,v(s, 1, u) =

∫

Fv

δ(wn(b))s+2 ψv(−ab)db.

The computation is similar to the first part of Proposition 3.4.3. Note that

δ(wn(b)) =

{
1 if b ∈ OFv ,
|b|−1 otherwise,

Then

Ja,v(s, 1, u) =

∫

OFv

ψv(−ab)db+

∫

Fv−OFv

|b|−(s+2)ψv(−ab)db.

The second integral is equal to

∞∑

n=1

∫

p−n
v −p−(n−1)

v

N−n(s+2)
v ψv(−ab)db

=
∞∑

n=1

N−n(s+2)
v

∫

p−n
v

ψv(−ab)db−N−(s+2)
v

∞∑

n=0

N−n(s+2)
v

∫

p−n
v

ψv(−ab)db.

Combine with the first integral to obtain

Ja,v(s, 1, u) =(1−N−(s+2)
v )

∞∑

n=0

N−n(s+2)
v

∫

p−n
v

ψv(−ab)db.

The last integral is nonzero only if a ∈ pnv . In this case it is equal to Nn
v . Hence,

Ja,v(s, 1, u) = (1−N−(s+2)
v )

v(a)∑

n=0

N−n(s+1)
v .

It gives the result.
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4 Shimura curves, Hecke operators, CM-points

In this section, we will review the theory of Shimura curves, generating series of Hecke
operators, and a preliminary decomposition of height pairing of CM-points using Arakelov
theory.

In §4.1, we will describe a projective system of Shimura curves XU for a totally defi-
nite incoherent quaternion algebra B over a totally real field F indexed by compact open
subgroups U of B×f .

In §4.2, we will define a generating function Z(g, φ) with coefficients in Pic(XU × XU)
for each φ ∈ S (V × A×). And we will show that it is automorphic in g ∈ GL2(A) if φ∞
is standard, which we will assume in the rest of this paper. This series is an extension of
Kudla’s generating series for Shimura varieties of orthogonal type [Ku1]. In this case, the
modularity of its cohomology class is proved by Kudla-Millson [KM1, KM2, KM3]. The
modularity as Chow cycles are proved in our previous work [YZZ].

In §4.3, for E a CM extension of F , we define a set of points with CM by E bijective to
E×\B×f . For two CM-points represented by βi ∈ B×f , we define a function Z(g, (β1, β2), φ)
for g ∈ GL2(A) by means of height pairing. It can be viewed as a function in g ∈ GL2(A)
and (β1, β2) ∈ GO(A) compatible with Weil representation on S (V×A×). This function is
automorphic for g and left invariant under the diagonal action of T (A) on (β1, β2).

In §4.4 and §4.5, using Arakelov theory, we will decompose Z(g, (t1, t2), φ) into the sum of
its main part 〈Z∗(g, φ)t1, t2〉 and some height pairings with arithmetic Hodge classes. Then
〈Z∗(g, φ)t1, t2〉 is decomposed an infinite sum of local pairings:

−
∑

v

iv(Z∗(g, φ)t1, t2) logNv −
∑

v

jv(Z∗(g, φ)t1, t2) logNv.

The decomposition is valid under the global degeneracy assumption in §3.2.
In §4.6, we consider the height pairings with arithmetic Hodge classes. We show that its

difference with the holomorphic projection of the Eisenstein series in Proposition 3.7.2 can
be approximated by a finite sum of Eisenstein series. In particular, we decompose the height
pairing into a sum of certain local terms over places v of F , and show the match of these
local terms with J ′(0, g, φ)(v) for unramified v.

The computation of the local pairing iv(Z∗(g, φ)t1, t2) and jv(Z∗(g, φ)t1, t2) is the content
of next section.

4.1 Shimura curves

In the following, we will review the theory of Shimura curves following our previous paper
[Zh2]. Let F be a totally real number field. Let B be a quaternion algebra over A with odd
ramification set Σ including all archimedean places. Then for each open subset U of B×f we
have a Shimura curve XU . The curve is not geometrically connected; its set of connected
components can be parameterized by F×+ \A×f /q(U). For each archimedean place τ of F , the
set of complex points at τ forms a Riemann surface as follows:

Xan
U,τ = B(τ)×+\H × B×f /U ∪ {Cusps}
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where B(τ)×+ is the group of totally positive elements in a quaternion algebra B(τ) over F
with ramification set Σ \ {τ} with an action on H ± by some fixed isomorphisms

B(τ)⊗τ R = M2(R)

B(τ)⊗ Af ' Bf ,

and where {Cusp} is the set of cusps which is non-empty only when F = Q and Bf = M2(Af ).
For two open compact subgroups U1 ⊂ U2 of B×f , one has a canonical morphism πU1,U2 :

XU1 → XU2 which satisfies the composition property. Thus we have a projective system X
of curves XU . For any x ∈ Bf , we also have isomorphism Tx : XU → Xx−1Ux which induces
an automorphism on the projective system X. It is compatible with multiplication on B×f
in the sense that Txy = Tx · Ty. All of these morphisms on XU ’s has obvious description
on the complex manifolds XU,τ (C). The induced actions are the obvious one on the set of
connected components after taking norm of Ui and x.

An important tool to study Shimura curves is to use modular interpretation. For a fixed
archimedean place τ , the space H ± parameterizes Hodge structures on V0 := B(τ) which
has type (−1, 0) + (0,−1) (resp (0, 0)) on V0 ⊗τ R (resp. V0 ⊗σ R for other archimedean
places σ 6= τ). The non-cuspidal part of XU,τ (C) parameterizes Hodge structure and level
structures on a B(τ)-module V of rank 1.

Due to the appearance of type (0, 0), the curveXU does not parameterize abelian varieties
unless F = Q. To get a modular interpretation, we use an auxiliary imaginary quadratic
extension K over F with complex embeddings σK : K → C for each archimedean places
σ of F other than τ . These σK ’s induce a Hodge structure on K which has type (0, 0) on
K⊗τ R and type (−1, 0)+(0,−1) on K⊗σR for all σ 6= τ . Now the tensor product of Hodge
structures on VK := V ⊗F K is of type (−1, 0)+(0,−1). In this way, XU parameterizes some
abelian varieties with homology group H1 isomorphic to VK . The construction makes XU a
curve over the reflex field for σK ’s:

K] = Q

(∑

σ 6=τ
σ(x), x ∈ K

)
.

See our paper [Zh1] for a construction following Carayol in the case K = F (
√
d) with d ∈ Q

where σK(
√
d) is chosen independent of σ.

The curve XU has a Hodge class LU ∈ Pic(XU)⊗Q which is compatible with pull-back
morphism and isomorphic to the canonical class ωXU/F when U is sufficiently small. We also
define a normalized Hodge class ξU ∈ Pic(XU) ⊗ Q which has degree 1 on each connected
component and is proportional to LU . One can use ξU to define a projection Div(XU) →
Div0(XU) by sending D to D−deg(D)ξU . Here deg(D) is understood to be a function on the
set {Xi} of geometrically connected components of XU given by degD(Xi) := deg(D|Xi

).
The class degD · ξU has restriction deg(D|Xi

)ξXi
on Xi.

The Jacobian variety JU of XU is defined to be the variety over F to represent line
bundles on XU (or base change) of degree 0 on every connected components Xi. Over an
extension of F , JU is the product of Jacobian varieties Ji of the connected components Xi.
The Néron–Tate height 〈·, ·〉 on JU(F̄ ) is defined using the Poincare divisor on Ji × Ji.
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4.2 Hecke correspondences and generating series

We want to define some correspondences on XU , i.e., some divisor classes on XU ×XU . The
projective system of surfaces XU ×XU has an action by B×f × B×f . Let K denote the open
compact subgroup K = U × U , and write MK = XU ×XU .

Hecke operators

For any double coset UxU of U\B×f /U , we have a Hecke correspondence

Z(x)U ∈ Div(XU ×XU)

defined as the image of the morphism

(πU∩xUx−1,U , πU∩x−1Ux,U ◦ Tx) : XU∩xUx−1−→X2
U .

It is defined over F .
In terms of complex points at a place of F as above, the Hecke correspondence Z(x)U

takes
[z, β] 7−→

∑

i

[z, βxi]

for points on XU,τ (C) represented by [z, β] ∈ H ± × B×f where xi are representatives of
UxU/U . We usually abbreviate Z(x)U as Z(x).

Hodge classes

On MK := XU ×XU , one has a Hodge class LK ∈ Pic(MK)⊗Q defined as

LK =
1

2
(p∗1LU + p∗2LU).

Next we introduce some notations for components of LK .
The geometrically connected components of XU are indexed by F×+ \A×f /q(U), and we

use XU,α to denote the corresponding component for α ∈ F×+ \A×f /q(U). Then the geo-
metrically connected components of MK = XU × XU are naturally indexed by (α1, α2) ∈
(F×+ \A×f /q(U))2. For any α ∈ F×+ \A×f /q(U), denote

MK,α =
∐

β∈F×+ \A×f /q(U)

XU,β ×XU,αβ

as a subvariety of MK . It is still defined over F . Then

MK =
∐

α∈F×+ \A×f /q(U)

MK,α.

View the Hodge bundle
LK,α = LK |MK,α

of MK,α as a line bundle or divisor of MK by trivial extension outside MK,α.
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Generating Function

Let V denote the orthogonal space B with quadratic form q. Let S (V × A×) denote the

space S (V∞, F×∞)⊗S (VAf
×A×f ) which is isomorphic to the maximal quotient of S̃ (V×A×)

via integration on GO(F∞).
For any (x, u) ∈ V×A×, let us define a cycle Z(x, u)K on XU ×XU as follows. This cycle

is non-vanishing only if q(x)u ∈ F× or x = 0. If q(x)u ∈ F×, then we define Z(x, u)K to be
the Hecke operator Z(x)U = UxU defined in last subsection. If x = 0, then we define

Z(0, u)K = − 1

[µ′U : µ2
U ]

∑

α∈F×+ \F×
LK,αu−1 .

Here µU = F× ∩ U like µK and µ′U = F×+ ∩ q(U). The index [µ′U : µ2
U ] is always finite, and

it is equal to 1 for sufficiently small U .
For φ ∈ S (V × A×) which is invariant under K · GO(F∞), we can form a generating

series and its normalization

Z(g, φ) =
∑

(x,u)∈(K·GO(F∞))\V×A×
r(g)φ(x, u)Z(x, u)K , g ∈ GL2(A).

Z̃(g, φ) = [A×f : F× ·KZ ]vol(ZK)Z(g, φ).

The factor in the normalization is taken so that the definition is compatible with pull-back
maps in Chow groups in the projection MK1 →MK2 with Ki = Ui × Ui and U1 ⊂ U2. Thus
it defines an element in the direct limit Pic(M) := limK Pic(MK). For any h ∈ (B×f )2, let
ρ(h) denote the pull-back morphism on Pic(M) by right translation of h. Then it is easy to
verify

Z(g, r(h)φ) = ρ(h)Z(g, φ).

A similar but easier property is Z(g, r(g′)φ) = Z(gg′, φ) for any g′ ∈ GL2(A).
It is always convenient to write

Z(g, φ) = Z0(g, φ) + Z∗(g, φ),

where Z0(g, φ) denotes the constant term and Z∗(g, φ) denotes the non-constant part. It is
easy to see that they also have the following expressions:

Z0(g, φ) = −
∑

α∈F×+ \A×f /q(U)

∑

u∈µ2
U\F×

r(g)φ(0, α−1u)LK,α,

Z∗(g, φ) =
∑

a∈F×

∑

x∈K\B×f

r(g)φ(x)aZ(x)U =
∑

a∈F×

∑

x∈U\B×f /U

r(g)φ(x)aZ(x)U .

Here the symbol
φ(x)a = φ(x, aq(x)−1)

is introduced in §3.1.
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Proposition 4.2.1. The series Z(g, φ) is absolutely convergent and defines an automorphic
form on GL2(A) with coefficients in Pic(XU ×XU)C.

We will reduce the proposition to the modularity proved in [YZZ].
We first recall the related result in [YZZ]. Let M ′

K′ be the Shimura variety of orthogonal
type associated to the subgroup

GSpin(V) = {(g1, g2) ∈ B× × B× : q(g1) = q(g2)}

for any open compact subgroupK ′ ⊂ GSpin(Vf ). For any Schwartz function φ′ ∈ S (V)O(F∞),
one can define a generating series

Z(g, φ′) =
∑

y∈K′·O(F∞)\V
r(g)φ′(y)Z(y)K′ , g ∈ SL2(A).

Here Z(y)K′ is non-zero only if q(y) ∈ F×+ or y = 0. If y = 0, then Z(y)K′ = −LK′ . If
q(y) ∈ F×, then Z(y)K′ is defined as some special divisor of M ′

K′ whose image in MK is
just Z(y)U under the natural map M ′

K′ → MK . In [YZZ], we have shown that Z(g, φ′) is
absolutely convergent and defines an automorphic form on SL2(A).

For any h ∈ B×f × B×f , let ih denote the composition of the embedding M ′ → M and
the translation Th of right multiplication by h on M . On the level K, it gives a finite map
ih : M ′

Kh → MK whose image in MK is exactly MK,ν(h). Here Kh = GSpin(Vf ) ∩ hKh−1

is an open compact subgroup of GSpin(Vf ). One can verify that the degree of ih onto its
image is exactly equal to [µ′U : µ2

U ]. Hence ih is an isomorphism for sufficiently small U .
To prove the modularity of Z(g, φ), it suffices to prove that for the restriction

Z(g, φ)α := Z(g, φ)|MK,α

for all α ∈ F×+ \A×f /q(U). Fix one h ∈ B×f × B×f such that ν(h) ∈ α−1F×+ q(U). Consider the
finite map ih : M ′

Kh → MK,α, and we want to express Z(g, φ)α as the push-forward of some
generating function on M ′

Kh .
It is easy to see that for any x ∈ B×f , the Hecke operator Z(x)U = UxU is completely

contained in Z(g, φ)q(x). It has contribution to Z(g, φ)α if and only if q(x) ∈ αF×+ q(U), in
which case we can find y ∈ Khx with norm in F×+ . It follows that

Z(g, φ)α = −
∑

u∈µ2
U\F×

r(g, h)φ(0, u)LK,α +
∑

u∈µ′U\F×

∑

y∈KhO(F∞)\V
q(y)∈F×+

r(g, h)φ(y, u)Z(h−1y)U .

Note that ih∗LKh = deg(ih)LK,α and ih∗Z(y)Kh = Z(h−1y)U . We see that

Z(g, φ)α = ih∗
∑

u∈µ′U\F×

∑

y∈KhO(F∞)\V
r(g, h)φ(y, u)Z(y)Kh = ih∗

∑

u∈µ′K\F×
Z(1, r(g, h)φ(·, u)).

We have thus shown that Z(g, φ)α is the push forward of a finite sum of generating series
for M ′. It follows that Z(g, φ)α is invariant under the left translation by elements in SL2(F )
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and is absolutely convergent. By definition, it is clear that Z(g, φ) is also invariant under

left translation by elements of the form d(a) =

(
1 0
0 a

)
. Thus Z(g, φ)α is invariant under

the left translation by GL2(F ).

Action of the generating function

It is easy to write down the action of the non-constant part

Z∗(g, φ) =
∑

a∈F×

∑

x∈U\B×f /U

r(g)φ(x)aZ(x)U

on a point [z, β] in XU . By definition,

Z(x)U [z, β] =
∑

j

[z, βαj], if UxU =
∐

j

αjU.

It follows that

Z∗(g, φ)[z, β] =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)a[z, βx].

For any α ∈ F×+ \A×f /q(U), we have considered generating function

Z(g, φ)α = Z(g, φ)|MK,α
.

Its non-constant part is given by

Z∗(g, φ)α =
∑

u∈µ′U\F×

∑

y∈Kh\Bad
f

r(g, (h, 1))φ(y, u)Z(h−1y)U .

Here h is any element of B×f such that q(h) ∈ α−1F×+ q(U), and Kh = GSpin(Vf ) ∩ hKh−1.
Here we introduce the following notations:

Ba
f = Bf (a) = {x ∈ Bf : q(x) = a}, a ∈ A×f ;

Bad
f = {x ∈ Bf : q(x) ∈ F×+ } =

⋃

a∈F×+

Bf (a).

Note that the first notation is also valid in the local case. And the infinite component of
r(g, (h, 1))φ(y, u) is understood to be W

(2)
uq(y)(g∞), which makes sense for q(y) ∈ F×+ .

We are going to write down the action of Z∗(g, φ)α on XU . Assume that h is an element
of B×f for simplicity. That is, the second component is trivial. The action of Z(h−1y)U is
given by the coset Uh−1yU/U . We have identities

Uh−1yU/U = Kh−1y/U = h−1(hKh−1y/U) = h−1(Khy/U1).

Here U1 = U ∩ B1
f = {b ∈ U : q(b) = 1}. By this it is easy to see that

Z∗(g, φ)α [z, β] =
∑

u∈µ′U\F×

∑

y∈Bad
f /U1

r(g, (h, 1))φ(y, u) [z, βh−1y].
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Degree of the generating function

Now we compute the degree of the generating function Z(g, φ)α = Z(g, φ)|MK,α
for any

α ∈ F×+ \A×f /q(U). It is a correspondence from Xβ to Xαβ for any β ∈ F×+ \A×f /q(U). The
degree of this correspondence is just the degree of Z(g, φ)αD for any degree-one divisor D
on Xβ. By definition, we see that degZ(x)U = [UxU : U ].

Recall that right before Proposition 3.6.2, we have defined

J(s, g, u, φ) =
∑

γ∈P (F )\GL2(F )

δ(γg)sr(γg)φ(0, u),

J(s, g, φ) =
∑

u∈µ2
U\F×

J(s, g, u, φ).

The following result can be viewed as an arithmetic variant of the Siegel–Weil formula.

Proposition 4.2.2. Denote by κU the degree of the Hodge bundle LU on any geometrically
connected component of XU . Then

(1)

J(0, g, φ) =
∑

u∈µ2
U\F×

r(g)φ(0, u)− 2

κU

∑

u∈µ′U\F×

∑

y∈Bad
f /U1

r(g)φ(y, u).

(2) For any α ∈ F×+ \A×f /q(U),

degZ(g, φ)α = −1

2
κUJ(0, g, r(h)φ).

Here h is any element of B×f × B×f such that ν(h) ∈ α−1F×+ q(U).

Proof. It is easy to see that (2) can be reduced to (1). In fact, the right-hand side of (2) is
independent of the choice of h, so we assume that the second component of h is 1. Write
Z(g, φ)α = Z0(g, φ)α + Z∗(g, φ)α. Recall that

Z0(g, φ)α = −
∑

u∈µ2
U\F×

r(g, h)φ(0, u)LK,α.

By LK =
1

2
(p∗1LU + p∗2LU), we get

degZ0(g, φ)α = −1

2
κU

∑

u∈µ2
U\F×

r(g, h)φ(0, u).

As for J0(0, g, u, φ), the intertwining operator vanishes at s = 0 due to a pole of the Dedekind
zeta function. Hence the constant terms

J0(0, g, u, φ) = r(g)φ(0, u), J0(0, g, φ) =
∑

u∈µ2
U\F×

r(g)φ(0, u).
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Thus we have shown the identity for constant terms:

degZ0(g, φ)α = −1

2
κUJ0(0, g, r(h)φ).

As for the non-constant part, we have the formula

Z∗(g, φ)α [z, β] =
∑

u∈µ′U\F×

∑

y∈Bad
f /U1

r(g, h)φ(y, u) [z, βh−1y].

Then we simply have

degZ∗(g, φ)α =
∑

u∈µ′U\F×

∑

y∈Bad
f /U1

r(g, h)φ(y, u).

It shows that (1) implies (2).
The truth of (1) follows from a precise case of the local Siegel–Weil formula (Theorem

2.1.2). Note that both sides of (1) are automorphic, and their constant terms are the same.
By modularity, it suffices to show the non-constant part

A(g) : =
∑

u∈µ′U\F×

∑

a∈F×+

∑

y∈Bf (a)/U1

r(g)φ(y, u)

is a scalar multiple of J∗(0, g, φ). Let ya be any fixed element in B×f with norm a. Then the
last summation

∑

y∈Bf (a)/U1

r(g)φ(y, u) =
1

vol(U1)vol(B1
∞)

∫

B1

r(g)φ(bya, u)db.

By the local Siegel–Weil theorem, the integral is exactly equal to −Jau(0, g, u, φ). Here we
use the “Tamagawa measure” on B1. The negative sign comes out because the product of
the Weil indexes at all places is -1 in the incoherence case. Thus we have

A(g) = − 1

[µ′U : µ2
U ]vol(U1)vol(B1

∞)
J∗(0, g, φ).

It proves the result.

Remark. The above proof actually implies a formula

1

2
κU =

1

[µ′U : µ2
U ]vol(U1)vol(B1

∞)
.

We can interpret 1
2
κU as the volume of the invariant measure

dxdy

4πy2
on any connected com-

ponent of XU,σ(C) for any archimedean place σ. Then the formula about 12κU is equivalent
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to the fact that the Tamagawa number of B1 is 1 where B = B(σ) is the nearby quaternion
algebra. The factor [µ′U : µ2

U ] is just the degree of the natural map

(B1 ∩ U1)\H → (B×+ ∩ U)\H .

In particular, if U is maximal, we have an explicit formula

κU =
2d

3
2
F ζF (2)

[O×F,+ : (O×F )2](4π2)[F :Q]

∏

v∈Σf

(Nv − 1).

Here ζF denotes the finite part of the Dedekind zeta function of F . See also Vignéras [Vi].
On the other hand, recall from [Zh1] that the Hodge bundle on each connected component

Xi has degree

2g(Xi)− 2 +
∑

p∈Xi

(
1− 1

up

)

here up is the local index of p.

4.3 CM-points and height series

In this subsection we define our geometric kernel function Z(g, χ, φ) by means of height
pairing of CM-points. It is automatically cuspidal though the original generating function
Z(g, φ) does not need to be.

CM-points

Let E be an imaginary quadratic extension of F with an embedding E(Af ) ⊂ Bf . Then
XU(F̄ ) has a set of CM-points defined over Eab, the maximal abelian extension of E. The
set CMU is stable under action of Gal(Eab/F ) and Hecke operators. More precisely, we have
a projective system of bijections

CMU ' E×\B×f /U (4.3.1)

which is compatible with action of Hecke operators and such that the Galois action is given
as follows: the action of Gal(Eab/E) acts by right multiplication of elements of E×(Af ) via
the reciprocity law in class field theory:

E×\E×(Af )−→Gal(Eab/E).

Such a bijection is unique up to left multiplication by elements in E×(Af ).
If τ is a real place of F , then the set CMU can be described as a subset of

XU,τ (C) = B(τ)×\H ± × B×f /U ∪ {cusps}

as
CMU = B(τ)×\B(τ)×z0 × B×f /U ∪ {cusps} ' E×\B×f /U
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where E is embedded into B(τ) compatible with isomorphism B(τ)Af
= Bf and z0 ∈ H is

unique fixed point of E×.
Any β ∈ B×f gives a CM-point in CMU which is denoted by [β]U or just [β] or β if U is

clear. Let T denote E× as an algebraic group over F . We are particularly interested in the
case that β ∈ T (Af ), i.e. CM-points that are in the image in XU of the zero-dimensional
Shimura variety

CU = T (F )\T (Af )/UT

associated to T . Here UT = U ∩ T (Af ). Notice that the set CU does not depend on the
choice of bijection 4.3.1.

Height series

For any φ ∈ S (B× A×)U×U , we define the Néron–Tate height pairing

Z(g, (β1, β2), φ) = 〈Z(g, φ)([β1]U − deg([β1]U)ξU), [β2]U − deg([β2]U)ξU〉NT, β1, β2 ∈ B×f .

Using the projection formula of height pairing, we see that this definition does not depend
on the choice of U . Also this definition does not depend on the choice of the bijection 4.3.1
since the height pairing is invariant under Galois action. It follows that

Z(g, (tβ1, tβ2), φ) = Z(g, (β1, β2), φ).

In this way, we may view this as a function on GO(V) through projection

GO(V) = ∆(A)\B× × B×−→GO(Vf ) = ∆(Af )\B×f × B×f

Using the projection formula and the formula Z(g, r(h)φ) = ρ(h)Z(g, φ) where ρ(h) is the
pull-back morphism of right translation by h ∈ B×f × B×f , one can show that the resulting
function Z(g, h, φ) is equivariant under Weil representation:

Z(g2, h2, r(g1, h1)φ) = Z(g2g1, h2h1, φ), gi ∈ GL2(A), hi ∈ GO(V).

This function is automorphic for the first variable and invariant for the second variable under
left diagonal multiplication by A×E.

For a finite character χ of T (F )\T (A), we can define

Z(g, χ, φ) :=

∫

[T ]

Z̃(g, (t, 1), φ)χ(t)dt = [A×f : F×·UZ ]−1

∫

T (F )\T (A)/Z(F∞)UZ

Z(g, (t, 1), φ)χ(t)dt.

Here UZ = U ∩ A× is the equal to KZ since K = U × U .
Using definition of Z(g, (t1, t2), φ), and Heegner divisor

Yχ =

∫

[T ]

χ(t)([t]− ξt)dt
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we obtain
Z(g, χ, φ) = 〈Z(g, φ)Yχ, [1]〉NT.

By Galois invariance of the Neron–Tate height pairing, we obtain

Z(g, χ, φ) =
1

2L(1, η)
〈Z(g, φ)Yχ, Yχ〉NT.

The integral is essentially a summation on the finite set CU = T (F )\T (Af )/UT :

Z(g, χ, φ) =
2L(1, η)

|CU |2
〈Z(g, φ)CU , CU〉NT.

Cuspidality of the height series

Our first observation is that the above Z(g, (β1, β2), φ) is a cusp form. It follows from the
cuspidality of Z(g, φ)(β1 − deg(β1)ξ). More precisely, the action

Z0(g, φ)(β1 − deg(β1)ξ) = 0

where Z0(g, φ) denotes the constant term of Z(g, φ). In fact, as a correspondence, Z0(g, φ) is
a linear combination of hodge classes LU,α,β, the (α, β)-component of the total hodge bundle

LK =
1

2
(p∗1LU + p∗2LU).

But it is very easy to see that the degree-zero cycle β1 − deg(β1)ξ has trivial image under
these correspondences.

Therefore,

Z(g, (β1, β2), φ) = 〈Z∗(g, φ)(β1 − deg(β1)ξ), β2 − deg(β2)ξ〉NT

where the non-constant part

Z∗(g, φ) =
∑

a∈F×

∑

x∈K\B×f

r(g)φ(x)aZ(x)U .

Its action is simply given by

Z∗(g, φ)[β1] =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)a[β1x].

Simplification of the notation

We usually drop the dependence of these series on φ. For example, we will abbreviate

Z(g, φ), Z0(g, φ), Z∗(g, φ), Z∗(g, φ)α, Z(g, (β1, β2), φ), Z(g, χ, φ)

respectively as

Z(g), Z0(g), Z∗(g), Z∗(g)α, Z(g, (β1, β2)), Z(g, χ).
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4.4 Arithmetic intersection pairing

We recall the notion of admissible arithmetic extension in [Zh2]. It gives a nice decomposition
of the Neron-Tate height by the arithmetic Hodge index theorem of Faltings [Fa].

Hodge index theorem

Let F be any number field, and X be a complete smooth curve over F . Note that X may
not be geometrically connected. Denote by Div0(XF̄ ) the group of divisors on XF̄ that has
degree zero on every connected component of XF̄ , and by Pic0(XF̄ ) the rational equivalence
classes in Div0(XF̄ ). The Neron-Tate height gives a bilinear pairing 〈·, ·〉NT on Pic0(XF̄ ).

Let D1, D2 ∈ Div0(XF̄ ) be any two divisors. Let L be any field extension of F such that

D1 and D2 are defined over L. Take a regular integral model Y of XL over OL. Let D̂i

be a flat arithmetic extension of Di on Y , i.e. a flat arithmetic divisor on Y with generic
fibre Di. Here we say an arithmetic divisor is flat if its curvature form is zero at every
archimedean place and its intersection with any finite vertical divisor on Y is zero. Then
the Hodge index theorem asserts that

〈D1, D2〉NT = − 1

[L : F ]
D̂1 · D̂2.

The flat extensions D̂i are unique up to linear combinations of special fibres. The normalized
intersection number on the right-hand side depends only on the rational equivalence classes
of D1, D2.

Admissible extension

The Néron–Tate height is a canonical pairing on Pic0(XF̄ ). We can extend it to a pairing
on Div(XF̄ ), which does not preserve rational equivalence and depends on the choice of a

reference arithmetic class. For the rest of this section, fix an arithmetic class ξ̂ ∈ lim
←−

P̂ic(Y )

whose generic fibre has degree one on any geometrically connected component. Here the
inverse limit is taking over all integral models Y of XL over OL for all extensions L/F , and
the arrows between different models are the pull-back maps on arithmetic divisors.

Let D1, D2 ∈ Div(XF̄ ). Let L,Y be as above. Assume further that ξ̂ is represented by
an arithmetic divisor on Y . We still denote it by ξ̂. Any arithmetic extension of Di on Y is
of the form D̂i = (Di+Vi, gi), where Di is the Zariski closure of Di, Vi is some finite vertical

divisor, and gi is some green’s function of Di at infinity. We D̂i a ξ̂-admissible extension if
the following conditions hold on each connected component of Y :

• The difference D̂i − degDi · ξ̂ is flat;

• The integral

∫
gic1(ξ̂) = 0 at any archimedean place;

• The intersection (Vi · ξ̂)v = 0 at any non-archimedean place v.
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With these extensions, define a pairing

〈D1, D2〉 := − 1

[L : F ]
D̂1 · D̂2.

Once L and Y are given, the ξ̂-admissible extension is unique. When varying L and Y ,
the ξ̂-admissibility is preserved with pull-back. Hence the pairing depends only on D1, D2

and the choice of ξ̂.

Decomposition of the pairing

There is a non-canonical decomposition 〈·, ·〉 = −i− j depending on the choice of a model.

Let X, ξ̂ be as above. Fix a regular integral model Y0 of XL0 over OL0 for some field extension

L0 of F with a fixed embedding L0 ↪→ K̄. Assume that ξ̂ is realized as a divisor on Y0.
Let D1, D2 ∈ Div(XF̄ ) be two divisors. Assume that D2 is defined over L0. Let L be

any field extension of L0 such that D1 is defined over L. Then we can decompose 〈D1, D2〉
according to the model Y0,OL

.

We first consider the case that Y0,OL
is regular. Let D̂i = (Di+Vi, gi) be the ξ̂-admissible

extensions on the model. Note that V1 · D̂2 = 0 since V1 is orthogonal to both D̂2−degD2 · ξ̂
and ξ̂. Similarly, the integral of g1 on the curvature of g2 is zero. It follows that

〈D1, D2〉 = − 1

[L : F ]
D1 · D̂2.

Define

i(D1, D2) =
1

[L : F ]
D1 · (D2, g2), j(D1, D2) =

1

[L : F ]
D1 · V2.

Then we have a decomposition

〈D1, D2〉 = −i(D1, D2)− j(D1, D2),

The decomposition is still valid even if Y0,OL
is not regular. We have the ξ̂-admissible

extension of D2 on the regular model Y0. Pull it back to Y0,OL
. We get the extension

D̂2 = (D2 + V2, g2) on Y0,OL
. All divisors on Y0 are Cartier divisors since it is regular. It

follows that D2 and V2 are Cartier divisors on Y0,OL
since they are pull-backs of Cartier

divisors. Hence the intersections i(D1, D2) and j(D1, D2) are well-defined. To verify the
equality, we first decompose the pairing on any desingularization of Y0,OL

, and then use the
projection formula.

Assume that D1 and D2 have disjoint supports. Then we have further decompositions to
local heights:

i(D1, D2) =
∑

v∈SF

iv(D1, D2) logNv, j(D1, D2) =
∑

v∈SF

jv(D1, D2) logNv
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with

iv(D1, D2) =
1

#SLv

∑

w∈SLv

iw(D1, D2), jv(D1, D2) =
1

#SLv

∑

w∈SLv

jw(D1, D2).

Here SF denote the set of all places of F , and SLv denotes the set of places of L lying over
v. And iw and jw are local intersection multiplicities of i and j over the model Y0,OL

.
Fix an embedding F̄ ↪→ F̄v, or equivalently fix an extension v̄ of the valuation v to F̄ . By

varying the fields as in the global case, we have well-defined pairings iv̄ and jv̄ on Div(XF̄v
)

for proper intersections. It is the same as considering intersections on the model Y0,OF̄v
.

The formulae above have the following equivalent forms:

iv(D1, D2) =

∫

Gal(F̄ /F )

iv̄(D
σ
1 , D

σ
2 )dσ, jv(D1, D2) =

∫

Gal(F̄ /F )

jv̄(D
σ
1 , D

σ
2 )dσ.

Here the integral on the Galois group takes the Haar measure with total volume one.
If D1, D2 have common irreducible components, then i(D1, D2) can’t be decomposed to

a sum of local heights while the decomposition for j(D1, D2) is still valid. This case does
not happen in the computation of this paper. In any case, jv is identically zero if v is
archimedean or the model Y0 is smooth over all primes of L0 dividing v.

4.5 Decomposition of the height series

Go back to the setting of Shimura curve XU . Our goal in the geometric side is to compute

Z(g, (t1, t2)) = 〈Z∗(g)(t1 − ξt1), t2 − ξt2〉NT, t1, t2 ∈ CU .

Here we write ξt = deg(t)ξ for simplicity. In this subsection, we decompose the above pairing
into a sum of local heights and some global pairings with ξ.

Arithmetic models

Fix an open compact subgroup U which is small enough. Recall that XU has a canonical
regular integral model XU over OF . At each finite place v of F , the base change XU,v over
OFv will parameterizes p-divisible groups with level structures. Locally at a geometric point,
XU,v is the universal deformation of the represented p-divisible group.

The Hodge bundle LU can be extended to a metrized line bundle on XU . More precisely,
at an archimedean place, the metric can defined by using Hodge structure or equivalently
normalized such that its pull-back on Ω1

H /C takes the form:

‖f(z)dz‖ = 4π · Imz · |f(z)|.

At a finite place, we may take an extension LU,v by using the fact that LU is twice of
the cotangent bundle of the divisible groups. The resulting bundle on XU with metrics at
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archimedean places is denoted by L̂U . Also we have an arithmetic class ξ̂U induced from

L̂U .
We will denote by 〈·, ·〉 the ξ̂U -admissible pairing explained in last subsection. To consider

the decomposition i+ j and its corresponding local components, we need an integral model
over a field where the CM points are rational. Let H = HU be the minimal field extension
over E which contains the fields of definition of all t ∈ CU . Then H is an abelian extension
over E given by the reciprocity law. We will use the regular integral model YU of XU over
OH introduced in the following to get the decomposition i+ j.

Without loss of generality, assume that Uv is of the form (1 + $r
vOBv)

× for every finite
place v, where OBv is a maximal order of Bv. To describe YU , it suffices to describe the
corresponding local model YU,w = YU ×OHw for any finite place w of H. Let v be the place
of F induced from w. Then YU,w is defined by the following process:

• Let U0 = U vU0
v with U0

v = O×Bv
the maximal compact subgroup. Then XU0 has a

canonical regular model XU0,v over OFv . It is smooth if Bv is the matrix algebra. Let
X ′

U be the normalization of XU0,v in the function field of XU,Hw ;

• Make a minimal desingularization of X ′
U to get YU,w.

With the model YU , we can always write

〈β, t〉 = −i(β, t)− j(β, t), β ∈ CMU , t ∈ CU .

And we can further write i, j in terms of their corresponding local components if β 6= t.

Decomposition of the kernel Function

Go back to
Z(g, (t1, t2)) = 〈Z∗(g)(t1 − ξt1), t2 − ξt2〉NT, t1, t2 ∈ CU .

We first write

Z(g, (t1, t2)) = 〈Z∗(g)t1, t2〉 − 〈Z∗(g)t1, ξt2〉 − 〈Z∗(g)ξt1 , t2〉+ 〈Z∗(g)ξt1 , ξt2〉.

The last three terms will be taken care of next subsection. Here we look at the first term,
which is the main term of the kernel function. By the model Y over OH , we can decompose

〈Z∗(g)t1, t2〉 = −i(Z∗(g)t1, t2)− j(Z∗(g)t1, t2).

The j-part is always a sum of local pairings over places and Galois orbits. So is the i-part if
there is no self-intersections occur.

Let us first figure out the contribution of self-intersections. Recall that

Z∗(g)t1 =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)a[t1x].
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Apparently [t1x] = [t2] as CM points on XU if and only if x ∈ t−1
1 t2E

×U . It follows that the
coefficient of [t2] in Z∗(g)t1 is equal to

∑

a∈F×

∑

x∈t−1
1 t2E×U/U

r(g)φ(x)a =
∑

a∈F×

∑

y∈E×/(E×∩U)

r(g)φ(t−1
1 t2y)a.

As in the analytic side, under the global degeneracy assumption §3.2, r(g)φ(t−1
1 t2y)a = 0 for

all y ∈ E(A). In particular, the part of self-intersection disappears and we can decompose
the i-part into a sum of local pairings.

In the following we list decomposition of i(Z∗(g)t1, t2) as a sum of local heights, under the
degeneracy assumption above. All the notations and decompositions apply to j(Z∗(g)t1, t2)
even without the degeneracy assumption.

Note that Galois conjugates of points in CU over E are described easily by multiplica-
tion by elements of T (F )\T (Af ) via the reciprocity law. It is convenient to group local
intersections according to places of E. We write:

i(Z∗(g)t1, t2) =
1

2

∑

ν∈SE

iν(Z∗(g)t1, t2) logNν ,

iν(Z∗(g)t1, t2) =

∫

T (F )\T (Af )

iν̄(Z∗(g)tt1, tt2)dt.

Here SE denotes the set of all places of E. The integral on T (F )\T (Af ) takes the Haar
measure with total volume one, which has the same effect as the Galois group Gal(Ē/E).
The definition of iν̄ depends on fixed embeddings H ↪→ Ē and Ē ↪→ Ēν , and can be viewed
as intersections on YU ×OH

OĒν
.

To compare with the analytic kernel, we also need to group the pairing in terms of places
of F . We have:

i(Z∗(g)t1, t2) =
∑

v∈SF

iv(Z∗(g)t1, t2) logNv,

iv(Z∗(g)t1, t2) =

∫

T (F )\T (Af )

iv̄(Z∗(g)tt1, tt2)dt,

iv̄(Z∗(g)t1, t2) =
1

#SEv

∑

ν∈SEv

iν̄(Z∗(g)t1, t2).

Here SEv denotes the set of places of E lying over v. It has one or two elements.
The local pairing

iv̄(Z∗(g)t1, t2) =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)a
∑

v

iv̄(t1x, t2)

is our main goal next section. We will divide it into a few cases and discuss them in different
subsections. We will have explicit expression for iv̄ in the case that v is archimedean or the
Shimura curve has good reduction at v.
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4.6 Hecke action on arithmetic Hodge classes

Recall that

Z(g, (t1, t2)) = 〈Z∗(g)t1, t2〉 − 〈Z∗(g)ξt1 , t2〉+ 〈Z∗(g)ξt1 , ξt2〉 − 〈Z∗(g)t1, ξt2〉.

We have considered a decomposition of the first term on the right-hand side in the last
subsection.

In this subsection we consider the remaining three terms. We will show that their differ-
ence with the holomorphic projection Pr′(J ′(0, g, φ)) can be approximated by a finite sum
of Eisenstein series related to J(s, g, φ). The weight-two Eisenstein series J(s, g, φ) studied
in §3.6 comes to the stage because it gives the degree of the generating function Z(g, φ) by
Proposition 4.2.2.

The main results

Here we list the main results. The first two terms are very simple. They are exactly equal
to non-constant parts of some Eisenstein series.

Lemma 4.6.1.

〈Z∗(g, φ)ξt1 , t2〉 = −1

2
κUJ∗(0, g, r(t1, t2)φ) 〈ξ, 1〉,

〈Z∗(g, φ)ξt1 , ξt2〉 = −1

2
κUJ∗(0, g, r(t1, t2)φ) 〈ξ1, ξ1〉.

Here 〈ξ, 1〉 means the admissible pairing between ξ and the CM point [1] in CU , and ξ1
means the sum of some components of ξ determined by [1]. They key is that both pairings
on the right are independent of t1, t2.

The hard part is the last term 〈Z∗(g)t1, ξt2〉. It turns out that unramified local components
of it match with the v-part J ′(0, g, r(t1, t2)φ)(v) introduced in Proposition 3.7.2. Recall that
in the proposition we have obtained the holomorphic projection formula

Pr′(J ′(0, g, φ)) = c J∗(0, g, φ)− (J ′∗(0, g, φ) + J̃ ′∗(0, g, φ)) + 2
∑

v-∞
J ′(0, g, φ)(v).

Let S be a finite set of non-archimedean places of F containing all places ramified in B,
all places ramified over Q, and all places v such that Uv is not maximal. The final result is
as follows:

Proposition 4.6.2. Assume that φv is standard for all v /∈ S and degenerate for all v ∈ S.
Then there exists a Schwartz function φ′S ∈ S (BS × F×S ) such that

〈Z∗(g, φ)t1, ξt2〉 −
∑

v-∞
J ′(0, g, φ)(v) = J(0, g, r(t1, t2)(φ

S ⊗ φ′S)), ∀g ∈ 1SGL2(AS).

In the following, we will first show Lemma 4.6.1, review some results of integral models
of Hecke correspondences, and then prove Proposition 4.6.2.
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Proof of Lemma 4.6.1

The correspondences Z(x) are étale on the generic fibre, it keeps the canonical bundle up to
a power under pull-back and push-forward. Then the hodge bundles are eigenvalues of all
Hecke operators up to translation of components. More precisely, one has

Z(x)ξβ = (degZ(x))ξβx, ∀x ∈ B×f , β ∈ F×+ \A×f /q(U).

It follows that for any α ∈ F×+ \A×f /q(U),

Z∗(g)α ξβ = degZ∗(g)α ξαβ = −1

2
κUJ∗(0, g, r(h

−1
α )φ)ξαβ.

Here hα is any element of B×f × B×f whose similitude represents α. The last identity follows
from Proposition 4.2.2. Now we immediately have the following result.

As for the lemma, we first look at 〈Z∗(g)ξt1 , t2〉. It is a sum of 〈Z∗(g)αξt1 , t2〉, which is
nonzero only if Z∗(g)αξt1 and t2 lie in the same geometrically connected component of XU .
It is true if and only if α ∈ q(t−1

1 t2)F
×
+ q(U). It follows that

〈Z∗(g)ξt1 , t2〉 = 〈Z∗(g)q(t−1
1 t2)ξt1 , t2〉 = −1

2
κUJ∗(0, g, r(t1, t2)φ)〈ξt2 , t2〉.

Furthermore, 〈ξt2 , t2〉 = 〈ξ, t2〉 = 〈ξ, 1〉 is independent of t2 ∈ CU since all elements of CU
are Galois conjugate.

Similarly, we have

〈Z∗(g)ξt1 , ξt2〉 = −1

2
κUJ∗(0, g, r(t1, t2)φ)〈ξt2 , ξt2〉.

By the same reason, 〈ξt2 , ξt2〉 is independent of t2 ∈ CU .

Remark. All the equalities here are true for the corresponding constant terms, i.e., we can
replace Z∗, J∗ by Z, J everywhere.

Arithmetic Hecke operators

The rest of this subsection is devoted to treat 〈Z∗(g)t1, ξt2〉 for Proposition 4.6.2. Our
treatment depends on extensions of Hecke operators to the integral model. Let S be a set of
bad places described before the proposition. Then the models XU and YU are smooth away
from S. We will have “good extension” of Z(x) away from S.

For any x ∈ B×f , let Z (x) be the Zariski closure of Z(x) in XU ×OF
XU . If x ∈ (BS

f )
×,

then many good properties of Z (x) are obtained in [Zh1]. For example, it has a canonical
moduli interpretation, and satisfies:

(1) Z (x1) commutes with Z (x2) for any x1, x2 ∈ (BS
f )
×;

(2) Z (x) =
∏

v/∈S Z (xv) for any x ∈ (BS
f )
×;
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(3) For any x ∈ (BS
f )
×, both structure projections from Z (x) to XU are finite everywhere,

and étale above the set of places v with xv ∈ Uv.
Here in (2), Z (xv) means Z (xv1

v), and the product is only for non-archimedean places. We
also use this convention for D(xv) introduced below.

Fix x ∈ (BS
f )
×. Define an arithmetic class D(x) on XU by

D(x) := Z (x)ξ̂ − Ẑ (x)ξ = Z (x)ξ̂ − degZ(x) ξ̂.

Then D(x) is a vertical divisor since it is zero on the generic fibre. We claim that D(x) is
a constant divisor, i.e., the pull-back of an arithmetic divisor D on Spec(OF ). Then it only

depends on d̂eg(D), and sometimes we identify it with this number.
Now we explain why D(x) is a constant divisor. First, D(x) is constant at archimedean

places because the Petersson metric on the upper half plane is invariant under the action of
GL2(R)+. Now we look at non-archimedean places. Both structure morphisms of Z (x) are
étale above S, so the pull-back and push-forward keeps the relative dualizing sheaf above
S. Then the finite part of D(x) is lying above primes not in S. Note that XU is smooth
outside S, its special fibres outside S are irreducible. Hence the finite part of D(x) is a linear
combination of these special fibres which are constant.

The constant divisor D(x) satisfies a “product rule”:

D(x) =
∑

v/∈S
degZ(xv) D(xv), x ∈ (BS

f )
×.

In fact, for any v /∈ S,

Z (x)ξ̂ = Z (xv)(degZ(xv)ξ̂ +D(xv)) = degZ(xv) Z (xv)ξ̂ + degZ(xv) D(xv).

Here Z (xv)D(xv) = degZ(xv) D(xv) because D(xv) is a constant divisor. By induction on
the places, it is easy to get

Z (x) ξ̂ = degZ(x) ξ̂ +
∑

v/∈S
degZ(xv) D(xv).

It gives the product rule.
For any finite place v and positive integer n, denote by

T (pnv ) = {x ∈ B×v : ordvq(x) = n}.
Then T (pnv ) gives the usual Hecke correspondence as a finite sum of some Z(x). In particular,
it makes sense to talk about the extension T (pnv ) to XU if v /∈ S. Denote

D̃(pnv ) := T (pnv )ξ̂ − T̂ (pnv )ξ = T (pnv )ξ̂ − (deg T (pnv ))ξ̂.

Then
D̃(pnv ) =

∑

xv∈Uv\T (pn
v )/Uv

D(xv)

is a constant arithmetic divisor on XU . The following result is a rephrase of Proposition
4.3.2 in [Zh1].
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Lemma 4.6.3.

D̃(pnv ) =
1

κU

(
n

n∑

i=0

N i
v − 2

n∑

i=0

iNn−i
v

)
logNv.

The two parts of Proposition 4.3.2 in [Zh1] give exactly the finite component and the
infinite component of κUDv. Here κU appears due to the normalization L = κUξ. In the
same way, we can have an explicit formula of D(x) for any x ∈ B×f , but we don’t need it
here.

The result perfectly matches the result in Lemma 3.7.3 for the derivative of Whittaker
functions, and they will lead to infinitely many cancellations in the comparison below. We
don’t simplify both results so that we can see that the infinite part (resp. v-adic part) of D̃
corresponds to the special value (resp. special derivative) of Ja,v.

The following result is a consequence of the product rule and the projection formula. It
will be used to decompose the pairing 〈Z∗(g)t1, ξt2〉.

Lemma 4.6.4. For any x ∈ B×f and D ∈ Div(XU,F̄ ), we have

〈Z(x)D, ξ〉 = degZ(xS) 〈Z(xS)D, ξ〉 − degtot(D)
∑

v/∈S
degZ(xv) D(xv).

Here D(xv) is viewed as a constant, and degtot(D) is the sum of the degrees of D on all
geometrically connected components.

Proof. We first reduce the problem to the case that D is defined over F . In deed, since ξ
and Z(x) are defined over F , both sides of the equality are invariant under Galois actions
on D. So it suffices to show the result for the sum of all Galois conjugates of D.

Assume that D is defined over F . By §4.4,

〈Z(x)D, ξ〉 = 〈Z(x)D, ξ̂〉.

Here Z(x)D is the Zariski closure in XU , and we denote the normalized intersection

〈D1, D2〉 := −D1 ·D2

for any arithmetic divisors D1, D2 on XU .
Use the model Z (xS) away from S. We have

Z(x)D = Z(xS)Z(xS)D = Z (xS)Z(xS)D.

The second equality holds because Z (xS) keeps Zariski closure by finiteness of its structure
morphisms. By the projection formula, we get

〈Z(x)D, ξ〉 = 〈Z (xS)Z(xS)D, ξ̂〉 = 〈Z(xS)D, Z (xS)t ξ̂〉.

Here Z (xS)t denotes the transpose of Z (xS) as correspondences.
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We claim that Z (xS)t ξ̂ = Z (xS)ξ̂ as elements in P̂ic(XU)C. It suffices to consider
Z (xv) for any v /∈ S. We first have Z (xv)

t = Z (x−1
v ) by Z(xv)

t = Z(x−1
v ). Since Uv

is maximal, we know that Uvx
−1
v Uv = q(xv)

−1UvxvUv. Then Z(xv) is the composition of
Z(xv)

t with Z(q(xv)). Here Z(q(xv)) acts right multiplication by q(xv), which gives a Galois
automorphism on XU by the reciprocity law. It suffices to show Z (q(xv)) acts trivially on
ξ̂, or equivalently the constant D(q(xv)) = 0. It is true since the automorphism has a finite
order.

Therefore, we have
〈Z(x)D, ξ〉 = 〈Z(xS)D,Z (xS)ξ̂〉.

By the product rule,

Z (xS)ξ̂ = degZ(xS) ξ̂ +
∑

v/∈S
degZ(xS,v) D(xv).

We obtain

〈Z(x)D, ξ〉 = degZ(xS) 〈Z(xS)D, ξ̂〉+
∑

v/∈S
degZ(xS,v) 〈Z(xS)D,D(xv)〉

= degZ(xS) 〈Z(xS)D, ξ〉 − degtot(D)
∑

v/∈S
degZ(xv) D(xv).

Here
〈Z(xS)D,D(xv)〉 = − degtot(D) degZ(xS) D(xv),

because D(xv) is a constant divisor.

Comparison and Approximation

Now we are ready to prove Proposition 4.6.2. By Galois action of t via the reciprocity law,
we have

〈Z∗(g)t1, ξt2〉 = 〈Z∗(g)[t1t−1
2 ], ξ1〉.

On the other hand, we have

J(0, g, r(t1, t2)φ) = J(0, g, r(t1t
−1
2 , 1)φ).

So it suffices to consider 〈Z∗(g)t, ξ1〉 for any t ∈ CU .
After separating components, we get

〈Z∗(g)t, ξ1〉 = 〈Z∗(g)q(1/t)t, ξ1〉 = 〈Z∗(g)q(1/t)t, ξ〉.

It is also equal to 〈Z∗(g)q(1/t)[1], ξ〉 by the Galois action. Hence it only depends on the
geometrically connected component of t in XU .

The following proposition is a direct consequence of Lemma 4.6.4. Before the statement,
we introduce the notation

P (a) = {x ∈ P : q(x) = a}
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for any subset P of a quadratic space defined over a ring R and any a ∈ R. For example,

Bv(a) = {x ∈ Bv : q(x) = a}, a ∈ Fv.
It is compatible with the definition of Bf (a) in §4.2.

Proposition 4.6.5.

〈Z∗(g)t, ξ1〉 = A (g, t)−
∑

v/∈S
D(g, t)(v).

Here

A (g, t) =
∑

u∈µ′U\F×

∑

y∈Bad
f /U1

r(g, (t, 1))φ(y, u)〈yS, ξ〉,

D(g, t)(v) =
∑

u∈µ′U\F×

∑

a∈F×

∑

y∈Bv
f (a)/U1,v

r(g, (t, 1))φv(y, u)Da(g, t, u, φv),

with

Da(g, t, u, φv) =
∑

y∈Kt
v\Bv(a)

r(g, (t, 1))φv(y, u)D(t−1
v y).

Proof. Recall that in §4.2 we have obtained

Z∗(g)q(1/t) =
∑

u∈µ′U\F×

∑

y∈Kt\Bad
f

r(g, (t, 1))φ(y, u)Z(t−1y).

Then Lemma 4.6.4 yields the decomposition

〈Z∗(g)t, ξ1〉 = A ′(g, t)−
∑

v/∈S
D ′(g, t)(v),

where

A ′(g, t) =
∑

u∈µ′U\F×

∑

y∈Kt\Bad
f

r(g, (t, 1))φ(y, u) degZ((tS)−1yS) 〈Z(t−1
S yS)[1], ξ〉,

D ′(g, t)(v) =
∑

u∈µ′U\F×

∑

y∈Kt\Bad
f

r(g, (t, 1))φ(y, u) degZ((tv)−1yv)D(t−1
v yv).

We only need to check that A ′(g, t) = A (g, t) and D ′(g, t)(v) = D(g, t)(v).
First look at A ′(g, t). Follow the way of obtaining the formula for Z∗(g)α[z, β] in §4.2. Use

the coset identity Ut−1yU/U = t−1(Kty/U1), and the equality 〈t−1
S yS, ξ〉 = 〈yS, ξ〉 induced

by Galois conjugation. As for D ′(g, t)(v), write it as

D ′(g, t)(v) =
∑

u∈µ′U\F×

∑

a∈F×

∑

y∈Kt\Bf (a)

r(g, (t, 1))φ(y, u) degZ((tv)−1yv)D(t−1
v yv).

Use the identity Ut−1yU/U = t−1(Kty/U1) away from v.
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The following is a detailed version of Proposition 4.6.2.

Proposition 4.6.6. Assume as in Proposition 4.6.2 that φv is standard for v /∈ S and
degenerate for all v ∈ S.

(1) If v /∈ S, then
D(g, t)(v) = −J ′(0, g, r(t, 1)φ)(v).

(2) There exists a Schwartz function φ′S ∈ S (BS × F×S ) such that

A (g, t) = J(0, g, r(t, 1)(φS ⊗ φ′S)), ∀g ∈ 1SGL2(AS).

(3) If v /∈ S, then there exists a Schwartz function φ′′v ∈ S (Bv × F×v ) such that

J ′(0, g, r(t, 1)φ)(v) = J(0, g, r(t, 1)(φv ⊗ φ′′v)), ∀g ∈ 1vGL2(Av).

Recall that

J ′(0, g, φ)(v) =
1

ζv(2)

∑

u∈µ2
U\F×

∑

a∈F×
J◦

′
1,v(0, d

∗(a)g, au)Jva (0, g, u).

To prepare for the proof, we first rearrange the summations so that they has the same type
as D(g, t)(v). The process is very similar to Proposition 4.2.2 except for special attention
at the place v. Let yau−1 be any fixed element in Bv with norm a. By the local Siegel–Weil
formula,

Jva (0, g, u) = −γv|av|
∫

B1,v

r(g)φv(byau−1 , u)db = −γvvol(U1,v)vol(B1
∞)|av|

∑

y∈Bv
f (au−1)/U1,v

r(g)φv(y, u).

Here γv = ±1 is the Weil index for (Bv, q) which is 1 if and only if Bv is split. It follows that

J ′(0, g, φ)(v)

=− γv
vol(U1)vol(B1

∞)

ζv(2)vol(U1
v )

∑

u∈µ2
U\F×

∑

a∈F×
|a|−1

v J◦
′

1,v(0, d
∗(a)g, au)

∑

y∈Bv
f (au−1)/U1,v

r(g)φv(y, u)

=− 2κ−1
U γv

ζv(2)vol(U1
v )

∑

u∈µ′U\F×

∑

a∈F×
|au|−1

v J◦
′

1,v(0, d
∗(au)g, au2)

∑

y∈Bv
f (a)/U1,v

r(g)φv(y, u).

The summation has the same type as D(g, t)(v).

Now we are ready to prove (1). Since v is unramified, γv = 1 and vol(U1
v ) = ζv(2)

−1. We
have

J ′(0, g, φ)(v) =− 2κ−1
U

∑

u∈µ′U\F×

∑

a∈F×
|au|−1

v J◦
′

1,v(0, d
∗(au)g, au2)

∑

y∈Bv
f (a)/U1,v

r(g)φv(y, u).
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It suffices to show

Da(g, t, u, φv) = 2κ−1
U |au|−1

v J◦
′

1,v(0, d
∗(au)g, au2, r(t)φv). (4.6.1)

The problem is purely local, so all notations mean their local components in this part.
We first consider the case g = 1 and t = 1. Then

Da(1, 1, u, φv) =
∑

y∈K1
v\Bv(a)

φv(y, u)D(y).

It is nonzero only if u ∈ O×Fv
and v(a) ≥ 0. In that case,

Da(1, 1, u, φv) =
∑

y∈K1
v\OBv (a)

D(y) =
∑

y∈Kv\T (p
v(a)
v )

D(y) = D̃(pv(a)v ).

Then (4.6.1) holds in this case by the explicit results in Lemma 4.6.3 and Lemma 3.7.3.
Now we can shown (4.6.1) for general (a, g, t, u). We have already confirmed the case

(a, 1, 1, u). It is easy to extend it to (a, g, 1, u) for all g ∈ GL2(OFv). In fact, GL2(OFv) acts
trivially on φv, and it is easy to see from the definition that both sides of (4.6.1) are the
same as the case g = 1. To extend to general g, use Iwasawa decomposition and consider
the action of P (Fv). It suffices to consider the behavior of both sides under the change
(a, g, t, u)→ (a, g′g, t′t, u) for g′ ∈ P (Fv) and t′ ∈ E×v . The following lemma says that both
sides transform in the same way. It proves (1).

Lemma 4.6.7. The function Da(g, t, u, φv) transfers in the following way:

Da(g, t
′t, u, φv) = Da/q(t′)(g, t, uq(t

′), φv), t′ ∈ E×v ;

Da(n(b)g, t, u, φv) = ψv(uab) Da(g, t, u, φv), b ∈ Fv;
Da(m(c)g, t, u, φv) = |c|2 Da(g, c

−1t, c2u, φv), c ∈ F×v ;

Da(d(c)g, t, u, φv) = |c|−1 Da(g, t, c
−1u, φv), c ∈ F×v .

Furthermore, |au|−1
v J◦

′
1,v(0, d

∗(au)g, au2, r(t)φv) transfers in the same way as a function of
(a, g, t, u).

Proof. We should compare it with Lemma 4.6.7. We only check the first equality. By
definition,

Da(g, t
′t, u, φv) =

∑

y∈Kt′t
v \Bv(a)

r(g, (t′t, 1))φv(y, u)D((t′t)−1y).

Replace y by t′y in the above summation. Then the domainKt′t
v \Bv(a) becomesKt

v\Bv(aq(t
′)−1).

Thus the sum is equal to

∑

y∈Kt
v\Bv(aq(t′)−1)

r(g, (t′t, 1))φv(t
′y, u)D(ty).
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It is equal to Da/q(t′)(g, t, uq(t
′), φv). As for the second function, it suffices to check the

results for

|au|−1
v J1,v(s, d

∗(au)g, au2, r(t)φv) = |au|−
s
2
−1

v Jau,v(s, g, u, r(t)φv).

It can be done similarly.

Now we prove (2). The approximation method is very similar to Corollary 3.4.2. Recall
that

A (g, t) =
∑

u∈µ′U\F×

∑

y∈Bad
f /U1

r(g, (t, 1))φ(y, u)〈yS, ξ〉.

If we did not have the extra factor 〈yS, ξ〉, then the above would be exactly degZ∗(g)q(1/t),

which is equal to the Eisenstein series −1

2
κUJ∗(0, g, r(t, 1)φ) as in Proposition 4.2.2.

In the case here, the extra factor complicates the components at S, but has no impact
at other places. Similar to Corollary 3.4.2, we introduce a new function

φ′S(y, u) := φS(y, u)〈y, ξ〉, (y, u) ∈ B×S × F×S .

It is apparently a Schwartz function of (y, u) ∈ B×S × F×S . Since φS is degenerate, φ′S(y, u)
vanishes when q(y) is closed to zero. Therefore, φ′S actually extends (by zero) to a Schwartz
function on BS × F×S . By Galois conjugation of tS, we have

r(tS, 1)φ′S(y, u) = r(tS, 1)φS(y, u)〈y, ξ〉.

Consider the new series
∑

u∈µ′U\F×

∑

y∈Bad
f /U1

r(g, (t, 1))φS(y, u) r(g, (t, 1))φ′S(y, u).

It is equal to −1
2
κUJ(0, g, r(t, 1)(φ′S ⊗ φS)). And it is equal to the original series if gS = 1.

Thus we have proved that if gS = 1,

A (g, t) = −1

2
κUJ∗(0, g, r(t, 1)(φ′S ⊗ φS)).

The constant term of the right-hand side is a multiple of

∑

u∈µ2
U\F×

r(g, (t, 1))(φ′S ⊗ φS)(0, u).

It is automatically zero as long as S is non-empty. In fact, it has the factor r(t, 1)φ′v(0, u) = 0
by the degeneracy of φv. It follows that

A (g, t) = −1

2
κUJ(0, g, r(t, 1)(φ′S ⊗ φS)), ∀g ∈ 1SGL2(AS).
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It proves (2).
Now we prove (3) by a similar method. Recall

J ′(0, g, φ)(v) = cv
∑

u∈µ′U\F×

∑

a∈F×
|au|−1

v J◦
′

1,v(0, d
∗(au)g, au2)

∑

y∈Bv
f (a)/U1,v

r(g)φv(y, u).

Here cv is some nonzero constant. We claim that there is a Schwartz function φ′′v ∈ S (Bv ×
F×v ) invariant under some open compact subgroup U ′1v of B1

v such that

|au|−1
v J◦

′
1,v(0, d

∗(au), au2) =
∑

y∈Bv(a)/U ′1v

φ′′v(y, u), ∀ a, u ∈ F×v . (4.6.2)

Assume that it is true. Then for gv = 1, the series J ′(0, g, φ)(v) is equal to

cv
∑

u∈µ′U\F×

∑

a∈F×

∑

yv∈Bv(a)/U ′1v

r(gv)φ
′′
v(yv, u)

∑

yv∈Bv
f (a)/U1,v

r(g)φv(yv, u).

This series is a scalar multiple of J(0, g, φv ⊗ φ′′v). We can further extend the identity to the
extra variable t since both sides of (4.6.2) transfers in the same way by the action of t.

It remains to show (4.6.2). Note that the problem is purely local. For convenience, denote

W (a, u) := |au|−1
v J◦

′
1,v(0, d

∗(au), au2).

It is also equal to

|au|−1
v J◦

′
au,v(0, 1, u)−

1

2
|au|−1

v log |au|vJ◦au,v(0, 1, u).

It is zero if v(u) is too big or too small. By Lemma 3.7.3 (2), W (a, u) = 0 identically for all
a ∈ F×v satisfying v(a) > c or v(a) < −c. This is the key to construct φ′′v.

If Bv is a division algebra, define

φ′′v(y, u) =

{
W (q(y), u), (y, u) ∈ B×v × F×v ;

0, y = 0, u ∈ F×v .

It is a schwartz function on Bv × F×v by the vanishing results of W (a, u). By definition, it
satisfies (4.6.2) by setting U ′1v = B1

v.
If Bv is a matrix algebra, the definition above does not give a Schwartz function on

Bv ×F×v since B1
v is non-compact any more. Fix one open and compact subset A of B×v such

that Aa = {y ∈ A : q(y) = a} is nonempty for all a ∈ F×v with W (a, u) 6= 0. Define

φ′′v(y, u) =

{
vol(Aq(y))

−1W (q(y), u), y ∈ A, u ∈ F×v ;

0, otherwise.

The right-hand side of (4.6.2) is essentially an integral on Bv(a). It is easy to see that some
constant multiple of φ′′v satisfies the requirement.
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5 Local heights of CM points

In last section, we have made the decomposition:

〈Z∗(g)t1, t2〉 = −
∑

v

iv(Z∗(g)t1, t2) logNv −
∑

v

jv(Z∗(g)t1, t2) logNv.

We further have

iv(Z∗(g)t1, t2) =

∫

T (F )\T (Af )

iv̄(Z∗(g)tt1, tt2)dt.

The decomposition is valid under the global degeneracy assumption that φ is degenerate
at two different finite places v1, v2 of F which are non-split in E and g ∈ P (Fv1,v2)GL2(Av1,v2).
We will make this assumption throughout this section.

The main goal of this section is to compute iv̄(Z∗(g)t1, t2) and compare it with the local

analytic kernel function K (v)
φ (g, (t1, t2)) appeared in the decomposition of I ′(0, g) represent-

ing the series L′(1/2, π, χ). We will follow the work of Gross–Zagier [GZ] and its extension
in [Zh2]. We divide the situation to the following four cases:

• archimedean case: v is archimedean;

• supersingular case: v non-split in E but split in B;

• superspecial case: v is non-split in both E and B;

• ordinary case: v is split in both E and B.

They are studied in §5.1-5.4 respectively. For archimedean v and “good” supersingular v, we
obtain an explicit formula which agrees with the analytic kernel. For “bad” supersingular
v and all superspecial v, we can still write the local kernel as a pseudo theta series, and
approximate it by a usual theta series under the condition that φv is degenerate. In the
ordinary case, we show that the local kernel vanishes under the global degeneracy assumption.

In the last section §5.5, we will show that jv̄(Z∗(g)t1, t2) can also be approximated by
theta series or Eisenstein series.

5.1 Archimedean case

In this subsection we want to describe local heights of CM points at any archimedean place
v. Denote B = B(v) and fix an identification B(Af ) = Bf . We will use the uniformization

XU,v(C) = B×+\H × B×f /U.

We follow the treatment of Gross-Zagier [GZ]. See also [Zh2].
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Multiplicity function

For any two points z1, z2 ∈ H , the hyperbolic cosine of the hyperbolic distance between
them is given by

d(z1, z2) = 1 +
|z1 − z2|2

2Im(z1)Im(z2)
.

It is invariant under the action of GL2(R). For any s ∈ C with Re(s) > 0, denote

ms(z1, z2) = Qs(d(z1, z2)),

where

Qs(t) =

∫ ∞

0

(
t+
√
t2 − 1 coshu

)−1−s
du

is the Legendre function of the second kind. Note that

Q0(1 + 2λ) =
1

2
log(1 +

1

λ
), λ > 0.

We see that m0(z1, z2) has the right logarithmic singularity.
For any two distinct points of

XU,v(C) = B×+\H ×B×(Af )/U

represented by (z1, β1), (z2, β2) ∈H ×B×(Af ), we denote

gs((z1, β1), (z2, β2)) =
∑

γ∈µU\B×+

ms(z1, γz2) 1U(β−1
1 γβ2).

It is easy to see that the sum is independent of the choice of the representatives (z1, β1), (z2, β2),
and hence defines a pairing on XU,v(C). Then the local height is given by

iv̄((z1, β1), (z2, β2)) = l̃ims→0 gs((z1, β1), (z2, β2)).

Here l̃ims→0 denotes the constant term at s = 0 of gs((z1, β1), (z2, β2)), which converges for
Re(s) > 0 and has meromorphic continuation to s = 0 with a simple pole.

The definition above uses adelic language, but it is not hard to convert it to the classical
language. We first observe that gs((z1, β1), (z2, β2)) 6= 0 only if there is a γ0 ∈ B×+ such that
β1 ∈ γ0β2U , which just means that (z1, β1), (z2, β2) are in the same connected component.
Assuming this, then (z2, β2) = (z′2, β1) where z′2 = γ0z2. we have

gs((z1, β1), (z2, β2)) = gs((z1, β1), (z
′
2, β1)) =

∑

γ∈µU\B×+

ms(z1, γz
′
2) 1U(β−1

1 γβ1) =
∑

γ∈µU\Γ
ms(z1, γz

′
2).

Here we denote Γ = B×+ ∩ β1Uβ
−1
1 . The connected component of these two points is exactly

B×+\H ×B×+β1U/U ≈ Γ\H , (z, bβ1U) 7→ b−1z.
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The stabilizer of H in Γ is exactly Γ ∩ F× = µU . Now we see that the formula is the same
as those in [GZ] and [Zh2].

Next we consider the special case of CM points. For any γ ∈ B×v,+ − E×v , we have

1 +
|z0 − γz0|2

2Im(z0)Im(γz0)
= 1− 2λ(γ).

Here λ(γ) = q(γ2)/q(γ) is introduced at the end of the introduction.
Thus it is convenient to denote

ms(γ) = Qs(1− 2λ(γ)), γ ∈ B×v − E×v .

For any two distinct CM points β1, β2 ∈ CMU , we obtain

gs(β1, β2) =
∑

γ∈µU\B×+

ms(γ) 1U(β−1
1 γβ2),

and
iv̄(β1, β2) = l̃ims→0gs(β1, β2).

Note that ms(γ) is not well-defined for γ ∈ E×. The above summation is understood to
be

gs(β1, β2) =
∑

γ∈µU\B×+ , β−1
1 γβ2∈U

ms(γ).

Then it still makes sense because β1 6= β2 implies that β−1
1 γβ2 /∈ U for all γ ∈ E×. Anyway,

it is safer to write
gs(β1, β2) =

∑

γ∈µU\(B×+−E×)

ms(γ) 1U(β−1
1 γβ2).

Now the right-hand side is well-defined even for β1 = β2. In this case it can be interpreted
as contribution of some local height by an arithmetic adjunction formula, but we don’t need
this fact here since there is no self-intersection in this paper by our degeneracy assumption
of Schwartz functions.

Kernel function

We are going to compute the local height

iv̄(Z∗(g)t1, t2) =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)aiv̄(t1x, t2).

It is well-defined under the global degeneracy assumption which kills the self-intersections.

The goal is to show that it is equal to K
(v)

φ (g, (t1, t2)) obtained in Proposition 3.7.1. We
still assume the global degeneracy assumption.
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Proposition 5.1.1. For any t1, t2 ∈ CU ,

iv̄(Z∗(g)t1, t2) :=
∑

a∈F×
l̃ims→0

∑

y∈µU\(B×+−E×)

r(g, (t1, t2))φ(y)ams(y).

In particular, iv̄(Z∗(g)t1, t2) = K
(v)

φ (g, (t1, t2)).

Proof. By the above formula,

iv̄(Z∗(g)t1, t2) =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)a l̃ims→0

∑

γ∈µU\(B×+−E×)

ms(γ) 1U(x−1t−1
1 γt2)

=
∑

a∈F×
l̃ims→0

∑

γ∈µU\(B×+−E×)

r(g)φ(t−1
1 γt2)ams(γ)

=
∑

a∈F×
l̃ims→0

∑

γ∈µU\(B×+−E×)

r(g, (t1, t2))φ(γ)ams(γ).

Here the second equality is obtained by replacing x by t−1
1 γt2.

We want to compare the above result with the holomorphic projection

K
(v)

φ (g, (t1, t2)) =
∑

a∈F×
l̃ims→0

∑

y∈µU\(B×+−E×)

r(g, (t1, t2))φ(y)a kv,s(y)

computed in Proposition 3.7.1.
It amounts to compare

ms(y) = Qs(1− 2λ(y))

with

kv,s(y) =
Γ(s+ 1)

2(4π)s

∫ ∞

1

1

t(1− λv(y)t)s+1
dt.

By the result of Gross-Zagier,
∫ ∞

1

1

t(1− λt)s+1
dt = 2Qs(1− 2λ) +O(|λ|−s−2), λ→ −∞,

and the error term vanishes at s = 0. We conclude that

K
(v)

φ (g, (t1, t2)) = iv̄(Z∗(g)t1, t2).

5.2 Supersingular case

Let v be a finite prime of F non-split in E but split in B. We consider the local pairing
iv̄, which depends on the fixed embeddings H ⊂ Ē ⊂ Ēv and the model YU over OH . It
is actually depends only on the local integral model YU,w = YU ×OH

OHw where w is the
place of H induced by the embeddings. We will use the local multiplicity functions treated
in Zhang [Zh2]. For more details, we refer to that paper.
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Multiplicity function

Let B = B(v) be the nearby quaternion algebra over F . Make an identification B(Av) = Bv.
Then the set of supersingular points on XK over v is parameterized by

SU = B×\(F×v / det(Uv))× (Bv×
f /U v).

We have a natural isomorphism

v̄ : CMU = E×\B×f /U −→ B×\(B× ×E× B×v /Uv)× Bv×
f /U v

sending β to (1, βv, β
v). The reduction map CMU → SU is given by taking norm on the first

factor:
q : B× ×E× B×v −→ F×v , (b, β) 7−→ q(b)q(β).

The intersection pairing is given by a multiplicity function m on

HUv := B×v ×E×v B×v /Uv.

More precisely, the intersection of two points (b1, β1), (b2, β2) ∈HUv is given by

gv((b1, β1), (b2, β2)) = m(b−1
1 b2, β

−1
1 β2).

The multiplicity function m is defined everywhere in HUv except at the image of (1, 1). It
satisfies the property

m(b, β) = m(b−1, β−1).

Lemma 5.2.1. For any two distinct CM-points β1 ∈ CMU and t2 ∈ CU , their local height
is given by

iv̄(β1, t2) =
∑

γ∈µU\B×
m(γt2v, β

−1
1v )1Uv((βv1)

−1γtv2).

Proof. Like the archimedean case, we compute the height by pulling back to HUv × Bv×
f .

The height is the sum over γ ∈ µU\B× of the intersection of (1, β1v, β
v
1) with γ(1, t2v, t

v
2) =

(γ, t2v, γt
v
2) = (γt2v, 1, γt

v
2) on HUv × Bv×

f .

Analogous to the archimedean case, the summation is well-defined for all β1 6= t2. In
deed, assume that there is a γ ∈ E× such that (βv1)

−1γtv2 ∈ U v and m(γt2v, β
−1
1v ) is not well-

defined. Then we must have γt2v ∈ E×v and β−1
1v γt2v ∈ U v. It forces γ ∈ E× and γt2 ∈ β1U ,

which implies that β1 = t2 ∈ CMU .

The kernel function

Now we compute

iv̄(Z∗(g)t1, t2) =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)aiv̄(t1x, t2).
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As in the archimedean case, we assume that φ is degenerate at two different finite places
v1, v2 of F which are non-split in E, and only consider g ∈ P (Fv1,v2)GL2(Av1,v2).

By the above formula above, we have

iv̄(Z∗(g)t1, t2) =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)a
∑

γ∈µU\B×
m(γt2, x

−1t−1
1 )1Uv(x−1t−1

1 γt2).

Replace xv by t−1
1 γt2 and then get

∑

a∈F×

∑

γ∈µU\B×
r(g)φv(t−1

1 γt2)a
∑

xv∈B×v /Uv

r(g)φv(xv)am(t−1
1 γt2, x

−1)

=
∑

u∈µ2
U\F×

∑

γ∈B×
r(g, (t1, t2))φ

v(γ, u)
∑

xv∈B×v /Uv

r(g)φv(xv, uq(γ)/q(xv))m(t−1
1 γt2, x

−1).

For convenience, we introduce:

Notation.

mφv(y, u) =

∫

B×v
m(y, x−1)φv(x, uq(y)/q(x))dx

=

∫

B×v
m(y−1, x)φv(x, uq(y)/q(x))dx, (y, u) ∈ (Bv − Ev)× F×v .

Notice that mφv(y, u) is well-defined for y /∈ Ev since m(y, x−1) has no singularity for
such y. By this notation, we obtain:

Proposition 5.2.2.

iv̄(Z∗(g)t1, t2) =
∑

u∈µ2
U\F×

∑

y∈B−E
r(g, (t1, t2))φ

v(y, u) mr(g,(t1,t2))φv(y, u).

Here we can change the summation to y ∈ B−E since the contribution of y ∈ E is zero
by the degeneracy assumption on our Schwartz functions. We should compare the following
result with Lemma 3.3.2 for kφv(g, y, u).

Lemma 5.2.3. The function mφv(y, u) behaves like Weil representation under the action of
P (Fv)× (E×v × E×v ) on (y, u). Namely,

mr(g,(t1,t2))φv(y, u) = r(g, (t1, t2))mφv(y, u), (g, (t1, t2)) ∈ P (Fv)× (E×v × E×v ).

More precisely,

mr(m(a))φv(y, u) = |a|2mφv(ay, u), a ∈ F×v
mr(n(b))φv(y, u) = ψ(buq(y))mφv(y, u), b ∈ Fv
mr(d(c))φv(y, u) = |c|−1mφv(y, c

−1u), c ∈ F×v
mr(t1,t2)φv(g, y, u) = mφv(t

−1
1 yt2, q(t1t

−1
2 )u), (t1, t2) ∈ E×v × E×v
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Proof. They follow from basic properties of the multiplicity function m(x, y). We only verify
the first identity:

mr(m(a))φv(y, u) =

∫

GL2(Fv)

m(y−1, x)r(gv)φv(ax, uq(y)/q(x))|a|2dx

= |a|2
∫

GL2(Fv)

m(y−1, a−1x)r(gv)φv(x, uq(y)/q(a
−1x))dx

= |a|2
∫

GL2(Fv)

m((ay)−1, x)r(gv)φv(x, uq(ay)/q(x))dx

= |a|2mφv(ay, u).

Unramified Case

Fixing an isomorphism Bv = M2(Fv). In this subsection we compute mφv(y, u) in the
following unramified case:

1. φv is the characteristic function of M2(OFv)×O×Fv
;

2. Uv is the maximal compact subgroup GL2(OFv).

By [Zh2], there is a decomposition

GL2(Fv) =
∞∐

c=0

E×v hcGL2(OFv), hc =

(
1 0
0 $c

)
(5.2.1)

We may assume that β = hc. The following result is Lemma 5.5.2 in [Zh2]. There is a small
mistake in the original statement. Here is the corrected one.

Lemma 5.2.4. The multiplicity function m(b, β) 6= 0 only if q(b)q(β) ∈ O×Fv
. In this case,

assume that β ∈ E×v hcGL2(OFv). Then

m(b, β) =





1
2
(ordvλ(b) + 1) if c = 0;

N1−c
v (Nv + 1)−1 if c > 0, Ev/Fv is unramified;

1
2
N−cv if c > 0, Ev/Fv is ramified.

Proposition 5.2.5. The function mφv(y, u) 6= 0 only if (y, u) ∈ OBv ×O×Fv
. In this case,

mφv(y, u) =
1

2
(ordvq(y2) + 1).

Here y = y1 + y2 is the orthogonal decomposition introduced at the end of the introduction.
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Proof. We will use Lemma 5.2.4. Recall that

mφv(y, u) =
∑

x∈GL2(Fv)/Uv

m(y−1, x)φv(x, uq(y)/q(x)).

Note thatm(y−1, x) 6= 0 only if ordv(q(x)/q(y)) = 0. Under this condition, φv(x, uq(y)/q(x)) 6=
0 if and only if u ∈ O×Fv

and x ∈M2(OFv). It follows that mφv(y, u) 6= 0 only if u ∈ O×Fv
and

n = ord(q(y)) ≥ 0. Assuming these two conditions, we have

mφv(y, u) =
∑

x∈M2(OFv )n/Uv

m(y−1, x),

where M2(OFv)n denotes the set of integral matrices whose determinants have valuation n.
Now we use decomposition (2.3), we obtain

mφv(y, u) =
∞∑

c=0

m(y−1, hc)vol(E×v hcGL2(OFv) ∩M2(OFv)n).

We first consider the case that Ev/Fv is unramified. The set in the right hand side is
non-empty only if n− c is even and non-negative. In this case it is given by

$(n−c)/2O×Ev
hcUv.

The volume of this set is 1 if c = 0 and N c−1
v (Nv + 1) if c > 0 by the computation of [Zh2,

p. 101]. It follows that, for c > 0 with 2 | (n− c),

m(y−1, hc)vol(E×v hcGL2(OFv) ∩M2(OFv)n) = 1.

If n is even,

mφv(y, u) =
1

2
(ordvλ(y) + 1) +

n

2
=

1

2
(ordvq(y2) + 1).

If n is odd, mφv(y, u) =
1

2
(n+ 1). It is easy to see that ordvq(y1) is even and ordvq(y2) is

odd. Then n = ordvq(y2), since n = ordvq(y) = min{ordvq(y1), ordvq(y2)} is odd. We still
get mφv(y, u) = 1

2
(ordvq(y2) + 1) in this case.

Now assume that Ev/Fv is ramified. Then the condition that 2 | (n− c) is unnecessary,
and vol(E×v hcGL2(OFv) ∩M2(OFv)n) = N c

v . Thus

mφv(y, u) =
1

2
(ordvλ(y) + 1) + n · 1

2
=

1

2
(ordvq(y2) + 1).

We immediately see that in the unramified case, mφv matches the analytic kernel kφv

computed in Proposition 3.4.1.
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Proposition 5.2.6. Let v be unramified as above with further conditions:

• Ev/Fv is ramified;

• the local different dv is trivial.

Then
kr(t1,t2)φv(g, y, u) = mr(g,(t1,t2))φv(y, u) logNv,

and thus
K (v)
φ (g, (t1, t2)) = iv̄(Z∗(g)t1, t2) logNv.

Proof. The case (g, t1, t2) = (1, 1, 1) follows from the above result and Corollary 3.4.1. It is
also true for g ∈ GL2(OFv) since it is easy to see that such g has the same kernel functions
as 1 for standard φv. For the general case, apply the action of P (Fv) and E×v × E×v . The
equality follows from Proposition 3.3.2 and Lemma 5.2.3.

Ramified case

Now we consider general Uv. By Proposition 5.2.5 for the unramified case, we know that mφv

may have logarithmic singularity around the boundary Ev × F×v . The singularity is caused
by self-intersections in the computation of local multiplicity. However, we will see that there
is no singularity if φv ∈ S 0(Bv × F×v ) is degenerate.

Proposition 5.2.7. Assume that φv ∈ S 0(Bv × F×v ) and it is invariant under the right
action of Uv. Then mφv(y, u) can be extended to a Schwartz function for (y, u) ∈ Bv × F×v .

Proof. By the choice of φv, there is a constant c > 0 such that φv(x, u) 6= 0 only if −c <
v(q(x)) < c and −c < v(u) < c. Recall that

mφv(y, u) =

∫

B×v
m(y−1, x)φv(x, uq(y)/q(x))dx.

In order that m(y−1, x) 6= 0, we have to make q(y)/q(x) ∈ q(Uv) and thus v(q(y)) =
v(q(x)). It follows that φv(x, uq(y)/q(x)) 6= 0 only if −c < v(u) < c. The same is true for
mφv(y, u) by looking at the integral above. Then it is easy to see that mφv(y, u) is Schwartz
for u ∈ F×v .

On the other hand, mφv(y, u) 6= 0 only if −c < v(q(y)) < c, since φv(x, uq(y)/q(x)) 6= 0
only if −c < v(q(x)) < c. Extend mφv to Bv×F× by taking zero outside B×v ×F×. We only
need to show that it is locally constant in B×v × F×.

We have φv(EvUv, F
×
v ) = 0 by the degeneracy assumption and the invariance of φv under

Uv. Thus

mφv(y, u) =

∫

B×v
m(y−1, x)(1− 1E×v Uv

(x))φv(x, uq(y)/q(x))dx.

It is locally constant in B×v × F×v , since m(y−1, x)(1 − 1E×v Uv
(x)) is locally constant as a

function on B×v × B×v . This completes the proof.
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As in the analytic case, we want to approximate the above pseudo-theta series for
iv̄(Z∗(g)t1, t2) by the usual theta series

θ(g, (t1, t2),mφv ⊗ φv) =
∑

u∈µ2
K\F×

∑

y∈V
r(g, (t1, t2))mφv(y, u) r(g, (t1, t2))φ

v(y, u).

The following result is parallel to Corollary 3.4.2.

Corollary 5.2.8. Assume the the global degeneracy assumption and that φ is degenerate at
v. Then

iv̄(Z∗(g, φ)t1, t2) = θ(g, (t1, t2),mφv ⊗ φv), ∀g ∈ 1v,v1,v2GL2(Av,v1,v2).

5.3 Superspecial case

Let v be a finite prime of F non-split in both B and E, and we consider the local height
iv̄(Z∗(g)t1, t2). The Shimura curve always has a bad reduction at v due to the ramification
of the quaternion algebra. We only control the singularities as in Proposition 5.2.7. It is
enough for approximation since there are only finitely many places non-split in B.

As in the supersingular case, we assume that φ is degenerate at two different finite places
v1, v2 of F which are non-split in E, and only consider g ∈ P (Fv1,v2)GL2(Av1,v2). Most of the
definitions and computations are similar to the supersingular case, and we will mainly them.
Meanwhile, we will pay special attention to the parts that are different to the supersingular
case.

Kernel function

Denote by B = B(v) the nearby quaternion algebra. We fix identifications Bv ' M2(Fv)
and B(Av

f ) ' Bv
f . The intersection pairing is given by a multiplicity function m on

HUv := B×v ×E×v B×v /Uv.

More precisely, the intersection of two points (b1, β1), (b2, β2) ∈HUv is given by

gv((b1, β1), (b2, β2)) = m(b−1
1 b2, β

−1
1 β2).

The multiplicity function m is defined everywhere on HUv except at the image of (1, 1). It
satisfies the property

m(b, β) = m(b−1, β−1).

For any two distinct CM-points β1 ∈ CMU and t2 ∈ CU , their local height is given by

iv̄(β1, t2) =
∑

γ∈µU\B×
m(γt2v, β

−1
1v )1Uv((βv1)

−1γtv2).

Analogous to Proposition 5.2.2, we have the following result.
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Proposition 5.3.1. For g ∈ P (Fv1,v2)GL2(Av1,v2),

iv̄(Z∗(g)t1, t2) =
∑

u∈µ2
U\F×

∑

y∈B−E
r(g, (t1, t2))φ

v(y, u) mr(g,(t1,t2))φv(y, u).

Here we use the same notation:

mφv(y, u) =

∫

B×v
m(y−1, x)φv(x, uq(y)/q(x))dx, (y, u) ∈ (Bv − Ev)× F×v .

Lemma 5.2.3 is still true. It says that the action of P (Fv)× (E×v ×E×v ) on mr(g,(t1,t2))φv(y, u)
behaves like Weil representation.

The following is a basic result used to control the singularity of the series. Its proof is
given in the next two subsections.

Lemma 5.3.2. (1) If v is unramified in E, then m(b, β) 6= 0 only if

ordv(q(b)q(β)) = 0, b ∈ F×v GL2(OFv).

(1) If v is ramified in E, then m(b, β) 6= 0 only if

ordv(q(b)q(β)) = 0, b ∈ F×v GL2(OFv)
⋃(

1
$v

)
F×v GL2(OFv).

The main result below is parallel to Proposition 5.2.7.

Proposition 5.3.3. Assume φv ∈ S 0(Bv × F×v ) is invariant under the right action of Uv.
Then mφv(y, u) can be extended to a Schwartz function for (y, u) ∈ Bv × F×v .

Proof. The proof is very similar to Proposition 5.2.7. By the argument of Proposition 5.2.7,
there is a constant C > 0 such that mφv(y, u) 6= 0 only if −C < v(q(y)) < C and −C <
v(u) < C. Extend mφv to Bv × F× by taking zero outside B×v × F×. The same method
shows that it is locally constant on B×v × F×. It is compactly supported in y by Lemma
5.3.2 since v(q(y)) is bounded.

As in the analytic case and the supersingular case, denote

θ(g, (t1, t2),mφv ⊗ φv) =
∑

u∈µ2
K\F×

∑

y∈V
r(g, (t1, t2))mφv(y, u) r(g, (t1, t2))φ

v(y, u).

Then it approximates the original series as in Corollary 3.4.2 and Corollary 5.2.8.

Corollary 5.3.4. Assume the the global degeneracy assumption and that φ is degenerate at
v. Then

iv̄(Z∗(g, φ)t1, t2) = θ(g, (t1, t2),mφv ⊗ φv), ∀g ∈ 1v,v1,v2GL2(Av,v1,v2).
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Support of the multiplicity function: unramified quadratic extension

Here we verify Lemma 5.3.2 assuming that v is unramified in E. The case that v is ramified
in E is slightly different and considered next subsection. The idea is very simple: two points
in HUv = B×v ×E× B×v /Uv has a nonzero intersection only if they specializes to the same
irreducible component of the special fibre in the related formal neighborhood.

We first look at the case of full level, for which the integral model is very clear by
the Cherednik-Drinfeld uniformization. We can easily have an explicit expression for the
multiplicity function, but we don’t need it in this paper.

Assume that Uv = O×Bv
is maximal and U v is sufficiently small. By the reciprocity law,

all points in CMU are defined over Êur
v , the completion of the maximal unramified extension

of Ev. We have Êur
v = F̂ ur

v since Ev is unramified over Fv. In particular, the field Hw is
unramified over Fv, and the model YU,w = XU ×OF

OHw since the later is still regular. It
suffices to compute the intersections over XU ×OF

OF̂ur
v

.
The rigid analytic space Xan

U has the uniformization

Xan
U ⊗̂F̂ ur

v = B×\(Ω⊗̂F̂ ur
v )× Z× Bv×

f /U v.

Here Ω is the rigid analytic upper half plane over Fv. More importantly, it has the integral
version

X̂U⊗̂OF̂ur
v

= B×\(Ω̂⊗̂OF̂ur
v

)× Z× Bv×
f /U v.

Here X̂U denotes the formal completion of the integral model XU along the special fibre over
v, and Ω̂ is the formal model of Ω over OFv obtained by successive blowing-ups of rational
points on the special fibres of the scheme P1

OFv
.

The formal model Ω̂ is regular and semistable. Its special fibre is a union of P1’s indexed
by scalar equivalence class of OFv -lattices of F 2

v , and acted transitively by GL2(Fv). Hence
these irreducible components are parametrized by

GL2(Fv)/F
×
v GL2(OFv).

It follows that the set VU of irreducible components of XU ×OF̂ur
v

can be indexed as

VU = B×\(GL2(Fv)/F
×
v GL2(OFv))× Z× Bv×

f /U v.

Consider the set of CM-points

CMU = E×\B×(Af )/U = B×\(B× ×E× B×v /Uv)× Bv×
f /U v.

The embedding CMU → Xan
U is given by

HUv−→(Ω⊗̂F̂ ur
v )× Z, (b, β) 7−→ (bz0, ordv(q(b)q(β))).

Here HUv = B×v ×E× B×v /Uv is the space where the multiplicity function is defined, and z0

is a point in Ω(Ev) fixed by E×v . Since all CM-points are defined over F̂ ur
v , their reductions

are smooth points. The reduction map CMU → VU is given by the B×v -equivariant map

HUv−→(GL2(Fv)/F
×
v GL2(OFv))× Z, (b, β) 7−→ (bb0, ordv(q(b)q(β))).
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Here b0 is represents the irreducible component of the reduction of z0.
Consider the multiplicity function m(b, β). It is equal to the intersection of Zariski

closures of the points (b, β) and (1, 1) in (Ω̂⊗̂OF̂ur
v

)×Z. If their intersection is nonzero, they
have to lie in the same irreducible component on the special fibre. It is true if and only if
b ∈ F×v GL2(OFv) and ordv(q(b)q(β)) = 0. It gives the lemma.

Next, we assume that Uv = 1 + prvOBv is general. Denote U0 = O×Bv
× U v. By the

construction in §4.5, there is a morphism YU,w → XU0,v. It induces a map VU → VU0 on
the sets of irreducible components on the special fibres. Composing with the reduction map
CMU → VU , we obtain a map CMU → VU0 which is also the composition of CMU → CMU0

and CMU0 → VU0 . Hence it is induced by the B×v -equivariant map

HUv−→(GL2(Fv)/F
×
v GL2(OFv))× Z, (b, β) 7−→ (bb0, ordv(q(b)q(β))).

It has the same form as above. Then m(b, β) is nonzero only if (b, β) and (1, 1) has the same
image in the map, which still implies ordv(q(b)q(β)) = 0 and b ∈ F×v GL2(OFv).

Support of the multiplicity function: ramified quadratic extension

Assume that v is ramified in E. We consider Lemma 5.3.2. Similar to the unramified case,
the general case essentially follows from the case of full level.

We first assume that Uv = O×Bv
is maximal. Then all points in CMU are still defined over

Êur
v , and Hw ⊂ Êur

v . But Êur
v is a quadratic extension of F̂ ur

v this time. The model YU,w is
obtained from X ×OF

OHw by blowing-up all the ordinary double points on the special fibre.

We consider uniformizations over Êur
v . The uniformization on the generic fibre does not

change:
Xan
U ⊗̂Êur

v = B×\(Ω′⊗̂Êur
v )× Z× Bv×

f /U v.

Here Ω′ = Ω⊗̂Ev. Let Ω̂′ be the blowing-up of all double points on the special fibre of

Ω̂⊗̂OEv . It is regular and semistable. Then the formal completion of ŶU,w along its special
fibre is uniformized by

ŶU,w⊗̂OÊur
v

= B×\(Ω̂′⊗̂OÊur
v

)× Z× Bv×
f /U v.

The special fibre of Ω̂′ consists of the strict transforms of the irreducible components
on the special fibre of Ω̂ and exceptional components coming from the blowing-up. The
reduction map sends CMU to the set V ′U of exceptional components. The exceptional com-

ponents are indexed by double points in Ω̂, and each double point corresponds to a pair
of adjacent lattices in F 2

v . The action of GL2(Fv) on the double points is transitive. Then
V ′U
∼= GL2(Fv)/Sv where Sv is the stabilizer of any double point.
Similar to the unramified case, the reduction map CMU → V ′U is given by the GL2(Fv)-

equivariant map

HUv−→(GL2(Fv)/Sv)× Z, (b, β) 7−→ (bb0, ordv(q(b)q(β))).
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Use the same argument that two points intersects on the special fibre if and only if they
reduce to the same irreducible component. We see that m(b, β) 6= 0 only if b ∈ Sv and
ordv(q(b)q(β)) = 0. It suffices to bound Sv.

Take Sv to be the stabilizer of the double point corresponding to the edge between the

lattices OFv ⊕ OFv and OFv ⊕ $vOFv . The action of hv =

(
0 1
$v 0

)
switch these two

lattices. Then it is easy to see that

Sv ⊂ F×v GL2(OFv) ∪ hvF×v GL2(OFv).

The result is verified in this case.
We remark that the group Sv is generated by the center F×v , the element hv, and the

subgroup

Γ0(pv) =

{(
a b
c d

)
∈ GL2(OFv) : c ∈ pv

}
.

Now we consider the general case Uv = 1 + prvOBv . It is similar to the unramified case.
Still compare it with U0 = O×Bv

× U v. The reduction map CMU → V ′U0 is given by the
B×v -equivariant map

HUv−→(GL2(Fv)/Sv)× Z, (b, β) 7−→ (bb0, ordv(q(b)q(β))).

The multiplicity function m(b, β) is nonzero only if ordv(q(b)q(β)) = 0 and b ∈ F×v GL2(OFv).

5.4 Ordinary case

In this subsection we consider the case that v is a finite prime of F split in E. The local
height is expected to vanish because there is no corresponding v-part in the analytic kernel
in this case.

Proposition 5.4.1. Under the global degeneracy assumption, iv̄(Z∗(g)t1, t2) = 0.

Let ν1 and ν2 be the two primes of E lying over v. They corresponds to two places w1

and w2 of H via our fixed embedding Ē ↪→ F̄v. For ` = 1, 2, the intersection multiplicity
iν̄`

is computed on the model YU ×OH
OĒν`

where the fibre product is taken according to

the fixed inclusions H ⊂ Ē ⊂ Ēν`
. It is actually a base change of the local integral model

YU,w = YU ×OH
OHw for w a place of H induced by ν`.

By the embedding Ev → Bv we see that Bv is split. Fix an identification Bv
∼= M2(Fv)

under which Ev =

(
Fv

Fv

)
. Assume that ν1 corresponds to the ideal

(
Fv

0

)
and ν2

corresponds to

(
0

Fv

)
of Ev. It suffices to show that iν̄1(Z∗(g)t1, t2) = 0.

We still make use of results of [Zh2]. The reduction map of CM-points to ordinary points
at ν1 is given by

E×\B×f /U −→ E×\(N(Fv)\GL2(Fv))× Bv×
f /U.
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The intersection multiplicity is a function gv : (N(Fv)Uv/Uv)
2 → R. An explicit expression

of gv for general Uv are proved in [Zh2, Lemma 6.3.2]. But we don’t need it here. The local
height pairing of two distinct CM points β1, β2 ∈ E×\B×f /U is given by

iν̄1(β1, β2) =
∑

γ∈µU\E×
gν1(β1, γβ2)1Uv(β−1

1 γβ2).

Unlike other cases, the above summation has nothing to do with the nearby quaternion
algebra. It is only a “small” sum for γ ∈ E. This is the key for the the vanishing of the local
height series.

Now we can look at

iν̄1(Z∗(g)t1, t2) =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)a
∑

γ∈µU\(E×−t1xUvt
−1
2 )

gν1(t1x, γt2)1Uv(x−1t−1
1 γt2).

A nonzero term has to satisfy xv ∈ t−1
1 γt2U

v. Then r(g)φ(x)a has a factor

r(gv1)φv1(x)a = r(gv1)φv1(t
−1
1 γt2)a.

But we know it is zero for g ∈ P (Fv1) since t−1
1 γt2 ∈ Ev1 and φv1 is degenerate.

5.5 The j -part

Now we consider jv̄(Z∗(g)t1, t2) for a non-archimedean place v of F . It is nonzero only if XU

has a bad reduction at v. We will show that it can be approximated by Eisenstein series or
theta series by the global degeneracy assumption that φ is degenerate at v1, v2 and the local
degeneracy assumption that φ is degenerate at v.

The pairing jv̄(Z∗(g)t1, t2) is the average of jν̄(Z∗(g)t1, t2) for each non-archimedean place
ν of E lying over v. Similar to the computation of the i-part, the intersection is computed on
the model YU,w introduced in §4.5. Here w is the place of H induced by ν̄. By the definition
in §4.4,

jν̄(Z∗(g)t1, t2) =
1

[H : F ]
Z∗(g)t1 · Vt2

Here Z∗(g)t1 is the Zariski closure in YU,w and Vt2 is a linear combination of irreducible

components in the special fibres of YU,w which gives the ξ̂-admissible arithmetic extension
of t2.

It suffices to treat (Z∗(g)t, C) for any t ∈ CU and any irreducible component C in special

fibre of YU,w. Here we use the notation (D,C) =
1

[H : F ]
D · C for convenience. It is

essentially a question about the reduction of CM-points in CMU to irreducible components
on the special fibre on the model YU,w ×OĒν

. Many cases have been described explicitly in
[Zh2].
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By the construction in §4.5, there is a morphism YU,w → XU0,v, where U0 = O×Bv
× U v.

By this map, we classify the irreducible component C on the special fibre into the following
three categories:

• C is ordinary if the image of C in XU0,v is not a point.

• C is supersingular if v is split B and C maps to a point in XU0,v. Notice this point
must be supersingular.

• C is superspecial if v is non-split in B.

Let V ord
U , V sing

U , and V spe
U denote the set of these components.

Ordinary Components

We first consider (Z∗(g)t, C) in the case that C is an ordinary component. It is nonzero only
if points in CMU reduce to ordinary components, which happens exactly when E is split
at v. Let ν1, ν2 be the two places of E above v, and we use the convention of the splitting
Ev = Fv ⊕ Fv at the beginning of §5.4.

It suffices to consider jν̄1 . We will see that it can be approximated by the Eisenstein
series J in some way. The treatment is very similar to Proposition 4.2.2 by separating
geometrically connected components.

By Lemma 5.4.2 in [Zh2], the ordinary components are parameterized by

V ord
U = F×+ \A×f /q(U)× P (Fv)\GL2(Fv)/Uv.

Note that the first double coset is exactly the set of geometrically connected components.
The reduction CMU−→V ord

U is given by the natural map:

E×\B×f /U −→ F×+ \A×f /q(U)× P (Fv)\GL2(Fv)/Uv,

g 7−→ (det g, gv).

For any β ∈ CMU , the intersection (β,C) 6= 0 only if β and C are in the same geomet-
rically connected component. Once this is true, it is given by a locally constant function lC
for βv ∈ B×v . Moreover, the function lC factors through P (Fv)\GL2(Fv)/Uv. In summary,
we have

(β,C) = lC(βv)1F×+ q(βC)q(U)(q(β)).

Here βC ∈ B×f is any element such that q(βC) gives the geometrically connected component
containing C.

Therefore, we have
(Z∗(g)t, C) = (Z∗(g)αt, C)

where α = q(t)−1q(βC). By the result in §4.2,

Z∗(g)αt =
∑

u∈µ′U\F×

∑

y∈Bad
f /U1

r(g, (β−1
C t, 1))φ(y, u) [βCy].
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Thus

(Z∗(g)t, C) =
∑

u∈µ′U\F×

∑

a∈F×+

∑

y∈Bf (a)/U1

r(g, (β−1
C t, 1))φ(y, u)lC(βCy).

Proposition 4.2.2 can be viewed as the case that lC ≡ 1, in which case we have shown that

the above the Eisenstein series is equal to the Eisenstein series −1

2
κUJ∗(0, g, r(β

−1
C t, 1)φ).

In the case here, the extra factor lC complicates the v-adic component of the Schwartz
function, but has no impact at other places. The function

lφv(y, u) = lC,φv(y, u) := φ(y, u)lC(y)

is still a Schwartz function of (y, u) ∈ Bv × F×v since lC is smooth. Consider the new series

∑

u∈µ′U\F×

∑

a∈F×+

∑

y∈Bf (a)/U1

r(g, (β−1
C t, 1))φv(y, u)r(g, (β−1

C t, 1))lφv(y, u).

It is equal to the original (Z∗(g)t, C) if gv = 1, and we can check that it is actually true
for all gv ∈ P (Fv). Here we need the fact that lC is invariant under the left action of
T (Fv) ⊂ P (Fv). On the other hand, it is equal to a scalar multiple of the Einsenstein series
J∗(0, g, r(tβ

−1
C , 1)(φv ⊗ lφv)) since Proposition 4.2.2 applies to it. Therefore, we have shown

that

(Z∗(g)t, C) = −1

2
κUJ∗(0, g, r(β

−1
C t, 1)(φv ⊗ lφv)), ∀g ∈ P (Fv)GL2(Av).

Now we look at the constant term

J0(0, g, r(β
−1
C t, 1)(φv ⊗ lφv)) =

∑

u∈µ2
U\F×

r(g, (β−1
C t, 1))(φv ⊗ lφv)(0, u).

It automatically zero if gv ∈ P (Fv) since in the case r(g, (β−1
C t, 1))lφv(0, u) = 0 by the

degeneracy assumption of φv. Hence, we end up with

(Z∗(g, φ)t, C) = −1

2
κUJ(0, g, r(β−1

C t, 1)(φv ⊗ lφv)), ∀g ∈ P (Fv,v1,v2)GL2(Av,v1,v2).

It is approximated by an Eisenstein series.

Supersingular components

Now we consider (Z∗(g)t, C) in the case that C is a supersingular component. It is nonzero
only if points in CMU reduce to supersingular components, which happens exactly when
both B and E are non-split at v. The treatment is similar to §5.2. Denote B = B(v) and
fix an isomorphism B(Av

f ) ' Bv
f as usual.
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The key is to characterize the reduction map

CMU−→V sing
U −→SU0 .

Here SU0 is the set of supersingular points in XU0,v. Recall that

CMU = E×\B×f /U = B×\(B× ×E× B×v )× (Bv
f )
×/U ↪→ B×\Hv × (Bv

f )
×/U

where Hv = B×v ×E×v B×v . We also have the parametrization

SU0 = B×\B×f /U0 = B×\F×v × (Bv
f )
×/U0.

Then the reduction map CMU → SU0 is given by product of determinants:

Hv−→F×v , (b, β) 7−→ q(b)q(β).

Fix one supersingular point z on the special fibre of XU0,v. The formal completion Ω0

of XU0,v along z is isomorphic to the universal neighborhood of the formal OFv -module of

height two. Then the formal completion X̂U0,v of XU0,v along its supersingular locus SU0 is
given by

X̂U0,v = B×0 \Ω0 × (Bv
f )
×/U v = B×\Ω0 × (Bv

f )
×/U v

where B×0,v = {b ∈ Bv : ordvq(b) = 0}, B×0 = B ∩B×0,v, and Ω0 = B×v ×B×0,v
Ω0.

Let Ω̃ be the minimal desingularization of Ω0⊗̂OHw . It admits an action by B×v × Uv.
Then the formal completion of YU,w along the union of fibers in V sing

U can be described as

ŶU = B×\Ω̃× (Bv
f )
×/U.

Let Ṽ be the set of irreducible components on the special fibre of Ω̃. It also admits an action
by B×v × Uv. Then we have a description

V sing
U = B×\Ṽ × (Bv

f )
×/U.

Our conclusion is that the map

CMU−→V sing
U −→SU0

is given by (B×v × Uv)-equivariant maps

Hv−→Ṽ −→F×v .

We are now applying the above result to compute the intersection pairing (Z∗(g)t, C).

It is very similar to our treatment of the i-part. Let (C0, βC) ∈ Ṽ × (Bv
f )
× be a couple

representing C ∈ V sing
U . The intersection with C0 defines a locally constant function lC0 on
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HUv = B×v ×E×v B×v /Uv. Unlike the multiplicity function m, lC0 has no singularity on HUv .
For any CM-point β ∈ CMU , the intersection pairing is given by

(β,C) =
∑

γ∈µU\B×
lC0(γ, βv)1Uv(β−1

C γβv).

Hence, we obtain

(Z∗(g)t, C) =
∑

a∈F×

∑

x∈B×f /U

r(g)φ(x)a
∑

γ∈µU\B×
lC0(γ, tvxv)1Uv(β−1

C γtvxv).

Now we convert the above to a pseudo-theta series. The process is the same as the i-part.
We sketch it here. Change the order of the summations. Note that 1Uv(β−1

C γtvxv) 6= 0 if
and only if xv ∈ t−1γ−1βCU

v. Put it into the sum. We have

(Z∗(g)t, C) =
∑

a∈F×

∑

γ∈µU\B×
r(g)φv(t−1γ−1βC)a

∑

x∈B×v /Uv

r(g)φv(x)alC0(γ, tvxv).

Denote

lφv(y, u) = lC0,φv(y, u) :=

∫

B×v
φv

(
x,
uq(y)

q(x)

)
lC0(y

−1, x)dx.

Then

(Z∗(g)t, C) =
∑

a∈F×

∑

y∈µU\B×
r(g, (t, βC))φv(y)alr(g,(t,1))φv(y)a

=
∑

u∈µ2
U\F×

∑

y∈B×
r(g, (t, βC))φv(y, u)lr(g,(t,1))φv(y, u).

It is a pseudo-theta series.
We claim that if φv ∈ S 0(Bv ×F×v ), then lφv extends to a Schwartz function for (y, u) ∈

Bv×F×v . The proof of Proposition 5.2.7 applies here. We only explain that v(q(y)−1q(x)) is
a constant on the support of lC0(y

−1, x), which is needed for lφv to be compactly supported.
In fact, lC0(y

−1, x) 6= 0 only if the point (y−1, x) ∈Hv and C0 ∈ VH have the same image in
F×v . It determines the coset q(y)−1q(x)q(Uv) in F×v uniquely.

Similar to all the pseudo-theta series we treated before, our conclusion is

(Z∗(g, φ)t, C) = θ(g, (t, βC), r(β−1
c , 1)lφv ⊗ φv), ∀g ∈ P (Fv,v1,v2)GL2(Av,v1,v2).

In our particular case, C is in the geometrically connected components of t2, and thus we
can take βC = t2.

Superspecial components

Now we consider (Z∗(g)t, C) in the case that C is a superspecial component. It happens
when v is non-split in B. Resume the notations in the treatment of the i-part. It is similar
to the supersingular case.
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The curve XU0,v has the explicit uniformization as formal schemes:

X̂U0,v⊗̂OF̂ur
v

= B×\(Ω̂⊗̂OF̂ur
v

)× Z× (Bv
f )
×/U v.

For general levels, the uniformization is easily done in the level of rigid spaces:

Xan
U ⊗̂F̂ ur

v = B×\Σr × Bv×
f /U v.

Here Σr is some etale rigid-analytic cover of (Ω⊗̂F̂ ur
v ) × Z depending on r. Take the nor-

malization of the formal scheme (Ω̂⊗̂ÔFur
v

) × Z in the rigid space Σr⊗̂F̂ur
v
Ĥur
w , and make a

minimal resolution of singularities. We obtain a regular formal scheme Σ̂r over OHur
w

. The
construction is compatible with the algebraic construction of YU,w, i.e.,

ŶU,w⊗̂OĤur
w

= B×\Σ̂r × Bv×
f /U v.

Here ŶU,w is the formal completion of the YU,w along its special fibre. The uniformizations
here are not explicit at all, but we only need some group-theoretical properties.

Let Ṽ be the set of irreducible components of Σ̂r. Then the reduction CMU → V spe is
given by a B×v -equivariant map HUv → Ṽ . Assume the global degeneracy assumption and
assume that φ is degenerate at v. The same calculation as in supersingular case will show
that (Z∗(g)t, C) can be approximated be a theta series on the quadratic space B.
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6 Proof of the main result

In this section we prove the main result Theorem 1.3.1. We first prove the main identity
Theorem 6.1.1 between the analytic and the geometric kernel functions. We argue that
the computations and approximations we have done are enough to make the conclusion. It
is easy to see that the approximation we obtain for the difference of the kernel functions
becomes an equality of automorphic forms by the modularity. Then we make an comparison
between the theta correspondences defined by Hecke operators and the normalized theta
correspondences defined in §2.2. This comparison is done by the Lefschetz trace formula and
the lcoal Siegel–Weil formula.

6.1 Identity of kernel functions

Let φ ∈ S (B × A×) be a Schwartz function with φ∞ is standard. Recall that we have two
kernel functions:

I(s, g, χ, φ) =

∫

[T ]

Ĩ(s, g, r(t, 1)φ)χ(t)dt,

Z(g, χ, φ) =

∫

[T ]

Z̃(g, (t, 1), φ)χ(t)dt.

Both of them have the same central character as π. We are ready to show the following
result.

Theorem 6.1.1. For any ϕ ∈ π,
(I ′(0, g, χ, φ), ϕ(g))Pet = 2 (Z(g, χ, φ), ϕ(g))Pet .

Now we prove Theorem 6.1.1 by gathering all the computation we have made together.
We need to prove that

(I ′(0, g, χ)− 2Z(g, χ), ϕ(g))pet = 0.

Equivalently, we show that

(PrI ′(0, g, χ)− 2Z(g, χ), ϕ(g))pet = 0.

For convenience of readers, we list the main results in last three sections.
The holomorphic projections Pr and Pr′ are introduced in §3.6. By Proposition 3.6.2,

we see that the derivative J ′(0, g, χ) of the Eisenstein series J (s, g, χ) cancels the growth
of I ′(0, g, χ). Then by Proposition 3.6.1,

PrI ′(0, g, χ) = Pr′I ′(0, g, χ)−Pr′J ′(0, g, χ).

Note that both terms on the right-hand side can fail to be automorphic since Pr′ is just an
algorithm. We can further write the right-hand side as an integral of

Pr′I ′(0, g, r(t, 1)φ)−Pr′J ′(0, g, r(t, 1)φ)
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against the character χ for the variable t on [T ] .
On the other hand, we have

Z(g, (t, 1)) = 〈Z∗(g)t, 1〉 − 〈Z∗(g)ξt, 1〉+ 〈Z∗(g)ξt, ξ1〉 − 〈Z∗(g)t, ξ1〉.

The pairings on the right-hand side are the ξ̂-admissible pairings. To get Z(g, χ), we need
an integral of t on [T ] against the character χ.

Putting these two parts together, we have

PrI ′(0, g, χ)− 2Z(g, χ) =

∫

[T ]

∆(g, (t, 1))dt

where

∆(g, (t, 1)) = Pr′I ′(0, g, r(t, 1)φ)− 2〈Z∗(g)t, 1〉
−Pr′J ′(0, g, r(t, 1)φ) + 2〈Z∗(g)t, ξ1〉
+2〈Z∗(g)ξt, 1〉 − 2〈Z∗(g)ξt, ξ1〉.

Both terms on the third line above are equal to scalar multiples of the Eisenstein series
J∗(0, g, r(t, 1)φ) by Lemma 4.6.1. To control the first line and the second line, we need some
degeneracy assumption.

Let S be a finite set of non-archimedean places of F containing all places ramified in B, all
places ramified in E, all places ramified over Q, and all places v such that Uv is not maximal.
Assume that φv is standard for all v /∈ S and degenerate for all v ∈ S. To match with the
global degeneracy assumption, we assume that S contains at least two places non-split in E.

We first gather the results for the second line in the expression of ∆(g, (t, 1)). The
holomorphic projection Pr′J ′(0, g, φ) is computed in Proposition 3.7.2. By Proposition
4.6.2, we see that the second line is equal to

J ′∗(0, g, r(t, 1)φ) + J̃ ′∗(0, g, r(t, 1)φ) + J(0, g, r(t, 1)(φS ⊗ φ′S))

for all g ∈ 1SGL2(AS). Here φ′S is some Schwartz function in S (BS × F×S ).
It remains to consider Pr′I ′(0, g, r(t, 1)φ) − 2〈Z∗(g)t, 1〉, the first line in the expression

of ∆(g, (t, 1)). By Proposition 3.7.1, for all g ∈ 1SGL2(AS),

Pr′I ′(0, g, r(t, 1)φ) = −
∑

v|∞
I ′(0, g, r(t, 1)φ)(v)−

∑

v-∞ nonsplit

I ′(0, g, r(t, 1)φ)(v).

Here

I ′(0, g, r(t, 1)φ)(v) = 2

∫

Z(A)T (F )\T (A)

K
(v)

φ (g, (tt′, t′))dt′, v|∞,

I ′(0, g, r(t, 1)φ)(v) = 2

∫

Z(A)T (F )\T (A)

K (v)
φ (g, (tt′, t′))dt′, v -∞.

104

106



Recall that K (v)
φ is certain pseudo theta series on the nearby quaternion algebra B(v), and

K
(v)

φ has a similar expression.
On the other hand, in §4.5 we have the decomposition

〈Z∗(g)t, 1〉 = −
∑

v

iv(Z∗(g)t, 1) logNv −
∑

v∈S
jv(Z∗(g)t, 1) logNv,

where

iv(Z∗(g)t, 1) =

∫

T (F )\T (Af )

iv̄(Z∗(g)tt
′, t′)dt′,

jv(Z∗(g)t, 1) =

∫

T (F )\T (Af )

jv̄(Z∗(g)tt
′, t′)dt′.

The decomposition is valid for all g ∈ 1SGL2(AS). It is not true for all g ∈ GL2(A) because
of the appearance of the self-intersection.

Since the archimedean parts are standard, we see that the average integrals

∫

Z(A)T (F )\T (A)

=

∫

T (F )\T (Af )

=

∫

CU

.

These integrals are essentially finite sums on CU . It makes the difference

Pr′I ′(0, g, r(t, 1)φ)− 2〈Z∗(g)t, 1〉

very convenient to handle. Below is a checklist of the results. All the equalities are valid for
all g ∈ 1SGL2(AS) and all t1, t2 ∈ T (Af ).

(1) For v|∞, Proposition 5.1.1 shows that

K
(v)

φ (g, (t1, t2)) = iv̄(Z∗(g)t1, t2).

(2) For v /∈ S finite and non-split in E, Proposition 5.2.6 shows that

K (v)
φ (g, (t1, t2)) = iv̄(Z∗(g)t1, t2) logNv.

(3) For v ∈ S finite and non-split in E, by Corollary 3.4.2,

K (v)
φ (g, (t1, t2)) = θ(g, (t1, t2), kφv ⊗ φv).

By Corollary 5.2.8 and Corollary 5.3.4,

iv̄(Z∗(g)t1, t2) = θ(g, (t1, t2),mφv ⊗ φv).
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(4) For v finite and split in E, Proposition 5.4.1 shows that

iv̄(Z∗(g)t1, t2) = 0.

(5) For v ∈ S, jv̄ is treated in §5.5. It can be approximated as follows:

• If v is split in E, then

jv̄(Z∗(g)t1, t2) = J(0, g, r(t1, t2)(lφv ⊗ φv))
for some Schwartz function lφv ∈ S (Bv × F×v ).

• If v is non-split in E, then

jv̄(Z∗(g)t1, t2) = θ(g, (t1, t2), lφv ⊗ φv)
for some Schwartz function lφv ∈ S (B(v)v × F×v ).

We remark that the results in (1), (2) and (4) are proved by explicit computation. Other
results are proved by approximation method where the degeneracy assumption of φ at v is
needed to control singularities.

In summary, ∆(g, (t, 1)) is equal to a finite linear combinations of theta series and Eisen-
stein series for g ∈ 1SGL2(AS). It implies the corresponding result for PrI ′(0, g, χ) −
2Z(g, χ). More precisely, for g ∈ 1SGL2(AS),

PrI ′(0, g, χ, φ)− 2Z(g, χ, φ)

= J ′(0, g, χ, φ) + J̃ ′(0, g, χ, φ) + J(0, g, χ, φS ⊗ φ̃′S) +
∑

v∈S nonsplit

θ(g, χ, φ̃′′v ⊗ φv).

Here φ̃′S ∈ S (BS × F×S ) and φ̃′′v ∈ S (B(v)v × F×v ) are some Schwartz functions. We can
replace J∗ by J since the constant term is killed by the degeneracy assumption as before.

Now we can conclude that the above equality is true for all g ∈ GL2(A). In fact, the
equality is true for all g ∈ GL2(F )GL2(AS) since both sides are automorphic. Then it is true
for all g ∈ GL2(A) because GL2(F )GL2(AS) is dense in GL2(A).

This result easily implies Theorem 6.1.1 for all φ satisfying the degeneracy assumption.
In fact, the Eisenstein series and their derivatives are automatically perpendicular to ϕ. It
remains to check that θ(g, χ, φ̃′′v ⊗ φv) is perpendicular to ϕ. Note that the theta series is
defined on the nearby quaternion algebra B(v). Then the result follows from the criterion of
the existence of local χ-linear vectors by the result of Tunnell [Tu] and Saito [Sa], Proposition
1.1.1.

In the end, we extend Theorem 6.1.1 to general Schwartz functions. It is easy to see that
the result of the theorem depends only on the theta lifting θ(φ⊗ ϕ) in π′ ⊗ π̃′. It suffices to
show that any element of π′⊗ π̃′ is equal to a linear combination of θ(φ⊗ϕ) for some ϕ ∈ π
and φ ∈ S (B× A×) satisfying the degeneracy assumption associated to some S.

In fact, let α be any nonzero pure tensor in π′ ⊗ π̃′. Then by theta lifting, it gives a
surjective GL2(A)-equivariant map l : S (B × A×) → π. By Proposition 3.2.1, there is a φ
satisfying the degeneracy assumption for some S such that the image ϕ = l(φ) is nonzero.
Then α must be a multiple of θ(φ⊗ ϕ). We conclude that the theorem is true for all ϕ, φ.
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6.2 Hecke and theta correspondences

For any φ ∈ S (B × A×) we can define a generating series Z(φ) of Hecke operators, i.e. an
element in

Ch1(X ×X)⊗A (2)(GL2(A)).

Here Ch1(X×X) denote the direct limit of Ch1(XU×XU) under pull-backs and A (2)(GL2(A))
denote the space of automorphic forms on GL2(A) which is discrete of weight 2 at all
archimedean places. For ϕ a form in an irreducible space π of A (2)(GL2(A)) invariant
under F×∞, we will have a Hecke operator

Z̃(φ⊗ ϕ) :=

∫

[GL2]

Z̃(r(g)φ)ϕ(g)dg.

Here the notation
∫

[G]
is defined in Introduction. We want to understand the relation between

this series and theta series θ(φ⊗ ϕ).

By definition, the cycle Z̃(φ ⊗ ϕ) is the direct limit of certain cycles Z(φ ⊗ ϕ)U on
XU ×XU where U is an open subgroup of B×/D such that φ is invariant over U × U . Each
Z(φ⊗ϕ)U defines an endomorphism Z(φ)U of Jac(XU). Under the projections between XU ’s,
this morphism define a morphism between inverse and direct limits:

Z̃(φ⊗ ϕ) : Alb(X) := lim←
U

Jac(XU)−→Jac(X) := lim→
U

Jac(XU).

On the other hand, using the measure on B×/D introduced in the introduction, deg(LU)−1Z(φ)U
defines an endomorphism:

R(φ⊗ ϕ) : Jac(X)⊗ C−→Jac(X)⊗ C.

More precisely, the cycle R(φ ⊗ ϕ) is represented by an element in S (B×f ) which acts on
Jac(X) by usual right translation.

The image T(2) of S (B×/D) in End(Jac(X))⊗C is exactly S̃ (B×/D) introduced in the
introduction, i.e, isomorphic to the direct sum of σ⊗σ̃ where σ are Jacquet–Langlands corre-
spondence of finite parts weight 2 forms on GL2(A). To see that we may fix an archimedean
place and consider the induced action on cotangent space Γ(Xτ ,Ω

1). It is easy to see that
this isomorphic to direct sum of σ.

If we take standard archimedean components of φ and ϕ, we just define a homomorphism

R : S (B⊗ A×)⊗ π−→⊕ σ ⊗ σ̃.

As this map is equivariant under the action by B××B××GL2(A), this morphism must have
image in JL(π)⊗ JL(π̃):

Rπ : S (Bf × A×)⊗ π−→JL(π)× JL(π̃).

Also this morphism must be a multiple of the theta lifiting normalized in §2.2:

Rπ = c(π)θπ
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for some c(π) ∈ C. Notice that θπ was originally defined over S̃ (V × A×) ⊗ π but fact
through the quotient S (V×A×)⊗ π since π has trivial central characters at infinities. The
goal of the next few sections is to prove the following:

Proposition 6.2.1.

c(π) =
L(1, π, ad)

2ζ(2)
.

Lefschetz trace formula

To compute c(π), it suffices to compose with composition map tr : JL(πf ) ⊗ JL(π̃f )−→C.
Write τ(g, φ) as the generating series

τ(g, φ) := tr · Z̃(r(g)φ)

where trace is on direct sum of weight 2 representations ⊕σf . Then τ(φ) is a cusp form of
weight 2. Then we have

trR(φ⊗ ϕ) = (τ(φ), ϕ).

To get a formula τ(φ), we use Lefshetz fixed point theorem and an identification

⊕σf = Γ(Xτ ,Ω
1)

for a real place τ . Recall that τ(φ) is a linear combination of Hecke operators Z(x, u)U which
acts on Γ(XU ,Ω

1) which has trace t(x, u)U ∈ F .
Since

H1(Xτ ,C) = Γ(Xτ ,Ω
1)⊕ Γ(Xτ , Ω̄

1),

τ ◦ t(x, u) plus its complex conjugate is the trace of Z(x, u)U on H1(Xτ ,Q). As τ is real, it
follows that

t(x, u)U =
1

2
tr(Z(x, u)U , H

1(Xτ ,Q)).

Using Leftschets fixed point theorem,

deg ∆∗UZ(x, u)U =
∑

i

(−1)itr(Z(x, u)U , H
i(Xτ ,Q))

= 2 degZ(x, u)U − tr(Z(x, u)U , H
1(Xτ ,Q))

where ∆U is the diagonal embedding XU−→XU ×XU and degZ(x, u)U is the (equal) degree
of two projections of Z(x, u)U to XU . Combining this we obtain:

t(x, u)U = degZ(x, u)U −
1

2
deg ∆∗UZ(x, u)U .

Normalize this degree by the factor (deg LU)−1, we obtain

τ(φ) = deg Z̃(φ)− 1

2
deg ∆∗Z̃(φ).
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The series deg Z̃(φ) is essentially an Eisenstein series, thus we have

trR(φ⊗ ϕ) = −1

2
(deg ∆∗Z̃(φ), ϕ).

To compute ∆∗Z(φ) we will compute its pull-back Z(φ)1 to the Shimura variety M ′
K′

defined by group GSpin(V) as calculated in §4.2 and the pull-back formula in our composito
paper, section 3. Let µU = F×∩U and µ′U = F×+ ∩ q(U). Assume that U is sufficiently small
so that µ′U = µ2

U . Then Z(φ)1 has the following expression:

Z̃(φ)1 = [A×f : F×KZ ]vol(KZ)
∑

u∈µ2
U\F×

Z(φu)

where Z(φu) is the generating series on M ′
K′ for the function φu(x) := φ(x, u) on V. Write

V = V0⊕V1 be the orthogonal decomposition corresponding to the constant matrices V1 = A
and trace free matrices V0. The diagonal XU−→XU ×M ′

K′ corresponding to the subgroup
B×f = GSpin(V0). Thus by pull-back formula we have

Z(φu)|XU
= Z(θ1(φu))

where Z(θ(φu)) is the generating series of CM-points on XU for the function

θ1(φu)(x0) =
∑

x1∈V1

φ(x0 + x1, u).

In summary we have just shown the following:

∆∗Z̃(φ) = [A×f : F×KZ ]vol(KZ)
∑

u∈µ2
U\F×

Z(θ1(φu))

and
τ(φ) = [A×f : F×KZ ]vol(KZ)

∑

u∈µ2
U\F×

vol(U) degXU
Z(θ1(φu)).

6.3 Degree and Siegel–Weil formulae

Let φ ∈ S (V0) which is invariant under GSpin(V0). We form the generating series of
CM-cycles as Z(φ)U =

∑
x∈U\V0

φ(x)Z(x)U where U is any open subset over which φ is

invariant. Since φ is invariant under the center of B×, we will always assume that U contains
B×∞ ·Z(A). In particular, it contains D. Then Z(φ)U form an element Z(φ) in the direct limit
of Ch1(XU)C. We want to compute the degree degZ(φ) = (deg LU)−1 degZ(φ)U . Recall
that the measure on B×/D has been fixed in the introduction. The computation is very
similar to Proposition 4.2.2.

Fix one embedding τ : F−→R and write the Shimura curve using a coherent quaternion
algebra B over F which has ramification set Σ \ {τ}. In this way, the Shimura curve has an
presentation at τ as

Xan
U,τ = B×\H ± × B×f /U
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here B is an quaternion algebra over F with ramification set Σ \ {τ}, and an isomorphism
B⊗Af ' Bf . Let V denote quadratic space B with norm q. For every x ∈ V0 with norm in
F×+ , there is a (y, g) ∈ V0 × B×f such that x = g−1y, we have the following expression of the
generating series

Z(φ)U = φ(0)Z(0)U +
∑

y∈B×\(V0−{0})

∑

g∈B×y,f\B
×
f /U

φ(g−1y)Z(y, g)U

here By,f is the commutator of y ∈ Bf which is actually equal to Af [y] and Z(y, g) is the
cycle represented by points H ±

y ×B×y,fgU , where H ±
y are the two points perpenticular to y.

As a distribution, the pull-back of Z(y, g)U on H ± × B×f has form

∑

γ∈B×/B×y

1H ±
γy

(τ)1B×γyγgU
(h), τ ∈H ±, h ∈ B×f .

The condition that h ∈ B×γyγgU is equivalent to g ∈ B×y γ−1hU . Thus the non-singular part
of Z(φ)U is represented by

∑

y∈B×\(V0−{0})

∑

γ∈B×/B×y

φ(h−1γy)1H ±
γy

(τ) =
∑

y∈V0−{0}
φ(h−1y)1H ±

y
(τ).

The normalized degree of this divisor is given by the integration of this function on

B×A×f \H ± × B×f

against the product of the discrete measure on H ± and the chosen measure on B×f . Since
H ±

y contains exactly two points for each y, the degree of non-singular part Z∗(φ) of Z(φ) is
given by

2

∫

B×A×f \B
×
f

∑

y∈V0−{0}
φ(h−1y)dh = 2

∑

y∈B×\(V0−{0})
vol(B×y A×f \B×y )

∫

B×y \B×f
φ(h−1y)dh.

Here the decomposition depends on the choice of the Haar measure on B×y,f . We will take a

measure on B×y,f so that its maximal compact subgroup takes volume 1. Then the volume

above is the relative class number h(t) of the field Et = F (
√−t). Notice that the last

expression does not depend on the choice of B. Indeed, it can be written as a Fourier
expansion: ∑

t∈F×+

2h(t)

∫

V(t)

φ(x)dBx

where V(t) is the set of elements in V with norm t which can be identified with B×y \B× after
chosen any point xt ∈ Ωt. Here we take measures at archimedean places so that both B×v /F×v
and E×t,v/F

×
v have measure 1.
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Recall the Eisesntein series for the Metaplectic group S̃L2(A):

E(s, g, φ) =
∑

γ∈P 1(F )\SL2(F )

δ(γg)sr(γg)φ(0).

We want to show that
degZ(φ) = κ · E(0, 1, φ)

for some constant κ depending on B only. We abbreviate E(0, 1, φ) = E(φ).
For any a ∈ F×+ , consider the a-th Fourier coefficient

Ea(φ) =

∫

F\A
E (0, n(b), φ)ψ(−ab)db =

∫

A
r(wn(b))φ(0)ψ(−ab)db.

By the local Siegel–Weil formula in Theorem 2.1.2,

Ea(φ) = −
∫

V(a)

φ(x)dψx.

Here the negative sign comes from the Weil index which equals−1 because of the incoherence.
In the following we want to compare the measure dBx and dψx on V(a). Since both

measures are invariant under conjugation by B×, their ratio c(a,B) is a constant which can
be decomposed as a product of local ratios:

dBvxv = c(a,Bv, ψv)dψvxv.

Siegel–Weil formula

To understand these local constants, we use Siegel–Weil formula for a totally definite quater-
nion algebra B over F . We define the theta series for V0, the trace 0 part of B. For any
function φ ∈ S (V0(A)) we can define theta series θ(g, h, φ) and Eisenstein series as usual.
The Siegel–Weil formula gives

∫

B×A×\B×A
θ(g, h)dh = vol(B×A×\B×A )E(0, g, φ).

If we compute the Fourier coefficient by the same method as above we obtain

∫
θa(1, h)dh = h(a)

∫

V(a)

φ(x)dBAx

and

Ea(φ) =

∫

V(a)

φ(x)dψx.

It follows that
h(a)c(a,BA) = vol(B×A×\B×A ).
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This in particular shows that c(a,B)/c(a,B′) is independent of a and ψ for any two
coherent quaternion algebras B and B′. For each v, let δ(a, ψv) denote the ratio of

c(a,Dv, ψv)/c(a,M2(Fv), ψv)

here Dv is the quaternion division algebra over Fv. Then c(a,B)/c(a,B′) is a product of even
numbers of δ(a, ψv)

±. Thus by varies B and B′, we see that δv(a, ψv) is independent of a and
ψv. This implies that h(a)c(a,B) is independent of B even for incoherent B. Thus we have
shown that

degZ(φ) = κ · E(0, 1, φ)

for some κ depending only on B.

Proposition 6.3.1.
κ = −1.

We compare the constant term of the above identity. The constant term of degZ(φ)
is φ(0) degZ(0) while the constant term of E(0, e, φ) is φ(0). In this way, we obtain the
following:

κ = degZ(0) =
1

deg LU

degZ(0)U .

Recall that Z(0)U is the negative Hodge bundle on XU thus we have κ = −1.

6.4 Completion of proof

Now we are ready to compute trR(φ⊗ ϕ) which is given by

trR(φ⊗ ϕ) = −1

2
(deg ∆∗Z̃(φ), ϕ).

with normalized measure on B×/D, we have

deg ∆∗Z̃(φ) =− [A×f : F×KZ ]vol(KZ)
∑

u∈µ2
K\F×

E(0, e, θ1(φu))

=− I1(0, g, φ)

where

I1(s, g, φ) = [A×f : F×KZ ]vol(KZ)
∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x,u)∈µK\V1×F×
r(γ)φ(x, u)

is the minus the mixed Eisenstein-theta series for the coherent subspace V1.

Let φ̃ ∈ S̃ (V× A×) be such that

∫

Z(F∞)

r(z)φ̃ = φ.
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Define
I1(s, g, φ̃) =

∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x,u)∈V1×F×
r(γ)φ̃(x, u)

then we have and equal to

I1(s, g, φ) = [Z(Af ) : Z(F )KZ ]

∫

Z(F )Z(F∞)ZK/Z(F )

I(s, zg, φ̃)dz.

The computation of the trace is straightforward:

trR(φ⊗ ϕ) =
1

2

∫

A×GL2(F )\GL2(A)

∫

F×\A×
ϕ(zg)I(0.zg, φ̃)dz

=
1

2

∫

GL2(F )\GL2(A)

ϕ(g)I(0, g, φ̃)dg.

The integral inside has been computed before and it equals to

∫

N(A)\GL2(A)

W−1(g)φ(1, 1)dg =
L(1, π, ad)

ζ(2)
F θ(φ⊗ ϕ̃).

In summary, we have shown:

R(φ⊗ ϕ) =
L(1, π, ad)

2ζ(2)
θ(φ⊗ ϕ̃).

Now we can deduce the main theorem from Theorem 6.1.1. Recall definitions

I(s, g, χ, φ) =

∫

[T ]

I(s, g, r(t, 1)φ)χ(t)dt,

Z̃(g, (t1, t2), φ) = 〈Z̃(g, φ)[t1], [t2]〉NT
and

Z(g, χ, φ) =

∫

[T ]

Z̃(g, (t, 1), φ)χ(t)dt =
1

2L(1, η)
〈Z̃(g, φ)Yχ, Yχ〉NT.

. Here the integration on [T ] means integration on T (F )\T (A)/Z(F∞)ZK and a multiplica-
tion by [A×f : F×ZK ]. Then Theorem 6.1.1 gives

(I ′(0, g, χ, φ), ϕ)Pet = 2(Z(g, χ, φ), ϕ)Pet.

Let φ̃ be a lift of φ in S̃ (V× A×). Then we have

I(s, g, χ, φ) = I(s, g, χ, φ̃) :=

∫

T (A)/T (F )

I(s, g, r(t, 1)φ)χ(t)dt.
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By proposition 2.3.2, the left hand side of the main identity can be written as

(I ′(0, g, χ, φ), ϕ)Pet = P ′(0, χ, φ̃, ϕ) =
L′(1/2, π, χ)

2L(1, η)

∏

v

αv(θ(φ̃v ⊗ ϕv)).

By our computation in the last section, the right hand side of the main identity is

1

L(1, η)
〈Z̃(φ⊗ ϕ)Yχ, Yχ〉NT =

L(1, π, ad)

2L(1, η)ζ(2)
〈T (θ(φ̃⊗ ϕ))Yχ, Yχ〉NT .

Thus we have the main theorem in our paper taking a linear combination of φi and ϕi so
that

f ⊗ f̃ =
∑

i

θ(φi ⊗ ϕi).
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In this paper we develop a strategy and some technical tools for
proving the André-Oort conjecture. We give lower bounds for the
degrees of Galois orbits of geometric components of special subvarieties
of Shimura varieties, assuming the Generalised Riemann Hypothesis.
We proceed to show that sequences of special subvarieties whose Galois
orbits have bounded degrees are equidistributed in a suitable sense.
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1 Introduction.

The main motivation for this paper is the André-Oort conjecture stated be-
low.

Conjecture 1.1 (André-Oort) Let S be a Shimura variety and let Σ be a
set of special points in S. Every irreducible component of the Zariski closure
of Σ is a special (or Hodge type) subvariety of S.

There are two main approaches to this conjecture which proved fruitful
in some cases. One, due to Edixhoven and Yafaev (see [7] and [18]), relies on
the Galois properties of special points and geometric properties of images of
subvarieties of Shimura varieties by Hecke correspondences. The other, due
to Clozel and Ullmo (see [2]), aims at proving that certain sequences of special
subvarieties are equidistributed in a certain sense. This approach uses some
deep theorems from ergodic theory. The purpose of this paper is to explain
how to combine these two approaches in order to obtain a definite strategy for
attacking the André-Oort conjecture and to provide certain ingredients. This
strategy and the results of this paper are subsequently used in [9] by Klingler
and Yafaev to prove the André-Oort conjecture assuming the Generalised
Riemann Hypothesis (GRH).

To explain the alternative, we need to introduce some terminology. Let S
be a connected component of a Shimura variety. There is a Shimura datum
(G,X) and a compact open subgroup K of G(Af ) such that S is a connected
component of

ShK(G,X) := G(Q)\X ×G(Af )/K.

Without loss of generality, we may and do assume that S is the image of
X+ × {1} in ShK(G,X) (where X+ is a fixed connected component of X).
A special subvariety Z of S is associated to a sub-Shimura datum (H,XH)
of (G,X). More precisely Z is an irreducible component of the image of
ShK∩H(Af )(H,XH) in ShK(G,X) contained in S. Furthermore, as will be
explained later, we will always be able to assume that H is the generic
Mumford-Tate group on XH .

Let E be some number field over which S admits a canonical model and
such that E contains the reflex field E(H,XH). Let Z be a special subvariety
of S. Then Z is a connected component of the image of ShH(Af )∩K(H,XH)
in ShK(G,X) where (H,XH) is a sub-Shimura datum of (G,X) such that H
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is the generic Mumford-Tate group of XH . We also assume that E contains
the reflex field E(H,XH).

By degree of the Galois orbit of Z, denoted, deg(Gal(E/E) ·Z), we mean
the degree of Gal(E/E) · Z with respect to the Baily-Borel compactification
of ShK(G,X). If Z is a special point, then deg(Gal(E/E) · Z) is simply the
number of Gal(E/E) conjugates of Z.

The “philosophy” of this paper is the following alternative. Let (Zn)n∈N
be a sequence of special subvarieties of S. After possibly replacing (Zn)
by a subsequence and assuming the GRH for CM-fields, at least one of the
following cases occurs.

1. The sequence deg(Gal(E/E) · Z) tends to infinity as n → ∞ (and
therefore Galois-theoretic and geometric techniques can be used).

2. The sequence of probability measures (µn) canonically associated with
(Zn) weakly converges to some µZ , the probability measure canonically
associated with a special subvariety Z of S. Moreover, for every n
large enough, Zn is contained in Z. In other words, the sequence (Zn)
is equidistributed.

Which of the two cases occurs depends on the geometric nature of the
subvarieties Zn. Let us explain this in more detail.

A special subvariety Z defined by a Shimura datum (H,XH) as before is
called strongly special (see [2]) if the image of the group H in the adjoint
group Gad is semisimple. Note that the condition (b) in the definition of
“strongly special” ([2], 4.1) is in fact implied by the first ( see [15] Rem. 3.9,
or the proof of the theorem 3.8 of this paper). Clozel and Ullmo proved in
[2] that if the subvarieties Zn are strongly special than the second case of the
alternative occurs. This result is unconditional.

On the other extreme, if H is a torus, then Z is a special point. If (Zn)
is a sequence of special points, then the first case of the alternative occurs
(and the second in general does not ! A sequence of special points is usually
not equidistributed). This uses the GRH but we believe that one might be
able to get rid of this assumption. We also prove the equidistribution result
unconditionally in the case where the subvarieties Zn satisfy an additional
assumption. In the paper [18], lower bounds for Galois orbits of special points
are given and used to prove the André-Oort conjecture for curves. However,
these bounds are not strong enough to prove that they are unbounded for a
general infinite sequence of special points.
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The first thing we do in this paper is we give lower bounds for the degree of
Galois orbits of non-strongly special subvarieties (Theorem 2.13). A special
case of our theorem (when H is a torus) is an improvement upon [18]. In the
case where H is a torus, we can show that given an infinite set Σ of special
points, the Galois orbit of the point x is unbounded as x ranges through Σ.
Lower bounds obtained in [18] do not allow to prove such statement.

We now explain our lower bounds in detail. Let N be an integer. Let H
be the generic Mumford-Tate group on XH and let T be its connected centre.
Suppose that T is a non-trivial torus. Let LT be the splitting field of T . Let
Km
T be the maximal compact open subgroup of T (Af ). Note that Km

T is a
product of maximal compact open subgroups Km

T,p of T (Qp) for all primes p.
Let KT be the compact open subgroup T (Af )∩K of T (Af ). We may assume
that K is a product of compact open subgroups Kp of G(Qp) in which case
KT is also a product of compact open subgroups KT,p of T (Qp). We define
i(T ) to be the number of primes p such that KT,p 6= Km

T,p. We show (thm.
2.13) that there is an absolute constant B such that for every component Z
of the image of ShH(Af )∩K(H,XH) in S

deg(Gal(E/E) · Z)� Bi(T )|Km
T /KT | log(|disc(LT )|)N .

The next task we carry out is the analysis of conditions, under which a
given sequence of special subvarieties Zn is such that deg(Gal(E/E) · Zn) is
bounded. We translate this condition into explicit conditions on the Shimura
data defining the Zn. We introduce the notion of a T -special subvariety.
Suppose that G is semisimple of adjoint type and fix a subtorus T of G such
that T (R) is compact. A T -sub-Shimura datum (H,XH) of (G,X) is a sub-
Shimura datum such that Hder is non-trivial and T = Z(H)0 is the connected
centre of H. A T -special subvariety is a special subvariety defined by a T -
sub-Shimura datum. Fix an integer N . We show (thm. 3.9) that there is
a finite set {T1, . . . , Tr} of subtori of G such that any special subvariety Z
with deg(Gal(E/E) · Z) ≤ N is Ti-special for some i = 1, . . . , r. This result
crucially relies on the results of Gille and Moret-Bailly [8] provided in the
appendix.

Finally, using the ergodic methods of [2], we prove that if the degree of
Gal(E/E) ·Zn is bounded (when n varies), then the second case of the alter-
native occurs. We actually show (thm. 3.8) that, for a fixed T , a sequence
of T -special subvarieties is equidistributed in the sense explained above.

The alternative explained above is used in the forthcoming paper by Klin-
gler and the second author [9] to prove the following theorem which is the
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most general result on the André-Oort conjecture obtained so far.

Theorem 1.2 Let (G,X) be a Shimura datum and K a compact open sub-
group of G(Af ). Let Σ be a set of special points in ShK(G,X). We make
one of the two following assumptions:

1. Assume the Generalised Riemann Hypothesis (GRH) for CM fields.

2. Assume that there exists a faithful representation G ↪→ GLn such that
with respect to this representation, the Mumford-Tate groups MT (s) lie
in one GLn(Q)-conjugacy class as s ranges through Σ.

Then every irreducible component of the Zariski closure of Σ in ShK(G,X)
is a special subvariety.

Klingler and Yafaev started working together on this conjecture in 2003
trying to generalise the Edixhoven-Yafaev strategy to the general case of the
André-Oort conjecture. In the process two main difficulties occurred. One
is the question of irreducibility of transforms of subvarieties under Hecke
correspondences. This problem is dealt with in the forthcoming paper by
Klingler and Yafaev, this allows to deal with cases where the first case of the
alternative explained above occurs.

The other difficulty was dealing with sets of special subvarieties which are
defined over number fields of bounded degree. We deal with this difficulty
in the present paper. In fact, we show that this is precisely when the second
case of the alternative occurs. This strategy : combination of Galois theoretic
and ergodic techniques was discovered by the authors of this paper while the
second author was visiting the University of Paris-Sud in January-February
2005. We tested our strategy on the case of subvarieties of a product of
modular curves (see [16]).
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2 Degrees of Galois orbits of special subvari-

eties.

In this section we give lower bounds for the degrees of Galois orbits of non-
strongly special subvarieties.

2.1 Preliminaries on special subvarieties and reciprocity
morphisms.

We start by recaling some facts about special subvarieties, reciprocity mor-
phisms and Galois action on the geometric components of Shimura varieties.
If Z is a topological space, we denote by π0(Z) the set of connected compo-
nents of Z.

Let (G,X) be a Shimura datum. We assume that that G is semisimple
of adjoint type. We fix a faithful representation of G which allows us to view
G as a closed subgroup of some GLn. Let K be a compact open subgroup of
G(Af ) which is contained in GLn(Ẑ). We also assume that K is a product
of compact open subgroups Kp of G(Qp).

Let (H,XH) be a sub-Shimura datum of (G,X). We suppose that H is
not semisimple. Let T be the connected centre of H, so that T is a non-trivial
torus and H is an almost direct product THder.

Let KH be the compact open subgroup H(Af ) ∩ K of H(Af ). We first
describe the Galois action on the set of components of ShKH (H,XH). We
refer to the sections 2.4-2.6 of [4] for details and proofs. Let π0(H,KH) be
the set of geometric components of ShKH (H,XH). Recall that π0(H,XH) is
H(Q)+\H(Af )/KH where H(Q)+ is the stabilizer of a connected component
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of XH in H(Q). Let E = EH be the reflex field of (H,XH) and TE :=
ResEH/QGmEH .

The action of Gal(Q/EH) on π0(H,KH) is given by the reciprocity mor-
phism

r(H,XH): Gal(Q/EH) −→ π0(π(H))

where for any reductive group N over Q

π(N) = N(Af )/N(Q)ρ(Ñ(Af )).

Here ρ: Ñ −→ Nder denotes the universal covering of Nder. The morphism
r(H,XH) factors through Gal(Q/EH)ab which is identified via global class field
theory to π0(TE(R)) × π0(π(TE)). Let C be the torus H/Hder. To (H,XH)
one associates two Shimura data (C, {x}) and (Had, XHad). The field EH
is the composite of E(C, {x}) and E(Had, XHad). There are morphisms of
Shimura data

θab: (H,XH) −→ (C, {x}) and θad: (H,XH) −→ (Had, XHad).

Note that (C, {x}) is a special Shimura datum. Let r(C,{x}) be the reciprocity
morphism associated with (C, {x}). The morphism θab induces a morphism
π0(π(H)) → π0(π(C)). This morphism preceded by r(H,XH) is r(C,{x}). We
let F be the Galois closure of EH . Note that the degree of F over Q is
bounded uniformly on (H,XH). We will keep the notations and assumptions
introduced above throughout this section.

It is convenient and sometimes essential to make the assumption that H
is the generic Mumford-Tate group on XH . Below we prove a lemma which
will allow us to make this assumption. Let H ′ be the generic Mumford-
Tate group on XH . By definition, H ′ is a subgroup of H. Furthermore,
H
′der = Hder. Let x be an element of XH and let XH′ be the H ′(R)-orbit of

x. Then XH′ = XH and (H ′, XH) is a sub-Shimura datum of (H,XH). let
EH be the reflex field of (H,XH). Note that EH is also the reflex field of
(H ′, XH). Indeed, EH is the field of definition of the H(C)-conjugacy class
of hC(z, 1) for h in XH which is the same as the H ′(C)-conjugacy class of
hC(z, 1).

Lemma 2.1 Let Γ := G(Q)+∩K and S be the component Γ\X+ of ShK(G,X).
Note that S is the image of X+×{1} in ShK(G,X). Let V be a special sub-
variety of S. There exists a sub-Shimura datum (HV , XV ) of (G,X) such
that HV is the generic Mumford-Tate group on XV and V is the image of a
connected component of ShK∩HV (Af )(HV , XV ) in ShK(G,X).
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Proof. There exists a sub-Shimura datum (H,XH) ⊂ (G,X), such that
V is the image of X+

H × {h} in ShK(G,X) for some h ∈ H(Af ). As this
image is contained in S, there exists g ∈ G(Q)+ and k ∈ K such that
h = gk. Let Hg = g−1Hg and XHg be the conjugacy class of g−1x0 for some
x0 ∈ X+

H . Let X+
Hg

be the connected component of XHg containing g.x0.
Then (Hg, XHg) is a sub-Shimura datum of (G,X) and V is also the image
of X+

Hg
× {1} in ShK(G,X). Let HV be the generic Mumford-Tate group on

XHg and XV = XHg . By the previous discussion (HV , XV ) is a sub-Shimura
datum such that HV is the Mumford-Tate group on XV and V is the image
of X+

V × {1} in ShK(G,X). �

In view of this lemma we will only consider in the rest of this section sub-
Shimura data (H,XH) ⊂ (G,X) such that H is the generic Mumford-Tate
group on XH .

Lemma 2.2 Let (H,XH) and KH be as above, with H being the generic
Mumford-Tate group on XH . Let f :ShKH (H,XH) −→ ShK(G,X) be the
morphism induced by the inclusion (H,XH) into (G,X).

The morphism

f :ShKH (H,XH) −→ f(ShKH (H,XH))

is generically finite of degree uniformly bounded when (H,XH) varies. Fur-
thermore, if K is neat, then f is generically injective. In particular, the
number of geometric components of ShKH (H,XH) is, up to a uniform (on
(H,XH) ) constant, is equal to the number of geometric components of its
image in ShK(G,X).

Proof. First note that it suffices to prove that the morphism f is generically
injective when K is neat. Indeed, any compact open subgroup K of G(Af )
contains a neat compact open subgroup K ′. Using the generic injectivity
of ShK′H (H,XH) −→ ShK′(G,X), one easily sees that the degree of f is
bounded by the index of K ′ in K.

Suppose that K is neat. Let (x1, h1) and (x2, h2) be two points of
ShKH (H,XH) having the same image by f . We suppose that MT (x1) =
MT (x2) = H.

There exist an element q of G(Q) and an element k of K such that
x2 = qx1 and h2 = qh1k.
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The fact that MT (x1) = MT (x2) = H implies that q belongs to the
normalizer NG(H)(Q) of H in G. Let us check that the group NG(H) is
reductive. There is an element x of X that factors through NG(H). Then
x(S) normalizes the unipotent radical Ru of NG(H) hence Lie(Ru) is a ra-
tional polarisable Hodge structure and the Killing form is non degenerate
on Lie(Ru). It follows that Ru is reductive and therefore is trivial. The
group G′ := NG(H)/H has the property that G′(R) is compact. Indeed, the
centralizer ZG(H)(R) is compact because it stabilizes a point of a hermitian
symmetric domain and as NG(H) is reductive, the images of ZG(H)0(R) and
NG(H)0(R) in G′(R) coincide.

The equality h2 = qh1k shows that q belongs to H(Af )K. It follows that
the image q of q in G′(Q) is contained in a compact subgroup of G′(Af ). As
G′(R) is compact, this group is finite. As K is neat, this group is trivial. It
follows that q belongs to H(Q) and k to KH = H(Af ) ∩ K. We conclude

that the points (x1, h1) and (x2, h2) of ShKH (H,XH) are equal. This finishes
the proof. �

Recall that T is the connected centre of H and C is H/Hder. Note that
there is an isogeny T −→ C with kernel T ∩ Hder, given by the restriction
of the quotient map H −→ H/Hder to T . We will make use of the following
lemma.

Lemma 2.3 The order of the group T∩Hder is uniformly bounded as (H,XH)
ranges through the sub-Shimura data of (G,X) with Hder connected.

Proof. As T∩Hder is contained in the centre of Hder, we just need a uniform
bound on orders of the centres of connected semi-simple subgroups of G. Let
L be a connected semi-simple subgroup of G and let DL be the Dynkin
diagram of LC. As the rank of LC is bounded by the rank of GC, there are
only finitely many possibilities for DL. For each of these possibilities, the
order of the centre of LC is bounded by the index of the lattice of roots in
the lattice of weights. �

We now prove some uniformity results regarding the characters occurring
in the representation T ⊂ GLn and the reciprocity morphism r(C,x).

As the degree of F is uniformly bounded, we may assume that the Galois
group of F over Q is isomorphic to a fixed abstract group M . Let TF be the
torus ResF/QGm,F . We write H = THder and we let µ: Gm,C −→ HC be the
character hC(z, 1) where h is an element of XH such that MT (h) = H.
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The composition of µ with H −→ C gives a cocharacter Gm,C −→ CC
which we denote µC . The cocharacter µC is defined over F . Each σ in M
defines a character χσ and a cocharacter µσ of the torus TF . The character
(resp. cocharacter) group of TF is generated by the χσ (resp. µσ). We enu-
merate the elements of M , thus getting a ”canonical” basis for the character
(respectively cocharacter) group of the torus TF . There is a natural pairing

<,>:X∗(TF )×X∗(TF ) −→ Z

defined by < χσ, µτ >= δσ,τ for all σ, τ in M . The reciprocity morphism
r(C,{x}):TF −→ C induces the morphism rC∗:X∗(TF ) → X∗(C) which sends
the cocharacter µσ to σ(µC). The reciprocity r(C,x) induces an injection
X∗(C) ⊂ X∗(TF ). We identify X∗(C) with its image in X∗(TF ).

The fact that the isogeny α:T −→ C has uniformly bounded degree, say
n, implies that there is a surjective morphism r:TF −→ T such that

α ◦ r = rn(C,x)

The morphism r identifies X∗(T ) with a submodule of X∗(TF ). We will con-
sider the coordinates of the characters in X∗(T ) with respect to the canonical
basis of X∗(TF ) described previously.

Lemma 2.4 The coordinates of characters χ of T intervening in the repre-
sentation T ⊂ GLn, with respect to the basis described above, are bounded
uniformly on (H,XH).

The size of the torsion of X∗(TF )/X∗(T ) is bounded uniformly on (H,XH).

Proof. The second statement is a direct consequence of the first.
Let THder be a maximal torus of Hder

C such that µ factors through TCTHder .

Let T̃C be the almost direct product TCTHder , the torus T̃C is a maximal torus
of HC.

Let R be the root system associated to (T,Hder). There are only a finite,
uniformly bounded number of possibilities for R. The representation of H,
induces a representation of Hder. The dimensions of the irreducible factors
of this representation are uniformly bounded hence there is only a finite
(uniformly bounded) number of characters of THder that intervene in the
representation.

As T ∩Hder is finite, we have a direct sum decomposition

X∗(T̃C)Q = X∗(TC)Q ⊕X∗(THder)Q
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Let χ be a character of T̃ that intervenes in the representation T̃ ⊂ GLnC.
The direct sum decomposition above gives the decomposition χ = χT +χHder .

Let rH :LC −→ T̃C be the morphism induced by µ. The values taken by
the < χ, rH∗µσ > are the p such that V p,q

C is non-zero. Hence they are finite
in number and uniformly bounded. On the other hand, we have

< χ, rH∗µσ >=< χT , rH∗µσ > + < χHder , rH∗µσ >

where χT and χHder are the restrictions of χ to T and THder respectively. In
the decomposition

rH∗µσ = (rH∗µσ)T + (rH∗µσ)Hder

there is only a finite number of possibilities for (rH∗µσ)Hder . This is a conse-
quence of the theory of symmetric spaces. To see this, we decompose the root
system R into irreducible factors Ri. The components of the rH∗µσ on Ri

are either trivial or correspond to minuscule weights of the dual root system
R∨i .

It follows that < χHder , rH∗µσ > takes only finitely many values and so
does < χT , rH∗µσ >. We finish by noticing that these < χT , rH∗µσ > are
precisely the coordinates of the characters intervening in T ⊂ GLn with
respect to our chosen basis. �

Finally we prove the following result.

Proposition 2.5 There is an integer A such that for any (H,XH) and F
as above and for any x ∈ T (Af ), the image of xA in π0(π(H)) is contained
in r(H,XH)(Gal(F/F )).

Proof. Consider as before the morphism of algebraic tori

r:TF −→ T.

Using the previous lemma and the proof of the theorem 2.6 of [18] we see that
there is a uniform integer h such that for all prime p the index of r(Qp⊗F ∗)
in T (Qp) and that of r(Zp ⊗ O∗F ) in the maximal open compact subgroup
Km
T,p of T (Qp) are bounded by h.

Let x ∈ T (Af ), by the previous discussion xh is in r((Af ⊗ F )∗). By
construction of r, the image of xh in π0(π(C)) is r(C,x)(σ) for some σ ∈
Gal(F/F ). Consider r(H,XH)(σ) ∈ π0(π(H)). The image of xh in π0(π(H))
and r(H,XH)(σ) have the same image in π0(π(C)). By lemma 7.2.3 of [9], the
kernel of the map π(H) −→ π(C) is killed by a uniform power, the conclusion
follows. �
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2.2 Lower bounds for the degree of Galois orbits of
special subvarieties.

We now deal with the problem of bounding (below) the degree of Galois orbits
of geometric components of special subvarieties of ShK(G,X). We assume
that K ⊂ G(Af ) is neat and of the form K =

∏
pKp for some compact open

subgroups Kp of G(Qp). Note that in the general case we can always find
a subgroup K ′ of K of finite index with these properties. We fix a faithful
representation of G which allows us to view G as a closed subgroup of some
GLn. We may and do assume that K is contained in GLn(Ẑ)

Let M be a projective variety over C, Y be a subvariety of M and L be
an ample line bundle on M . Then degL(Y ) is the degree of Y associated to
L.

Let (G,X) be a Shimura datum, K ⊂ G(Af ) be a neat open com-
pact subgroup. The Baily-Borel compactification of ShK(G,X) is denoted
ShK(G,X). Let LK = LK(G,X) be the ample line bundle on ShK(G,X)
extending the line bundle of holomorphic differential forms of maximal degree
on ShK(G,X). We say that LK is the Baily-Borel line bundle on ShK(G,X).
Let Y be a subvariety of ShK(G,X), we write deg(Y ) = degLK (Y ) the degree
of Y computed with the Baily-Borel line bundle. Let Z be a subvariety of
ShK(G,X) and Z be its Zariski closure in ShK(G,X) we’ll write deg(Z) for
deg(Z).

Definition 2.6 Let (H,XH) be a sub-Shimura datum of (G,X) such that H
is the generic Mumford-Tate group on XH . Let KH = K∩H(Af ) and F be as
above a field over which ShKH (H,XH) is defined and has a canonical model.
Let V be a geometric irreducible component of the image of ShKH (H,XH) in
ShK(G,X).

We define the degree of the Galois orbit of V , denoted deg(Gal(F/F ) ·V )
to be the degree of the subvariety Gal(F/F ) · V of ShK(G,X) with respect to
the line bundle LK

Note that whenH is a torus (and hence V is a special point), deg(Gal(F/F )·
V ) is simply the number of conjugates of V under Gal(F/F ).

Let V be a geometric component of ShKH (H,XH). We’ll use the same
notation for V and it’s image in ShK(G,X). This will be harmless for our
purpose in view of lemma 2.2. Let Km

T be the maximal compact open sub-
group of T (Af ). We consider the compact open subgroup Km

H := Km
T KH of
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H(Af ). Note that as both KH and Km
T are product of compact open sub-

groups of H(Qp), the group Km
H is a product of compact open subgroups of

H(Qp). We replace the group Km
H by a neat open compact subgroup as in

Lemma 4.1.2 of [9] applied to Km
H and l = 3. The index of Km

H /KH than
changes by a uniform quantity (bounded by |GLn(F3)|).

Lemma 2.7 The morphism

π: ShKH (H,XH) −→ ShKm
H

(H,XH)

is finite of degree |Km
H /KH |.

Proof. Let (x, g) be a point of ShKm
H

(H,XH). The preimage of (x, g) is

(x, gKm
H ) in ShKH (H,XH). Suppose

(x, g) = (x, gk)

with k ∈ Km
H . There exist q in H(Q) and k′ ∈ KH such that qx = x and

g = qgkk′. The first condition implies that q is in a compact subgroup of
H(R) and the second condition implies that q is in the neat compact open
subgroup gKm

H g
−1 of H(Af ). These two conditions imply that q is trivial.

Therefore k = (k′)−1 ∈ KH . �

The next lemma splits the degree of Gal(F/F ) into two pieces that we
will estimate separately.

Lemma 2.8 The degree of the Galois orbit Gal(F/F ) · V is at least the
degree of Gal(F/F ) ·V ∩π−1π(V ) times the number of Gal(F/F ) conjugates
of π(V ).

Proof. We first note that by cor 4.2.10 of [9] it suffices to prove the lemma
for the internal degree i.e. degree calculated with respect to LKH . In the rest
of the proof by degree we mean internal degree. We need to check that the
degree of Gal(F/F ) · V ∩ π−1(σ(π(V )) with σ ∈ Gal(F/F ) is independent of
σ.

Fix a σ in Gal(F/F ). Note that the group Km
T /KT acts by automor-

phisms on ShKH (H,XH). Moreover for all α ∈ Km
T /KT we have α∗LKH =

LKH . By the projection formula, if Vi is a component of π−1(σπ(V )) then
degLKH (Vi) = degLKH (σV ).
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It follows that

degLKH (π−1(σπ(V ))) = degLKH (σV ) · |π−1(σπ(V ))|.

Similarly

degLKH (Gal(F/F )·V ∩π−1σπ(V )) = degLKH (σV )·|Gal(F/F )·V ∩π−1σπ(V )|

The proof is finished by noticing that

degLKH (σV ) = degLKH (V )

and
|Gal(F/F ) · V ∩ π−1(σπ(V ))| = |Gal(F/F ) · V ∩ π−1π(V )|

�

We first deal with the second piece. Let Km
C be the maximal open

compact subgroup of C(Af ). The number of components of the Galois
orbit of π(V ) is at least the size of the image of Gal(Q/F ) in π(H)/Km

H

by r(H,XH) which is at least the size of the image of r(C,x)((F ⊗ Af )
∗) in

π(C)/Km
C = C(Q)\C(Af )/K

m
C .

By lemma 2.4, X∗(T ) has a basis (χ1, . . . , χd) such that the coordinates
of the χi in the canonical basis (χσ)σ:F→C of X∗(TF ) are uniformly bounded.
By lemma 2.3, X∗(C) has a basis (χ′1, . . . , χ

′
d) such that the coordinates of

the χ′i in the canonical basis of X∗(TF ) are uniformly bounded. As (C, {x})
is a Shimura datum of CM type there exists an integer λ such that for all

i ∈ {1, . . . , d} χ′iχ′i = λ
∑

σ:F→C
χσ. By the previous discussion the integer λ is

uniformly bounded. We are now in the situation of the theorem 2.13 of [18].
This theorem implies the following.

Proposition 2.9 Assume the GRH for CM fields. Let N be a positive inte-
ger. Let LC be the splitting field of C. The size of the image of r(C,{x})((Af ⊗
LC)∗) in C(Q)\C(Af )/K

m
C is at least a constant depending on N only times

(log |disc(LC)|)N .

We have proved the following.

Proposition 2.10 Assume the GRH for CM fields. Let N be a positive
integer. Let LC be the splitting field of C. The number of components of
Gal(F/F )·π(V ) is at least a constant depending on N only times (log |disc(LC)|)N .
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Now we deal with the second ‘piece’ : estimating the Galois degree in the
fibre over π(V ). We prove the following key proposition.

Proposition 2.11 Let KT be the compact open subgroup T (Af ) ∩ K. The
group KT is a product of compact open subgroups KT,p of T (Qp). We let i(T )
be the number of primes p such that KT,p 6= Km

T,p.
There exists a uniform real constant B > 0 such that

|Gal(F/F ) · V ∩ π−1π(V )| ≥ Bi(T )|π−1π(V )|

where |Gal(F/F ) · V ∩ π−1π(V )| is the number of Galois conjugates of V
contained in the fibre π−1π(V ) and |π−1π(V )| is the number of components
of the fibre.

Proof. The fibre π−1π(V ) has a transitive action of Km
T /KT . By the propo-

sition 2.5, the number of Galois conjugates of V contained in one fibre is at
least the size of the orbit of V under the action of ΘA, where ΘA is the the
image of the morphism x 7→ xA (with A as in 2.5) on Km

T /KT .
We have

|π−1π(V )| = |(Km
T /KT ) · V | ≤ |(Km

T /KT )/ΘA||ΘA · V |

and
|Gal(F/F ) · V ∩ π−1π(V )| ≥ |ΘA · V |

To finish the proof we hence need to show that the kernel of the map
x 7→ xA on Km

T /KT is bounded by Di(T ) where D is uniform. It will then
suffice to set B = 1/D.

Since Km
T /KT is the product of the Km

T,p/KT,p, it is enough to prove that
the order of the kernel of the A-th power morphism on Km

T,p/KT,p for each p
is bounded uniformly on T and p.

Let p be a prime. Let E be the splitting field of T . Using a basis of the
character group of T , one can embed T into a product of finite and uniformly
bounded number of tori ResE/QGm,E where E is a number field of uniformly
bounded degree over Q. It follows that Km

T and KT are subgroups of the
product of the (Zp ⊗ OE)∗. These groups are free Zp-modules of uniformly
bounded rank r, therefore the group Km

T,p/KT,p is a finite abelian group,
product of at most r cyclic factors. It follows that the size of the kernel of
A-th power map on Km

T,p/KT,p is bounded by D := Ar. �
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Suppose that H is a torus, i.e. V is a point. Then |π−1π(V )| = |Km
T /KT |

and propositions 2.10 and 2.11 put together give

deg(Gal(F/F ).V )� Bi(T )|Km
T /KT | log(|disc(LC)|)N .

We now turn to the case where Hder is nontrivial. We prove the following:

Proposition 2.12
deg(π−1π(V )) ≥ |Km

T /KT |

Proof. Let Z be the subvariety π−1π(V ) of ShKH (H,XH). Let LKH and
LKm

H
be the Baily-Borel line bundles on ShKH (H,XH) and ShKm

H
(H,XH) re-

spectively. The morphism of Shimura varieties π:ShKH (H,XH) −→ ShKm
H

(H,XH)
extends to a proper morphism

π:ShKH (H,XH) −→ ShKm
H

(H,XH)

which is generically finite of degree |Km
T /KT | by lemma 2.7. Furthermore

π∗LKm
H

∼= LKH . The projection formula gives

degLKH (Z) = degπ∗LKm
H

(Z) = degLKm
H

(π?Z) = [KT : Km
T ] degLKm

H

(π(Z)) ≥ [KT : Km
T ].

On another hand, according to [9], cor 4.2.10 we have

degLKH (Z) ≤ degLK (Z) = deg(Z).

We deduce that
deg(Z) ≥ [KT : Km

T ].

�

In the proof of the lemma 2.8, we have seen that

degLKH (Gal(F/F ) · V ∩ π−1π(V )) = degLKH (V ) · |Gal(F/F ) · V ∩ π−1π(V )|

The propositions 2.11 and 2.12 combined together now give

degLKH (Gal(F/F ) · V ∩ π−1π(V )) ≥ Bi(T )|Km
T /KT |.

Putting all previous ingredients together we get:
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Theorem 2.13 Assume the GRH for CM fields. There exists a real number
B such that the following holds. Let (H,XH) be a sub-Shimura datum of
(G,X) such that H is the generic Mumford-Tate group on XH . Let E be
a field over which ShK(G,X) admits a canonical model (for example E =
E(G,X) the reflex field of (G,X)). Let KH be H(Af ) ∩ K. Let T be the
connected centre of H. We suppose that T is non-trivial.

Then for every geometric component V of the image of ShKH (H,XH) in
ShK(G,X), and for any positive integer N ,

deg(Gal(E/E).V ) ≥ cNB
i(T ) · |Km

T /KT | · (log(|disc(LC)|))N . (1)

for a real constant cN depending only on N .

Remark 2.14 The proof of theorem 2.13 actually shows the more precise
results:

degLKH (Gal(E/E) · V ) ≥ cNB
i(T ) · |Km

T /KT | · (log(|disc(LC)|))N .

This will not be important for the purpose of this paper but will be useful
in the forthcoming paper by Klingler and Yafaev [9].

The proof of the theorem shows also that the degree of the Galois orbit
of V is ≥ cN max(1, Bi(T ) · |Km

T /KT |) · (log(|disc(LC)|))N for a real constant
cN depending only on N .

In the case where we consider subvarieties V such that the associated tori
T lie in one GLn(Q)-conjugacy class with respect to some faithful represen-
tation G ↪→ GLn, we do not need to assume the GRH. Indeed, in this case
the field LC is fixed and hence the term involving it is constant. We only
used the GRH to obtain this term.

3 Special subvarieties whose degree of Galois

orbits are bounded.

3.1 Equidistribution of T -special subvarieties.

Let (G,X) be a Shimura datum with G semisimple of adjoint type and let K
be an open compact subgroup of G(Af ). Let Γ = G(Q)+∩K and S = Γ\X+

a fixed component of ShK(G,X). Note that S is the image of X+ × {1} in
ShK(G,X).

17

139



If (H,XH) ⊂ (G,X) is a sub-Shimura datum, we denote by MT(XH)
the generic Mumford-Tate group on XH . If H ′ = MT(XH), then H ′ ⊂ H,
H ′der = Hder and Z(H ′)0 ⊂ Z(H)0. Moreover XH is the H ′(R)-conjugacy
class of x ∈ XH and x(S) ⊂ H ′(R). Therefore (H ′, XH) is a sub-Shimura-
datum of (H,XH). We sometimes use the notation XH′ instead of XH .

Definition 3.1 Let TQ be a torus such that T (R) is compact. A T -sub-
Shimura datum (H,XH) of (G,X) is a sub-Shimura datum such that Hder is
non trivial and T is the connected center of the generic Mumford-Tate group
H ′ = THder of XH . Note that in this definition T may be trivial. In this
case the generic Mumford-Tate group H ′ of XH is semi-simple.

Definition 3.2 A T -special subvariety of S is a geometric component Z of
the image of ShK∩H(Af )(H,XH) contained in S for a T -sub-Shimura datum
(H,XH) ⊂ (G,X). In this case, we say that Z is associated to (H,XH).
If Z is associated to (H,XH), we say that Z is standard if there exists a
connected component X+

H of XH contained in X+ such that Z is the image
of X+

H × {1} in S. If Z is standard, then we have:

Z ' Γ\ΓX+
H ' (Γ ∩H(R)+)\X+

H .

We denote by ΣT the set of T -special subvarieties of S.

Lemma 3.3 A standard T -special subvariety Z is associated to a sub-Shimura
datum (H,XH) such that H = MT(XH) = T.Hder.

If Z is associated to (H1, XH1) and Z is standard, then Z is the image of
X+
H1
×{1} in S for some connected component X+

H1
of XH1 contained in X+.

Write H = MT(XH1), then XH = XH1 and Z is also associated to (H,XH)
and is standard.

Lemma 3.4 Recall that ΣT is the set of T -special subvarieties. Let α ∈ Γ
and Tα = αTα−1. Then ΣTα = ΣT .

Proof. Let (H,XH) be a T -sub-Shimura datum of (G,X). Fix x ∈ XH .
Let Hα = αHα−1 and XHα be the Hα(R)-conjugacy class of α.x. Then
(Hα, XHα) is a Tα-sub-Shimura datum and the images of ShK∩H(Af )(H,XH)
and ShK∩Hα(Af )(Hα, XHα) in ShK(G,X) coincide. �
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Lemma 3.5 There exists a finite subset {r1, . . . , rk} of G(Af ) such that any
T -special subvariety of S is a component of the image by the Hecke operator
Tri of a standard T -special subvariety.

Proof. We have a finite double coset decomposition

ZG(T )(Af ) = ∪ki=1ZG(T )(Q)+ ri ZG(T )(Af ) ∩K.
Let Z be a T special subvariety associated to a T -sub-Shimura datum (H,XH).
Fix a connected component X+

H of XH contained in X+. Then Z is the image
in S of X+

H × {h} for some h ∈ H(Af ). Note that XH = H(Q)X+
H , this is a

consequence of the fact that H(Q) is dense in H(R).
By definition of a T -sub-Shimura datum, T ⊂ Z(H) (where Z(H) is the

centre of H) and therefore H ⊂ ZG(T ).
We can find z ∈ ZG(T )(Q)+, k ∈ ZG(T )(Af )∩K and i ∈ {1, . . . , r} such

that h = zrik. Therefore Z is in the image of z−1.X+
H × {ri} in S.

Write XH = H(R).x for some x ∈ XH , Hz = z−1Hz and XHz =
Hz(R).(z−1.x). Then (Hz, XHz) is a sub-Shimura datum. The generic Mumford-
Tate group of XHz is

MT (XHz) = z−1MT (XH)z = z−1(THder)z = T.z−1Hderz.

Therefore (Hz, XHz) is a T -sub-Shimura datum. Note that z−1X+
H is a con-

nected component of XHz . Note also that because z ∈ ZG(T )(Q)+, z−1X+
H

is contained in X+.
Let Z0 be the standard T -special subvariety associated to (Hz, XHz).

Then Z is a component of Tri .Z0. �
The algebraic group ZG(T ) is reductive and connected as a centralizer of

a torus. Let
ZG(T ) = T̃L1 . . . Lr

be the decomposition of ZG(T ) as an almost direct product of Q-simple
factors.

Let LQ ' T̃L1 . . . Ls be the almost direct product of T̃ and of the Li’s
such that Li(R) is not compact. We have

H ⊂ ZG(T ) = ZG(T̃ )

and as the almost Q-simple factors Hi of H are such that Hi(R) aren’t
compact their projections on the Li with Li(R) compact are trivial. We
deduce from this that H ⊂ L. Let XL be the L(R)-conjugacy class of some
x ∈ XH .
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Lemma 3.6 The pair (L,XL) is a T -sub-Shimura datum such that

(H,XH) ⊂ (L,XL).

Proof. The proof of ([2] proposition 3.2) shows that (L,XL) is a Shimura
datum. AsH is contained in L, (H,XH) ⊂ (L,XL). We writeH ′ = MT (XH)
and L′ = MT (XL). We have an inclusion of sub-Shimura datum

(H ′, XH) ⊂ (L′, XL).

By definition T = Z(H ′)0 ⊂ L′ and T commutes with L′, therefore T ⊂
Z(L′)0. Fix x ∈ XH , then XL is the Lder-conjugacy-class of x. By definition
of the generic Mumford-Tate group of XH we know that

x(S)(R) ⊂ (T.Hder)(R) ⊂ (T.Lder)(R).

We then see that for any y ∈ XL we have

y(S)(R) ⊂ (T.Lder)(R).

Therefore L′ = MT (XL) ⊂ T.Lder and Z(L′)0 ⊂ T . Finally T = Z(L′)0 and
(L,XL) is a T -sub-Shimura datum. �

The following lemma will be useful later.

Lemma 3.7 Let (M,XM) be a sub-Shimura datum of (G,X). Then there
exist at most finitely many Y such that (M,Y ) is a sub-Shimura datum of
(G,X). Moreover as the M vary among connected reductive groups the num-
ber of Y is uniformly bounded.

Proof. Let X1,M and X2,M such that (M,X1,M) and (M,X2,M) are sub-
Shimura data of (G,X). Fix xi ∈ Xi,M and α ∈ G(R) such that

x2 = α.x1 = αx1α
−1.

Let Ki = ZG(xi(
√
−1))(R) the associated maximal compacts of G(R). We

have the Cartan decompositions:

G(R) = P1K1 = P2K2 and M(R) = P1∩M K1∩M = M(R) = P2∩M K2∩M.
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We then have K2 = αK1α
−1 and P2 = αP1α

−1. As the Cartan decomposi-
tions are conjugate in M(R), there exists h ∈M(R) such that

K2 ∩M = h(K1 ∩M)h−1 and P2 ∩M = h(P1 ∩M)h−1.

Let γ = h−1α = p.k with p ∈ P1 and k ∈ K1. Then

(?) K1 ∩M = pK1p
−1 ∩M and P1 ∩M = pP1p

−1 ∩M.

By ([15] lemma 3.11) we have the following:

1. Let {p, q, r} be elements of P1 such that pqp−1 = r then p2q = qp2.

2. Let p ∈ P1 and {k1, k2} ∈ K1 such that pk1p
−1 = k2 then p2k1 = k1p

2.

Then (?) and (1) implies that p2 ∈ ZG(P1)(R)∩M and (?) and (2) implies
that p2 ∈ ZG(K1)(R) ∩M . We then find that

p2 ∈ ZG(M)(R) ⊂ ZG(x1(
√
−1))(R) = K1

so p2 ∈ P1 ∩K1 is trivial and p = 1.
We now know that α = hγ with h ∈ H(R) and γ ∈ K1. Fix a set of

representative {γ1, . . . , γr} in K1 of K1/K
+
1 . As K+

1 fixes x1 we obtain that
for some i ∈ {1, . . . , r}, γi.x1 ∈ X2,M . This finishes the proof of the lemma
and of the proposition. �

Theorem 3.8 Fix a torus TQ with T (R) compact. Let (Zn) be a sequence of
T -special subvarieties of S. Let (µn) = (µZn) be the associated sequence of
probability measures. There exists a T -special subvariety Z of S and a sub-
sequence (Znk) such that (µnk) converges weakly to µZ. Moreover Z contains
Znk for all k large enough.

Proof. Using the lemmas (3.3) and (3.5), we may assume that Zn is a
standard T -special subvariety of S associated to a T -special sub-Shimura
datum (Hn, Xn) with Hn = MT(Xn) = THder

n .
Let (Hn, Xn) be the sequence of T -sub-Shimura datum associated to (Zn).

Using the lemmas 3.7 and 3.6 we may assume that for all n ∈ N, (Hn, Xn) is
a sub-Shimura datum of the T -Shimura datum (L,XL).

Therefore we may assume that (Zn) is contained in a fixed component SL
of ShL(Af )∩K(L,XL). Then (Zn) is a sequence of strongly special subvarieties
of SL in the sense of [2] 4.1. Let (Lad, XLad) be the adjoint Shimura datum
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and Kad
L a compact open subgroup containing the image of L(Af ) ∩ K in

Lad(Af ). We recall that Zn is a strongly special subvariety of SL if and only
if its image Zad

n in ShKad
L

(Lad, XLad) is strongly special. As T is the connected

center of Hn and T is contained in the center of L we see that Zad
n is defined

by a sub-Shimura datum (H ′n, X
′
n) of (Lad, XLad) with H ′n semi-simple and

that Zad
n is strongly special.

Note that the condition (b) in the definition of ”strongly special” ([2]
4.1) is in fact implied by the first: let (F,XF ) be a sub-Shimura datum of
an adjoint Shimura datum (G,X) with F semi-simple. Let α : S → FR
be a element of XF and Kα = ZG(α(

√
−1)) be the associated maximal

compact subgroup of G(R). Then ZG(F )(R) ⊂ ZG(α(
√
−1)) is compact.

Therefore ZG(F ) is Q-anisotropic (even R-anisotropic) and (F,XF ) satisfies
the condition (b”) of ([2] 4.1) which is equivalent to the condition (b).

The theorem 4.6 of [2] proves that after possibly having replaced (Zn)
by a subsequence; there exists a special subvariety Z ⊂ SL such that (µZn)
converges weakly to µZ and Zn ⊂ Z for all n � 0. We can find a sub-
Shimura datum (H,XH) associated to Z such that for any n large enough
the following inclusions of Shimura datum hold:

(Hn, Xn) ⊂ (H,XH) ⊂ (L,XL)

We once more write L′ = MT (XL) and H ′ = MT (XH). Then

(Hn, Xn) ⊂ (H ′, XH) ⊂ (L′, XL)

It is now easy to deduce that Z(H ′) = Z(Hn) = Z(L′) for every n large
enough and consequently Z is a T -special subvariety. �

3.2 Special subvarieties whose Galois orbits have bounded
degrees.

Let S = Γ\X+ be a component of ShK(G,X). We fix as in the previous
sections a faithful representation G ⊂ GL(VQ) on a n dimensional Q-vector

space VQ. We fix a Z-lattice VZ such that K ⊂ GLn(Ẑ). For any algebraic
subgroup H of G, we let HZ (resp. HZp) be the Zariski-closure of H in
GLn,Z = GL(VZ) (resp. GLn,Zp).

Fix a number field F such that S admits a canonical model over F . The
aim of this section is to prove the following theorem which merely provides a
justification for the seemingly unnatural definition of T -special subvarieties.
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Theorem 3.9 Assume the GRH for CM fields. Let N be an integer. There
exists a finite set {T1, . . . , Tr} of Q-tori of G with the following property. Let
Z be a special subvariety of S such that Gal(F/F ) ·Z has degree at most N .
Then Z is a Ti-special subvariety for some i ∈ {1, . . . , r}.

Let ΣF = ΣF,N be the set of special subvarieties Z of S such that
deg(Gal(F/F ).Z) is bounded by N . Let Z ∈ ΣF . By lemma 2.1 we may
assume that Z is associated to a sub-Shimura datum (H,XH) such that H
is the generic Mumford-Tate group on XH .

Let C ' H/Hder and let LC be the splitting field of C. By the theorem
2.13 and the remark following its statement, the discriminant |disc(LC)| is
bounded when Z varies in ΣF . To prove the theorem 3.9, it suffices to
consider the set of Z ∈ ΣF such that the corresponding LC is fixed.

Lemma 3.10 Let TF be the set of Q-tori T of G such that there exists Z ∈
ΣF associated with a sub-Shimura datum (H,XH) such that T = Z(MT(XH)).
Then TF is contained in a finite union of GLn(Q)-conjugacy classes.

Proof. The assumption of this lemma implies that the discriminant of LC
is bounded and therefore we can assume that the torus L := ResLC/QGm is
fixed. As before, we identify X∗(T ) with a submodule of X∗(L) via a “lifting”
of the reciprocity r(T,{x}). By the lemma 2.4, there is only a finite number
of possibilities for the set of characters occurring in the representations T ⊂
GLn. Each of these possibilities corresponds to an isomorphism class of such
a representation and hence to a GLn(Q)-orbit of a torus T . It follows that
the set TF as in the statements lies in a finite number of such orbits. �

We need in fact the following more precise result:

Proposition 3.11 The set TF is contained in a finite union of GLn(Z)-
conjugacy classes.

To prove this proposition, we will analyze the variation of Bi(T ) ·|Km
T /KT |

as T ranges through the set tori that lie in one GLn(Q)-conjugacy class.

Lemma 3.12 Let T0 ∈ TF and Σ0 the GLn(Q)-orbit of T0. For all T ∈ Σ0

we have the lower bound

Bi(T ) · |Km
T /KT | �

∏

{p:Km
T,p 6=KT,p}

cp
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where c is a uniform constant.
There exists a uniform constant C0 such that for all prime number p > C0

and all T ∈ Σ0 ∩ TF , the Zariski-closure TZp of T in GL(VZp) is a torus and
there exists αp ∈ GLn(Zp) such that TZp = αpT0Zpα

−1
p .

Proof. Let p a prime such that p unramified in LC , Kp is G(Zp) for the
Zp-structure given by our fixed representation of G and such that T0Zp is a
torus. These conditions are verified for almost all p.

Let g ∈ GLn(Q) such that T = gT0g
−1 ∈ Σ0 is such that Km

T,p 6= KT,p.
These conditions are equivalent to the fact that TZp is not a torus. The
conjugation morphism x 7→ gxg−1 establishes a bijection between Km

T,p/KT,p

and Km
T0,p

/T0(Qp) ∩ gGLn(Zp)g
−1 where Km

T0,p
is the maximal compact open

subgroup of T0(Qp). This last index is the size of the orbit T0(Zp) · gZn
p . The

fact that TZp is not a torus implies that T0,Zp does not fix the lattice gZn
p in

the sense of [7], section 3.3. Now the proposition 4.3.9 of [7] implies that this
index is at least a uniform constant times p. We conclude by noticing that
|Km

T /KT | is the product of the i(T ) local indices.
Using theorem 2.13, we see that there exists an integer C0 such that for

all T ∈ Σ0 ∩ TF and all prime p > C0, KT,p = Km
T,p. Let T ∈ Σ0 ∩ TF ,

then TZp is a torus. Let g ∈ GLn(Q) such that T = gT 0g−1. The previous
discussion shows that T0,Zp fixes the lattice gZn

p . By ([7] lemma 3.3.1), there
exists c ∈ ZGLn(T )(Qp) and αp ∈ GLn(Zp) such that gp = cαp. Therefore
TZp = αpT0Zpα

−1
p for some αp ∈ GLn(Zp).

�

The proposition 3.11 will follow from the following proposition whose
proof was communicated to us by Laurent Clozel.

Proposition 3.13 (Clozel) Let G be a reductive group over Qp, T ⊂ G a
torus and let H = ZG(T ). Let K be a fixed compact open subgroup of G(Qp)
and let KT = Km

T be the maximal compact subgroup of T (Qp). The function

I(g) = |KT/T (Qp) ∩ g−1Kg| → ∞
as g →∞ in G(Qp)/H(Qp). Let W be a set of g ∈ G(Qp)/H(Qp) such that
I(g) is bounded. The image of W in G(Zp)\G(Qp)/H(Qp) is finite.

Proof. As T (Qp) ∩ g−1Kg is a compact open subgroup of T (Qp), T (Qp) ∩
g−1Kg is contained in KT . For g ∈ G(Qp) and h ∈ H(Qp) we find that

T (Qp)∩h−1g−1Kgh = h−1(hT (Qp)h
−1∩g−1Kg)h = h−1(T (Qp)∩g−1Kg)h = T∩g−1Kg

24

146



as h commutes to T . So I(g) is well defined on G(Qp)/H(Qp).
Let 1K the characteristic function of K on G(Qp). Let µT the normalized

measure on KT . Then I(g)→∞ if and only if
∫

KT

1K(gtg−1) dµT −→ 0.

We just have to prove that for t outside a subset of KT of µT -measure 0:

1K(gtg−1)→ 0.

Let T reg ⊂ T (Qp) be the set

T reg = {t ∈ T (Qp) | ZG(t) = ZG(T ) = H}.

For t ∈ T reg we have an homeomorphism

πt : G(Qp)/H(Qp)→ O(t)

g 7→ gtg−1

where O(t) denotes the orbit of t under G(Qp). As t is semi-simple this orbit
is closed and the map πt is proper. In this way we get that for g → ∞
1K(gtg−1) = 0. So the following lemma finishes the proof of the proposition.
�

Lemma 3.14 The set of t ∈ KT such that t /∈ T reg is of µT -measure 0.

This last lemma is a consequence of [12], 2.1.11.
We can now finish the proof of the proposition 3.11. Let T0 ∈ TF and

Σ0 the GLn(Q)-conjugacy class of T0. Let T0,Z be the Zariski closure of T0

in GLn,Z. By lemma 3.10, we just need to prove that Σ0 ∩ TF is contained
in a finite union of GLn(Z)-conjugacy classes. By lemma 3.12, there exists
C0 > 0 such that for all T ∈ Σ0 ∩ TF and all prime number p > C0 there
exists αp ∈ GLn(Zp) such that TZp = αpT0Zpα

−1
p .

Let g ∈ GLn(Q) be such that T := gT0g
−1 ∈ TF ∩ Σ0. By theorem 2.13

|Km
T,p/KT,p| = |Km

T0,p
/T0(Qp) ∩ g−1Kpg|

is bounded when T varies in Σ0 ∩ TF . Using the proposition 3.13, we see
that for all prime number p ≤ C0 there exists a finite subset Wp of

GLn,Zp\GLn(Qp)/ZGLn(T0)(Qp)
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such that the image of g in GLn,Zp\GLn(Qp)/ZGLn(T0)(Qp) is contained in
Wp.

We therefore just need to prove that the set of tori T = gT0g
−1 ∈ Σ0∩TF

such that the image gp in Wp is fixed for all p ≤ C0 is contained in a finite
union of GLn(Z)-conjugacy class.

If this set is non empty, there exists T1 ∈ Σ0 ∩TF such that for all prime
p and all T in this set there exists αp ∈ GLn(Zp) such that TZp = αpT1Zpα

−1
p .

By the results of the appendix by Gille and Moret-Bailly ([8] cor. 6.4) the set
of tori under consideration is contained in a finite union of GLn(Z)-conjugacy
classes.

Proposition 3.15 The set TF is a finite union of Γ-conjugacy classes.

This proposition finishes the proof of the theorem 3.9: Fix T1, . . . , Ts a
system of representatives of the Γ-conjugacy classes in TF . In view of the
lemma 3.4, any Z ∈ ΣF is a Ti special subvariety.

Before starting the proof the proposition, we need to define the “type” of
a torus. Let S be a finite set of places of Q and let A be the ring of S-integers.
Let A be the integral closure of A inside Q. Suppose that GA is a smooth
reductive model of GQ and that TA is a torus inside GA. Then ZGA(TA) is a
connected reductive subgroup of GA of maximal reductive rank containing a
maximal torus TmaxA . By [5] (Exp. XXII prop 2.2) Tmax

A
is a split maximal

torus of GA. One can describe ZGA(TA) using roots of (GA, T
max
A

) which

are trivial on T̃A = Z(ZGA(TA)). Hence, there exists at most finitely many

G(A)-conjugacy classes of groups of this form. If TA is a A-torus in GA the
type of TA is the G(A)-conjugacy class of ZGA(TA) (compare with ([5], exp.
XXII sec. 2)) .

We only need to prove the proposition for a subset T′F of TF such that the
tori in T′F belong to a fixed GLn(Z)-conjugacy class of a torus T0 ∈ T′F . Let
A be the ring Z[1

s
] where s is the product of primes p belonging to the finite

set S of primes such that either T0Zp is not a torus or the Zariski-closure of
G in GL(n)Zp is not reductive and smooth.

The Zariski closures GA of G and T0,A of T0 in GLn,A are smooth. As
we work in a fixed GLn(Z)-conjugacy class all the tori in T′F have a smooth
Zariski closure in GLnA. We therefore may assume that all the tori in T′F
have the same type. Let T̃0 = Z(ZG(T0)), then ZG(T0) = ZG(T̃0) also has a
smooth Zariski-closure in GLnA.
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If T ∈ T′F , we write T̃ = Z(ZG(T )). Then T̃A and T̃0,A are some A-
subtori of GA locally conjugate in the fppf topology. The corollary 1.11 of
the appendix of this paper by Gille and Moret-Bailly [8] tells us that there
is at most finitely many G(A)-conjugacy-classes of such subtori. We may
therefore assume that for any T ∈ T′F the associated A-torus T̃A is conjugate
to T̃0,A by an element of G(A).

Let α ∈ G(A) such that T̃A = αT̃0,Aα
−1. Then

ZGA(T̃A) = ZGA(TA) = αZGA(T̃0,A)α−1.

Over Q we get ZG(T ) = αZG(T0)α
−1. Let L and L0 be the reductive sub-

groups of ZG(T ) and ZG(T0) obtained by removing the R-compact Q-factors
of ZG(T ) and ZG(T0) as described before the lemma 3.6. Let (L,XL) and
(L0, XL0) be the associated Shimura datum (see 3.6). Using lemma 3.7 we
may assume that for any T ∈ T′F , α induces an isomorphism of Shimura
datum between (L0, XL0) and (L,XL). Therefore the generic Mumford-Tate
group MT (XL) of XL equals αMT (XL0)α

−1. As a consequence we have

T = Z(MT (XL)) = αT0α
−1.

The proposition 3.13 of Clozel shows that for all prime p ∈ S the image
αp of α in G(Qp)/ZG(T0)(Qp) is contained in a finite union of G(Zp)-orbits.
We may therefore assume that for all p ∈ S any torus T in T′F is conjugate
to T0 by an element of G(Zp). As T and T0 are also conjugate by an element
of G(Zp) for all p /∈ S the corollary 1.11 of the appendix of Gille and Moret-
Bailly [8] tells us that T is contained in a finite union of G(Z)-orbits. As Γ
is of finite index in G(Z), T is contained in a finite union of Γ-orbits.
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THE ANDRÉ-OORT CONJECTURE.

B. KLINGLER, A. YAFAEV

Abstract. In this paper we prove, assuming the Generalized Riemann Hypothesis, the

André-Oort conjecture on the Zariski closure of sets of special points in a Shimura variety.

In the case of sets of special points satisfying an additional assumption, we prove the

conjecture without assuming the GRH.
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1. Introduction

1.1. The André-Oort conjecture. The purpose of this paper is to prove, under certain
assumptions, the André-Oort conjecture on special subvarieties of Shimura varieties.

Before stating the André-Oort conjecture we provide some motivation from algebraic
geometry. Let Z be a smooth complex algebraic variety and let F −→ Z be a variation
of polarizable Q-Hodge structures on Z (for example F = Rif∗Q for a smooth proper
morphism f : Y −→ Z). To every z ∈ Z one associates a reductive algebraic Q-group
MT(z), called the Mumford-Tate group of the Hodge structure Fz. This group is the
stabilizer of the Hodge classes in the rational Hodge structures tensorially generated by
Fz and its dual. A point z ∈ Z is said to be Hodge generic if MT(z) is maximal. If Z

is irreducible, two Hodge generic points of Z have the same Mumford-Tate group, called
the generic Mumford-Tate group MTZ . The complement of the Hodge generic locus is a
countable union of closed irreducible algebraic subvarieties of Z, each not contained in the
union of the others. This is proved in [7]. Furthermore, it is shown in [34] that when Z is
defined over Q (and under certain simple assumptions) these components are also defined
over Q. The irreducible components of the intersections of these subvarieties are called
special subvarieties (or subvarieties of Hodge type) of Z relative to F . Special subvarieties
of dimension zero are called special points.

Example : Let Z be the modular curve Y (N) (with N ≥ 4) and let F be the variation
of polarizable Q-Hodge structures R1f∗Q of weight one on Z associated to the universal
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THE ANDRÉ-OORT CONJECTURE. 3

elliptic curve f : E −→ Z. Special points on Z parametrize elliptic curves with complex
multiplication. The generic Mumford-Tate group on Z is GL2,Q. The Mumford-Tate
group of a special point corresponding to an elliptic curve with complex multiplication by
a quadratic imaginary field K is the torus ResK/QGm,K obtained by restriction of scalars
from K to Q of the multiplicative group Gm,K over K.

The general Noether-Lefschetz problem consists in describing the geometry of these spe-
cial subvarieties, in particular the distribution of special points. Griffiths transversality
condition prevents, in general, the existence of moduli spaces for variations of polarizable
Q-Hodge structures. Shimura varieties naturally appear as solutions to such moduli prob-
lems with additional data (c.f. [11], [12], [20]). Recall that a Q-Hodge structure on a
Q-vector space V is a structure of S-module on VR := V ⊗Q R, where S = ResC/RGm,C.
In other words it is a morphism of real algebraic groups

h : S −→ GL(VR) .

The Mumford-Tate group MT(h) is the smallest algebraic Q-subgroup H of GL(V ) such
that h factors through HR. A Shimura datum is a pair (G,X), with G a linear connected
reductive group over Q and X a G(R)-conjugacy class in the set of morphisms of real
algebraic groups Hom(S,GR), satisfying the “Deligne’s conditions” [12, 1.1.13]. These
conditions imply, in particular, that the connected components of X are Hermitian sym-
metric domains and that Q-representations of G induce polarizable variations of Q-Hodge
structures on X. A morphism of Shimura data from (G1,X1) to (G2,X2) is a Q-morphism
f : G1 −→ G2 that maps X1 to X2.

Given a compact open subgroup K of G(Af) (where Af denotes the ring of finite adèles
of Q) the set G(Q)\(X ×G(Af)/K) is naturally the set of C-points of a quasi-projective
variety over C, denoted ShK(G,X)C. The projective limit Sh(G,X)C = lim←−K

ShK(G,X)C
is a C-scheme on which G(Af) acts continuously by multiplication on the right (c.f. sec-
tion 4.1.1). The multiplication by g ∈ G(Af) on Sh(G,X)C induces an algebraic corre-
spondence Tg on ShK(G,X)C, called a Hecke correspondence. One easily shows that a
subvariety V ⊂ ShK(G,X)C is special (with respect to some variation of Hodge structure
associated to a Q-representation of G) if and only if there is a Shimura datum (H,XH), a
morphism of Shimura data f : (H,XH) −→ (G,X) and an element g ∈ G(Af) such that
V is an irreducible component of the image of the morphism :

Sh(H,XH)C
Sh(f)−→ Sh(G,X)C

.g−→ Sh(G,X)C −→ ShK(G,X)C .

It can also be shown that the Shimura datum (H,XH) can be chosen in such a way
that H is the generic Mumford-Tate group on XH. A special point is a special subvariety
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4 B. KLINGLER, A. YAFAEV

of dimension zero. One sees that a point (x, g) ∈ ShK(G,X)C(C) (where x ∈ X and
g ∈ G(Af)) is special if and only the group MT(x) is commutative (in which case MT(x)
is a torus).

Given a special subvariety V of ShK(G,X)C, the set of special points of ShK(G,X)C(C)
contained in V is dense in V for the strong (and in particular for the Zariski) topology.
Indeed, one shows that V contains a special point, say s. Let H be a reductive group
defining V and let H(R)+ denotes the connected component of the identity in the real Lie
group H(R). The fact that H(Q) ∩H(R)+ is dense in H(R)+ implies that the “H(Q) ∩
H(R)+-orbit” of s, which is contained in V , is dense in V . This “orbit” (sometimes referred
to as the Hecke orbit of s) consists of special points. The André-Oort conjecture is the
converse statement.

Definition 1.1.1. Given a set Σ of subvarieties of ShK(G,X)C we denote by Σ the subset
∪V ∈ΣV of ShK(G,X)C.

Conjecture 1.1.2 (André-Oort). Let (G,X) be a Shimura datum, K a compact open
subgroup of G(Af) and let Σ a set of special points in ShK(G,X)C(C). Then every
irreducible component of the Zariski closure of Σ in ShK(G,X)C is a special subvariety.

One may notice an analogy between this conjecture and the so-called Manin-Mumford
conjecture (first proved by Raynaud) which asserts that irreducible components of the
Zariski closure of a set of torsion points in an Abelian variety are translates of Abelian
subvarieties by torsion points. There is a large (and constantly growing) number of proofs
of the Manin-Mumford conjecture.

1.2. The results. Our main result is the following :

Theorem 1.2.1. Let (G,X) be a Shimura datum, K a compact open subgroup of G(Af)
and let Σ be a set of special points in ShK(G,X)C(C). We make one of the following
assumptions :

(1) Assume the Generalized Riemann Hypothesis (GRH) for CM fields.
(2) Assume that there exists a faithful representation G →֒ GLn such that with re-

spect to this representation, the Mumford-Tate groups MTs lie in one GLn(Q)-
conjugacy class as s ranges through Σ.

Then every irreducible component of the Zariski closure of Σ in ShK(G,X)C is a special
subvariety.

In fact we prove the following
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THE ANDRÉ-OORT CONJECTURE. 5

Theorem 1.2.2. Let (G,X) be a Shimura datum, K a compact open subgroup of G(Af)
and let Σ be a set of special subvarieties in ShK(G,X)C. We make one of the following
assumptions :

(1) Assume the Generalized Riemann Hypothesis (GRH) for CM fields.
(2) Assume that there exists a faithful representation G →֒ GLn such that with respect

to this representation, the generic Mumford-Tate groups MTV of V lie in one
GLn(Q)-conjugacy class as V ranges through Σ.

Then every irreducible component of the Zariski closure of Σ in ShK(G,X)C is a special
subvariety.

The case of theorem 1.2.2 where Σ is a set of special points is theorem 1.2.1.

1.3. The history of the André-Oort conjecture. For history and results obtained
before 2002, we refer to the introduction of [16]. We just mention that conjecture 1.1.2
was stated by André in 1989 in the case of an irreducible curve of ShK(G,X)C containing
a Zariski dense set of special points, and in 1995 by Oort for irreducible subvarieties
of moduli spaces of polarized Abelian varieties containing a Zariski-dense set of special
points.

Let us mention some results we will use in the course of our proof.
In [9] (further generalized in [31] and [33]), the conclusion of the theorem 1.2.2 is proved

for sets Σ of strongly special subvarieties in ShK(G,X)C without assuming (1) or (2) (c.f.
section 2). The statement is proved using ergodic theoretic techniques.

Using Galois-theoretic techniques and geometric properties of Hecke correspondences,
Edixhoven and the second author (see [17]) proved the conjecture for curves in Shimura
varieties containing infinite sets of special points satisfying our assumption (2). Sub-
sequently, the second author (in [37]) proved the André-Oort conjecture for curves in
Shimura varieties assuming the GRH. The main new ingredient in [37] is a theorem on
lower bounds for Galois orbits of special points. In the work [15], Edixhoven proves, as-
suming the GRH, the André-Oort conjecture for products of modular curves. In [36], the
second author proves the André-Oort conjecture for sets of special points satisfying an
additional condition.

The authors started working together on this conjecture in 2003 trying to generalize
the Edixhoven-Yafaev strategy to the general case of the André-Oort conjecture. In the
process two main difficulties occur. One is the question of irreducibility of transforms of
subvarieties under Hecke correspondences. This problem is dealt with in sections 6 and
7. The other difficulty consists in dealing with higher dimensional special subvarieties.
Our strategy is to proceed by induction on the generic dimension of elements of Σ. The
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6 B. KLINGLER, A. YAFAEV

main ingredient for controlling the induction was the discovery by Ullmo’s and the second
author in [33] of a possible combination of Galois theoretic and ergodic techniques. It took
form while the second author was visiting the University of Paris-Sud in January-February
2005.

1.4. Conventions. In this paper a complex algebraic variety is a reduced scheme over C,
not necessarily irreducible. A subvariety is always assumed to be a closed subvariety.

2. Equidistribution and Galois orbits.

In this section we recall a crucial ingredient in the proof of the theorem 1.2.2 : an
alternative discovered in [33] concerning the use of ergodic theoretic methods or Galois
geometric methods for attacking conjecture 1.1.2. We start with three definitions :

Definition 2.0.1. Let (G,X) be a Shimura datum, K a compact open subgroup of G(Af).
Let V be a special subvariety of ShK(G,X)C, defined by the Shimura subdatum (HV ,XHV

)
of (G,X). By lemma 2.1 of [33], one can assume that HV is the generic Mumford-Tate
group on V . The special subvariety V of ShK(G,X)C can be canonically written as the
image f(ΓV \X+

HV
), where X+

HV
denotes a connected component of XHV

, ΓV is an arith-
metic subgroup of the stabilizer HV (R)+ of X+

HV
in HV (R), ΓV \X+

HV
is an Hermitian

locally symmetric space and f : ΓV \X+
HV
−→ ShK(G,X)C is a finite morphism of com-

plex algebraic varieties. We define µV to be the probability measure on ShK(G,X)C(C)
supported on V , push-forward by f of the standard probability measure on the Hermitian
locally symmetric space ΓV \X+

HV
induced by the Haar measure on HV (R)+.

Definition 2.0.2. Let (G,X) be a Shimura datum and K ⊂ G(Af) a compact open
subgroup. Given a complex subvariety Z ⊂ ShK(G,X)C we will denote by degLK

Z the
degree of the compactification Z ⊂ ShK(G,X)C with respect to the natural line bundle LK

on the Baily-Borel compactification ShK(G,X)C (c.f. section 4.2).

Definition 2.0.3. Let (G,X) be a Shimura datum, K a compact open subgroup of G(Af).
Let λ : G −→ Gad be the adjoint morphism and T be an R-anisotropic Q-subtorus of Gad.

A special subvariety V of ShK(G,X)C is called T-special if the torus T is the connected
center of the group λ(HV ), where HV denotes the generic Mumford-Tate group of V .

In the case where T is the trivial torus, one says that V is strongly special.

Remark 2.0.4. The definition of strongly special given in [9] requires moreover that λ(HV )
is not contained in a proper parabolic subgroup of Gad but as explained in [31, rem. 3.9]
this last condition is automatically satisfied.
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With these three definitions, the alternative discovered in [33] can roughly be explained
as follows. Assume the GRH. Let F be a number field over which ShK(G,X)C admits a
canonical model (c.f. section 4.1.2) and let (Vn)n∈N be a sequence of special subvarieties
of ShK(G,X)C.

• If there exists a finite collection {T1, · · · ,Tr} of R-anisotropic Q-subtori of Gad

such that each Vn, n ∈ N, is Ti-special for some i ∈ {1, · · · , r}, then the se-
quence (Vn) is equidistributed in the following sense. After possibly passing to
a subsequence the sequence of probability measures µVn weakly converges to the
probability measure µV of some special subvariety V and for n large, Vn is con-
tained in V .

This implies that irreducible components of the Zariski-closure of
⋃

n∈N Vn in
ShK(G,X)C are special.
• otherwise the function degLK

(Gal(Q/F ) · Vn) is an unbounded function of n and
we can try Galois-theoretic methods for studying the Zariski-closure of

⋃
n∈N Vn

in ShK(G,X)C.

We now explain this alternative in more details.

2.1. Equidistribution results. Let G be a reductive R-group. Ratner’s classification of
probability measures on homogeneous spaces of the form Γ\λ(G)(R)+ (where Γ denotes
a lattice in λ(G)(R)+), ergodic under some unipotent flows [27], and Dani-Margulis re-
currence lemma [10] enable Clozel and Ullmo [9] to prove the following equidistribution
result in the strongly special case, generalized by Ullmo and Yafaev [33, theorem 3.8] to
the T-special case :

Theorem 2.1.1 (Clozel-Ullmo, Ullmo-Yafaev). Let (G,X) be a Shimura datum, K a
compact open subgroup of G(Af). Let T be an R-anisotropic Q-subtorus of Gad. Let
(Vn)n∈N be a sequence of T-special subvarieties of ShK(G,X)C. Let µVn be the canonical
probability measure on ShK(G,X)C supported by Vn. There exists a T-special subvariety
V and a subsequence (µnk

)k∈N weakly converging to µV . Furthermore V contains Vnk
for

all k sufficiently large. In particular, the irreducible components of the Zariski closure of
a set of T-special subvarieties of ShK(G,X)C are special.

Remarks 2.1.2. (1) Note that a special point, whose Mumford-Tate group is a non-
central torus, is not strongly special. Moreover, given an R-anisotropic Q-subtorus
T of Gad, the Shimura variety ShK(G,X)C contains only a finite number of T-
special points (c.f. [33, lemma 5.5]). Thus theorem 2.1.1 says nothing directly on
the André-Oort conjecture.
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(2) In fact the conclusion of the theorem 2.1.1 is simply not true for special points :
they are dense for the Archimedian topology in ShK(G,X)C(C), so just consider
a sequence of special points converging to a non-special point in ShK(G,X)C(C)
(or diverging to a cusp if ShK(G,X)C(C) is non-compact). In this case the corre-
sponding sequence of Dirac delta measures will converge to the Dirac delta measure
of the non-special point (respectively escape to infinity).

(3) There is a so-called equidistribution conjecture which implies André-Oort and
much more. A sequence (xn) of points of ShK(G,X)C(C) is called strict if any for
any proper special subvariety V of ShK(G,X)C(C), the set

{n : xn ∈ V }
is finite. Let E be a field of definition of canonical model of ShK(G,X)C(C). To
any special point x, one associates a probability measure ∆x on ShK(G,X)C(C)
as follows :

∆x =
1

|Gal(E/E)(x)|
∑

σ∈Gal(E/E)

δσ(x)

where δσ(x) is the Dirac measure at the point σ(x) and |Gal(E/E)(x)| denotes
the cardinality of the Galois orbit Gal(E/E)(x). The equidistribution conjecture
predicts that if (xn) is a strict sequence of special points, then the sequence of
measures ∆xn weakly converges to the canonical probability measure attached to
ShK(G,X)C(C). This statement implies the André-Oort conjecture. The equidis-
tribution conjecture is known for modular curves and is completely open in general.
For more on this, we refer to the survey [32].

(4) In [9] and [33] the theorem 2.1.1 is proven in the case where G is a semi-simple
group of adjoint type. The general case is an easy corollary, c.f. appendix A.

2.2. Galois orbits of non-strongly special subvarieties. In this paragraph, we recall
the lower bound obtained in [33] for the degree of the Galois orbit of a non-strongly special
subvariety in a Shimura variety ShK(G,X)C.

Definition 2.2.1. Let (G,X) be a Shimura datum. Let K =
∏

p premier Kp be a compact
open subgroup of G(Af). Let V be a special subvariety of a Shimura variety ShK(G,X)C.
We denote by :

• HV ⊂ G the generic Mumford-Tate group of V and (HV ,XV ) the Shimura subda-
tum of (G,X) defining V .
• EHV

the reflex field of (HV ,XHV
)

• TV the torus connected center of HV . The torus TV is non-trivial if and only if
V is non-strongly special.

160
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• Km
TV

the maximal compact open subgroup of TV (Af).
• KTV

the compact open subgroup TV (Af) ∩K ⊂ Km
TV

.
• i(TV ) the number of primes p such that Km

TV,p
6= KTV,p

.
• CV the torus HV /Hder

V isogenous to TV .
• dTV

the absolute value of the discriminant of the splitting field LV of CV , and nV

the absolute degree of LV .
• βV := log |dTV

|. In particular βV = 0 if V is strongly special.

One of the main ingredients of our proof is the following lower bounds for the degree of
Galois orbits of non-strongly special subvarieties obtained in [33, theorem 2.13] :

Theorem 2.2.2 (Ullmo-Yafaev). Let (G,X) be a Shimura datum. Let K =
∏

p premier Kp

be a compact open subgroup of G(Af).
Assume the GRH for CM fields. There exists a real number B > 0 and, for each positive

integer N , a real number C(N) > 0 such that the following holds.
Let (H,XH) be a Shimura subdatum of (G,X) and V be a connected component of

ShKH
(H,XH)C, where KH ⊂ H(Af) denotes the compact open subgroup K ∩ H(Af).

Then the following inequality holds :

(2.1) degLKH
(Gal(Q/EHV

) · V ) > C(N) ·Bi(TV ) · |Km
TV

/KTV
| · βN

V .

Furthermore, if one considers only the subvarieties V such that the associated tori TV lie
in one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

2.3. The alternative. Throughout the paper we will be using the following notations.

Definition 2.3.1. Let (G,X) be a Shimura datum. Let K =
∏

p premier Kp be a com-
pact open subgroup of G(Af). Let V be a special subvariety of ShK(G,X)C with generic
Mumford-Tate group HV .

If V is strongly special we let αV = 0.
If V is a non-strongly special subvariety, we set with the notations of definition 2.2.1

and theorem 2.2.2

αV := Bi(TV ) · |Km
TV

/KTV
| .

The alternative roughly explained in the introduction to section 2 can now be formulated
in the following theorem (easy adaptation of [33, theor. 3.9]) :

Theorem 2.3.2. Let (G,X) be a Shimura datum. Let K =
∏

p premier Kp be a compact
open subgroup of G(Af).

Assume the GRH for CM fields.
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10 B. KLINGLER, A. YAFAEV

Let Σ be a set of special subvarieties V of ShK(G,X)C such that αV βV is bounded as
V ranges through Σ. There exists a finite set {T1, · · · ,Tr} of Q-subtori of G such that
any V in Σ is Ti-special for some i ∈ {1, · · · , r}.

Furthermore, if one considers only the subvarieties V such that the associated tori TV

lie in one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

Proof. Of course we can assume that all the subvarieties V in Σ are non-strongly special.
Moreover, if αV βV is bounded, then clearly αV is bounded.

As noticed in [33, prop. 3.11] there exist A > 0 and c > 0 such that for any V ∈ Σ we
have

αV > A ·
∏

{p : Km
TV

6=KTV
}
c · p .

In particular αV bounded implies that i(TV ) = |{p : Km
TV
6= KTV

}| is also bounded. As
αV ≥ Bi(TV ), i(TV ) is bounded and αV βV is bounded, we obtain that βV = log(dTV

) is
also bounded. Thus if LCV

denotes the splitting field of CV (or TV , their splitting field
is the same), its discriminant is bounded.

To prove the theorem, it is thus enough to replace Σ with the set of V ∈ Σ with fixed
field LCV

. The proof is then the same as [33, theorem 3.9] starting with [33, lemma 3.10].
�

3. Reduction and strategy.

From now on we will use the following convenient terminology :

Definition 3.0.3. Let (G,X) be a Shimura datum and K a compact open subgroup of
G(Af). Let Σ be a set of special subvarieties of ShK(G,X)C. A subset Λ of Σ is called
a modification of Σ if Λ and Σ have the same Zariski-closure in ShK(G,X)C. Given a
subtorus T of G we say that Σ is T-special if any element in Σ is a T-special subvariety.

3.1. First reduction. We first have the following obvious reduction of the proof of the-
orem 1.2.2 :

Theorem 3.1.1. Let (G,X) be a Shimura datum and K a compact open subgroup of
G(Af). Let Z be a subvariety of ShK(G,X)C. Suppose that Z contains a Zariski dense
set Σ, which is a union of special subvarieties V , V ∈ Σ, all of the same dimension n(Σ).

We make one of the following assumptions :

(1) Assume the Generalized Riemann Hypothesis (GRH) for CM fields.
(2) Assume that there is a faithful representation G →֒ GLn such that with respect to

this representation, the connected centers TV of the generic Mumford-Tate groups
HV of V lie in one GLn(Q)-conjugacy class as V ranges through Σ.
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Then

(a) The variety Z contains a Zariski dense set Σ′ of special subvarieties of constant
dimension n(Σ′) > n(Σ).

(b) Furthermore, if Σ satisfies the condition (2), one can choose Σ′ also satisfying (2).

Proposition 3.1.2. Theorem 3.1.1 implies the main theorem 1.2.2.

Proof. Let Σ as in the main theorem1.2.2. Without loss of generality one can assume that
the Zariski closure Z of Σ is irreducible. Moreover by Noetherianity one can assume that
all the V ∈ Σ have the same dimension n(Σ).

Notice that the assumption (2) of the theorem 1.2.2 implies the assumption (2) of the
theorem 3.1.1. We then apply theorem 3.1.1,(a) to Σ : the subvariety Z contains a Zariski-
dense set Σ′ of special subvarieties V ′, V ′ ∈ Σ′, of constant dimension n(Σ′) > n(Σ).

By theorem 3.1.1,(b) one can replace Σ by Σ′. Applying this process recursively and as
n(Σ′) ≤ dim(Z), we conclude that Z is special. �

3.2. Second reduction. Part (b) of theorem 3.1.1 is easy, we deal with it in section 5.
Part (a) of theorem 3.1.1 can itself be reduced to the following main theorem (we refer
to section 4 for a reminder on reflex fields and the definition of the connected component
SK(G,X)C, and to definition 6.0.4 for the (usual) definition of an F -irreducible F -variety) :

Theorem 3.2.1. Let (G,X) be a Shimura datum and K a compact open subgroup of
G(Af). Let F be a number field containing the reflex field E(G,X).

Let Z be a Hodge-generic F -irreducible F -subvariety of the connected component SK(G,X)C
of ShK(G,X)C. Suppose that Z contains a Zariski dense set Σ, which is a union of special
subvarieties V , V ∈ Σ, all of the same dimension n(Σ) and such that for any modification
Σ′ of Σ the set {αV βV , V ∈ Σ′} is unbounded.

We make one of the following assumptions :

(1) Assume the Generalized Riemann Hypothesis (GRH) for CM fields.
(2) Assume that there is a faithful representation G →֒ GLn such that with respect to

this representation, the connected centers TV of the generic Mumford-Tate groups
HV of V lie in one GLn(Q)-conjugacy class as V ranges through Σ.

After possibly replacing Σ by a modification, for every V in Σ there exists a special
subvariety V ′ such that V ( V ′ ⊂ Z.

Proposition 3.2.2. Theorem 3.2.1 implies theorem 3.1.1 (a).

Proof. Let Z be as in theorem 3.1.1.
We can assume that the variety Z is Hodge-generic. To fulfill this condition, replace

ShK(G,X)C by the smallest special subvariety of ShK(G,X)C containing Z (c.f. [17,
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12 B. KLINGLER, A. YAFAEV

prop.2.1]). This comes down to replacing G with the generic Mumford-Tate group on Z.
This does not change αV and βV .

We can also assume that Z is contained in SK(G,X)C : proving theorem 3.1.1 for Z

is equivalent to proving theorem 3.1.1 for each irreducible component of Z, thus we can
assume Z is irreducible. As proving theorem 3.1.1 for Z is also equivalent to proving the-
orem 3.1.1 for any irreducible component of its image under some Hecke correspondence,
we can ensure Z is contained in SK(G,X)C.

As Z contains a Zariski-dense set of special points, and any special point is Q-valued,
the variety Z is defined over some number field F ⊂ C containing the reflex field E(G,X) :
Z = ZF ×Spec F Spec C.

Let ZF = (ZF )1 ∪ · · · ∪ (ZF )l be the decomposition of ZF in F -irreducible components,
thus Z = ∪l

i=1Zi, with Zi := (ZF )i ×Spec F SpecC, 1 ≤ i ≤ l. This decomposition induces
a decomposition Σ = ∪l

i=1Σi, where Σi is the set of special subvarieties V , V ∈ Σ, such
that V ⊂ Zi. Each Zi, 1 ≤ i ≤ l, contains the Zariski dense set Σi = ∪V ∈ΣiV and proving
theorem 3.1.1 for Z is equivalent to proving theorem 3.1.1 for each Zi, 1 ≤ i ≤ l.

Fix i ∈ {1, · · · , l}. If for some modification Σ′
i of Σi the set {αV βV , V ∈ Σ′

i} is
bounded, by theorem 2.3.2 and by Noetherianity there exists a Q-subtorus T of Gad and a
T-special modification of Σi. Applying theorem 2.1.1 one obtains that every geometrically
irreducible component of Zi is special, which proves theorem 3.1.1 for Zi.

Thus we can assume that Zi, 1 ≤ i ≤ l, satisfies the hypothesis of theorem 3.2.1 and we
have reduced the proof of theorem 3.1.1 to the case where Z satisfies the assumptions of
theorem 3.2.1.

Let Σ′ be the set of the special subvarieties V ′ obtained from theorem 3.2.1 applied to
Z. Thus Z contains the Zariski-dense set Σ′ = ∪V ′∈Σ′V ′. After possibly replacing Σ′ by
a modification, we can assume by Noetherianity of Z that the subvarieties in Σ′ have the
same dimension n(Σ′). Of course n(Σ′) > n(Σ). This proves the theorem 3.1.1 assuming
theorem 3.2.1. �

3.3. Reminder about the proof of theorem 1.2.1 in the case where Z is a curve.
The strategy for proving theorem 3.2.1 is fairly complicated. We first recall the strategy
developed in [17] in the case where Z is a curve. In the next section we explain why this
strategy cannot be directly generalized to higher dimensional cases.

Without loss of generality one can assume that the group G is adjoint, Z is Hodge
generic (i.e. its generic Mumford-Tate group is equal to G), and Z is contained in the
connected component SK(G,X)C of ShK(G,X)C. The proof of the theorem 1.2.1 in the
case where Z is a curve relies on three ingredients.
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3.3.1. The first one is a geometric criterion for a Hodge generic subvariety Z to be special
in terms of Hecke correspondences. Given a Hecke correspondence Tm, m ∈ G(Af) (c.f.
section 4.1.1) we denote by T 0

m the correspondence it induces on SK(G,X)C. This cor-
respondence decomposes as T 0

m =
∑

i Tqi , where the qi’s are elements of G(Q)+ ∩KmK

defined by

G(Q)+ ∩KmK =
∐

ΓKq−1
i ΓK .

Theorem 3.3.1. [17, theorem 7.1] Let ShK(G,X)C be a Shimura variety, with G semi-
simple of adjoint type. Let Z ⊂ SK(G,X)C be an Hodge-generic closed subvariety of
the connected component SK(G,X)C of ShK(G,X)C. Suppose there exist a prime l and
an element m ∈ G(Ql) such that the neutral component T 0

m =
∑n

i=1 Tqi of the Hecke
correspondence Tm associated with m has the following properties :

(1) Z ⊂ T 0
mZ.

(2) For any i ∈ {1, · · · n}, the variety TqiZ is irreducible.
(3) For any i ∈ {1, · · · n} the Tqi + Tq−1

i
-orbit is dense in SK(G,X).

Then Z = SK(G,X), in particular Z is special.

From (1) and (2) one deduces the existence of one index i such that Z = TqiZ. It follows
that Z contains an Tqi + Tq−1

i
-orbit. The equality Z = SK follows from (3).

In the case where Z is a curve one proves the existence of a prime l and of an element m ∈
G(Ql) satisfying these properties as follows. The property (3) is satisfied for essentially
any m. The property (2), which is crucial for this strategy, is obtained by showing that
for any prime l outside a finite set of primes PZ and any q ∈ G(Q)+ ∩ (G(Ql)×

∏
p 6=l Kl),

the variety TqZ is irreducible. This is an easy corollary of a result due independently
to Weisfeiler and Nori (c.f. theorem 4.3.3) applied to the Zariski closure of the image
of the monodromy representation. This result implies that for all l except those in a
finite set PZ , the closure in G(Ql) of the image of the monodromy representation for
the Z-variation of Hodge structure on the smooth locus Zsm of Z coincides with the
closure of K ∩ G(Q)+ in G(Ql) of the open compact subgroup K ⊂ G(Af). To prove
the property (1) one uses Galois orbits of special points contained in Z and the fact that
Hecke correspondences commute with the Galois action. First one notices that Z is defined
over a number field F , finite extension of the reflex field E(G,X) (c.f. section 4.1.2). If
s ∈ Z is a special point, rs the associated reciprocity morphism and m ∈ G(Ql) belongs
to rs((Ql ⊗ F )∗) ⊂ MT(s)(Ql) then the Galois orbit Gal(Q/F ) · s is contained in the
intersection Z∩TmZ. If this intersection is proper its cardinality Z∩TmZ is essentially the
degree [Kl : Kl∩mKlm

−1] of the correspondence Tm. To find l and m such that Z ⊂ TmZ
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it is then enough to exhibit m ∈ rs((Ql ⊗ F )∗) such that the cardinality |Gal(Q/F ).s| is
larger than [Kl : Kl ∩mKlm

−1]. This is dealt with by the next two ingredients :

3.3.2. The second ingredient claims the existence of “unbounded” Hecke correspondences
of controlled degree defined by elements in rs((Ql ⊗ F )∗) :

Theorem 3.3.2. [17, corollary 7.4.4] There exists an integer k such that for all s ∈ Σ
and for any prime l such that MT(s)Fl

is a split torus, there exists m ∈ rs((Ql ⊗ F )∗) ⊂
MT(s)(Ql) such that

(1) for any factor Gi of G the image of m in Gi(Ql) is not in a compact subgroup.
(2) [Kl : Kl ∩mKlm

−1]≪ lk

3.3.3. The third ingredient is a lower bound for |Gal(Q/F ) · s| due to Edixhoven, and
improved in theorem 2.2.2.

3.3.4. Finally using this lower bound for |Gal(Q/F ) · s| and the effective Chebotarev
theorem consequence of GRH one proves the existence for any special point s ∈ Σ with a
sufficiently big Galois orbit of a prime l outside PZ , splitting MT(s), such that MT(s)Fl

is a torus and such that |Gal(Q/F ).s| ≫ lk. Effective Chebotarev is not needed under the
assumption that the MT(s), s ∈ Σ, are isomorphic. The reason being that in this case,
the splitting field of the MT(s) is constant and the classical Chebotarev

We then choose an m satisfying the conditions of the theorem 3.3.2. As |Gal(Q/F ).s| ≫
[Kl : Kl ∩mKlm

−1] one obtains Z ⊂ TmZ and by the criterion 3.3.1 the subvariety Z is
special.

3.4. Strategy for proving the theorem 3.2.1 : the general case. Our strategy for
dealing with the general case of the theorem 3.2.1 is as follows :

Let (G,X) be a Shimura datum and K a compact open subgroup of G(Af). Let Z be
a subvariety of ShK(G,X)C. Suppose that Z contains a Zariski dense set Σ, which is a
union of special subvarieties V , V ∈ Σ, all of the same dimension n(Σ) and such that the
set {αV βV , V ∈ Σ} is unbounded.

Notice that the idea of the proof of [17] generalizes to the case where dimZ = n(Σ) + 1
(c.f. section 8.4.1). In the general case, for a V in Σ with αV βV sufficiently large we want
to exhibit V ′ special subvariety in Z containing V properly.

Our first step (section 6) is geometric : we give a criterion (theorem 6.1) similar to
criterion 3.3.1 saying that an inclusion Z ⊂ TmZ, for a prime l and an element m ∈ HV (Ql)
satisfying certain conditions, implies that V is properly contained in a special subvariety
V ′ of Z.

166
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The criterion we need has to be much more subtle than the one in [17]. In the charac-
terization of [17], in order to obtain the irreducibility of TmZ the prime l must be outside
some finite set PZ of primes. It seems impossible to make the set of bad primes PZ explicit
in terms of numerical invariants of Z, except in a few cases where the Chow ring of the
Baily-Borel compactification of ShK(G,X)C is easy to describe (like the case considered
by Edixhoven, where ShK(G,X)C is a product

∏n
i=1 Xi of modular curves, and where he

shows that for a k-dimensional subvariety Z dominant on all factors Xi, 1 ≤ i ≤ n, the
bad primes p ∈ PZ are smaller than the supremum of the degree of the projections of Z

on the k-factors X11 × · · · × Xik of ShK(G,X)C). In particular that characterization is
not suitable for our induction.

Our criterion 6.1 for an irreducible subvariety Z containing a non-strongly special sub-
variety V and satisfying Z ⊂ TmZ for some m ∈ TV (Ql) to contain a special subvariety
V ′ containing V properly does no longer require the irreducibility of TmZ. In particular it
is valid for any prime l, outside PZ or not. Instead we notice that the inclusion Z ⊂ TmZ

implies that Z contains the image Z ′ in ShK(G,X)C of the 〈K ′
l , (k1mk2)n〉-orbit of (one

irreducible component of) the preimage of V in the pro-l-covering of ShK(G,X)C. Here
k1 and k2 are some elements of Kl, n some positive integer and K ′

l the l-adic closure of
the image of the monodromy of Z. If the group 〈K ′

l , (k1mk2)n〉 is not compact, then the
irreducible component of Z ′ containing V contains a special subvariety V ′ of Z containing
V properly.

The main problem with this criterion is that the group 〈K ′
l , k1mk2〉 can be compact,

containing K ′
l with very small index. This is the case in Edixhoven’s counter-example [14,

Remark 7.2]. In this case G = PGL2 × PGL2, K ′
l := Γ0(l)× Γ0(l) and k1mk2 is wl × wl,

the product of two Atkin-Lehner involutions. The index [〈K ′
l , k1mk2〉 : K ′

l ] is four.

Our second step (section 7) consists in getting rid of this problem and is purely group-
theoretic. We notice that if Kl is not a maximal compact open subgroup but is contained
in an Iwahori subgroup of G(Ql), then for “many” m in TV (Ql) the element k1mk2 is not
contained in a compact subgroup for any k1 and k2 in Kl. This is our theorem 7.1 about
the existence of adequate Hecke correspondences. The proof relies on simple properties of
the Bruhat-Tits decomposition of G(Ql).

Our third step (section 8) is Galois-theoretic and geometric. We use theorem 2.2.2,
theorem 6.1, theorem 7.1 to show (under one of the assumptions of theorem 3.1.1) that
the existence of a prime number l satisfying certain conditions forces a subvariety Z of
ShK(G,X)C containing a non-strongly special subvariety V to contain a special subvariety
V ′ containing V properly. The proof is a nice geometric induction on r = dim Z − dim V .
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16 B. KLINGLER, A. YAFAEV

Our last step (section 9) is number-theoretic : we complete the proof of the theorem 3.2.1
and hence of theorem 1.2.2 by exhibiting, using effective Chebotarev under GRH (or
usual Chebotarev under the second assumption of theorem 1.2.2), a prime l satisfying
our desiderata. For this step it is crucial that both the index of an Iwahori subgroup
in a maximal compact subgroup of G(Ql) and the degree of the correspondence Tm are
bounded by a uniform power of l.
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4. Preliminaries.

4.1. Notations. In this section we define some notations and recall some standard facts
about Shimura varieties that we will use in this paper. We refer to [11], [12], [20] for
details.

As far as groups are concerned, reductive algebraic groups are assumed to be connected.
The exponent 0 denotes the algebraic neutral component and the exponent + the topolog-
ical neutral component. Thus if G is a Q-algebraic group G(R)+ denotes the topological
neutral component of the real Lie group of R-points G(R). We also denote by G(Q)+ the
intersection G(R)+ ∩G(Q). When G is reductive we denote by Gad the adjoint group
of G (the quotient of G by its center) and by G(R)+ the preimage in G(R) of Gad(R)+.
The notation G(Q)+ denotes the intersection G(R)+ ∩G(Q). In particular when G is
adjoint then G(Q)+ = G(Q)+.

168
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4.1.1. Shimura varieties. Let (G,X) be a Shimura datum. We fix X+ a connected com-
ponent of X. Given K a compact open subgroup of G(Af) one obtains the homeomorphic
decomposition

(4.1) ShK(G,X)C = G(Q)\X ×G(Af)/K ≃
∐

g∈C
Γg\X+ ,

where C denotes a set of representatives for the (finite) double coset space G(Q)+\G(Af)/K,
and Γg denotes the arithmetic subgroup gKg−1 ∩G(Q)+ of G(Q)+. We denote by ΓK

the group Γe corresponding to the identity element e ∈ C and by SK(G,X)C = ΓK\X+

the corresponding connected component of ShK(G,X)C.
The Shimura variety Sh(G,X)C is the C-scheme projective limit of the ShK(G,X)C,

K compact open subgroup of G(Af). The group G(Af) acts continuously on the right on
Sh(G,X)C. The set of C-points is

Sh(G,X)C(C) =
G(Q)
Z(Q)

\(X ×G(Af)/Z(Q)) ,

where Z denotes the center of G and Z(Q) is the closure of Z(Q) in G(Af) [12, prop.2.1.10].
The action of G(Af) on the right is given by : (x, h)

.g−→ (x, h · g). For m ∈ G(Af), we
denote by Tm the Hecke correspondence

ShK(G,X)C ←− Sh(G,X)C
.m−→ Sh(G,X)C −→ ShK(G,X)C .

4.1.2. Reciprocity morphisms and canonical models. Given (G,X) a Shimura datum, where
X is the G(R)-conjugacy class of h : S −→ GR, we denote by µh : Gm,C −→ GC the C-
morphism of Q-groups obtained by composing the embedding of tori

Gm,C −→ SC
z −→ (z, 1)

with hC. Let E(G,X) be the field of definition of the G(C)-conjugacy class of µh (the
reflex field of (G,X)). In the case where G is a torus T and X = {h} we denote by

r(T,{h}) : Gal(Q/E)ab −→ T(Af)/T(Q)

the reciprocity morphism defined in [12, 2.2.3] for any field E ⊂ C containing E(T, {h}).
Let x = (h, g) be a special point in Sh(G,X)C image of the pair (h : S −→ T ⊂ G, g) ∈
X × G(Af). The field E(h) = E(T, {h}) depends only on h and is an extension of
E(G,X) [12, 2.2.1]. The Shimura variety Sh(G,X)C admits a unique model Sh(G,X)
over E(G,X) such that the G(Af)-action on the right is defined over E(G,X), the special
points are algebraic and if x = (h, g) is a special point of Sh(G,X)(C) then an element
σ ∈ Gal(Q/E(h)) ⊂ Gal(Q/E(G,X)) acts on x by σ(x) = (h, r̃(σ)g), where r̃(σ) ∈
T(Af) is any lift of r(T,{h})(x) ∈ T(Af)/T(Q), c.f. [12, 2.2.5]. This defines a canonical
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E(G,X)-model ShK(G,X) for ShK(G,X)C, K compact open subgroup in G(Af). For
m ∈ G(Af) the Hecke correspondence Tm is defined over E(G,X). We will denote by
πK : Sh(G,X) −→ ShK(G,X) the natural projection.

4.1.3. Galois action on the set of connected components of a Shimura variety. Let π0(G)
be the set of geometrically irreducible components of Sh(G,X). This set is a princi-
pal homogeneous space under the Abelian group π(G) = G(Af)/G(Q)ρG̃(Af) where
ρ : G̃ −→ Gder is the universal cover (c.f. [12, 2.1.14]). The action of Gal(Q/E(G,X)) on
π0(G) factors through Gal(Q/E(G,X))ab and is given by the reciprocity morphism (c.f.
[12, 2.6])

r(G,XG) : Gal(Q/E(G,X))ab −→ π(G) .

Let C := G/Gder be the quotient of G by its derived subgroup. If the group G is not
semi-simple (the neutral component T of the center of G is a non-trivial torus), then C is
a torus and the projection G −→ C induces an isogeny T −→ C. Let x be any element of
X, and let x be the morphism x : S −→ CR obtained by composing x with the projection
GR −→ CR. The pair (C, {x}) is a special Shimura datum. The reflex field E(C, {x})
contains E(G,X) and the reciprocity morphism

r(C,x) : Gal(Q/E(C, x))ab −→ π(C) .

is the morphism r(G,X) composed with the natural morphism π(G) −→ π(C).

4.1.4. The Shimura variety at a prime l. Let l be a prime. Suppose K l ⊂ G(Al
f) is a

compact open subgroup, where Al
f denotes the ring of finite adèles outside l.

Definition 4.1.1. We denote by ShKl(G,X) the E(G,X)-scheme lim←−ShKl·Ul
(G,X) for

Ul compact open subgroup of G(Ql).

The scheme ShKl(G,X) identifies with the quotient Sh(G,X)/K l. It admits a contin-
uous G(Ql)-action on the right. Given a compact open subgroup Ul ⊂ G(Ql) we denote
by πUl

: ShKl(G,X) −→ ShKlUl
(G,X) the canonical projection.

4.1.5. Neatness. Let G be a linear algebraic group over Q. We recall the definition of
neatness for subgroups of G(Q) and its generalization to subgroups of G(Af). We refer
to [3] and [24, 0.6] for more details.

Given an element g ∈ G(Q) let Eig(g) be the subgroup of Q∗ generated by the eigenval-
ues of g. We say that g ∈ G(Q) is neat if the subgroup Eig(g) is torsion-free. A subgroup
Γ ⊂ G(Q) is neat if any element of Γ is neat. In particular such a group is torsion-free.

Given an element gp ∈ G(Qp) let Eigp(gp) be the subgroup of Qp
∗ generated by all

eigenvalues of gp. Let Q −→ Qp be some embedding and consider the torsion part (Q∗ ∩
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Eigp(gp))tors. Since every subgroup of Q∗ consisting of roots of unity is normalized by
Gal(Q/Q), this group does not depend on the choice of the embedding Q −→ Qp

∗. We
say that gp is neat if

(Q∗ ∩ Eigp(g))tors = {1} .

We say that g = (gp)p ∈ G(Af) is neat if
⋂

p

(Q∗ ∩ Eigp(gp))tors = {1} .

A subgroup K ⊂ G(Af) is neat if any element of K is neat. Of course if the projection Kp

of K in G(Qp) is neat then K is neat. Notice that if K is a neat compact open subgroup
of G(Af) then all of the Γg in the decomposition (4.1) are.

Neatness is preserved by conjugacy and intersection with an arbitrary subgroup. More-
over if ρ : G −→ H is a Q-morphism of linear algebraic Q-groups and g ∈ G(Q) (resp.
G(Af)) is neat then its image ρ(g) is also neat.

We recall the following well-known lemma :

Lemma 4.1.2. Let K =
∏

p Kp be a compact open subgroup of G(Af) and let l ≥ 3
be a prime number. There exists an open subgroup K ′

l of Kl such that the subgroup
K ′ := K ′

l ×
∏

p 6=l Kp of K is neat.

Proof. As noticed above if K ′
l is neat then K ′ := K ′

l ×
∏

p 6=l Kp is neat. As a subgroup of
a neat group is neat, it is enough to show that a special maximal compact open subgroup
Kl ⊂ G(Ql) contains a neat subgroup K ′

l with finite index. By [24, p.5] one can take,
K ′

l = K
(1)
l the first congruence kernel. �

4.2. Baily-Borel compactification and degrees of subvarieties. In this section we
recall the results we will need on projective geometry of Shimura varieties. We will also
prove a proposition (proposition 4.2.10) which compares the degrees of a subvariety of
ShK(G,X) with respect to two different line bundles.

4.2.1. Baily-Borel compactification. Let (G,X) be a Shimura datum. Given K ⊂ G(Af) a
neat compact open subgroup, let ShK(G,X)C the corresponding complex Shimura variety.

Definition 4.2.1. We denote by ShK(G,X)C the Baily-Borel compactification of ShK(G,X)C,
c.f. [2].

The Baily-Borel compactification ShK(G,X)C is a normal projective variety with bound-
ary ShK(G,X)C − ShK(G,X)C of complex codimension at least 2 if G does not have
Q-simple factors of dimension 3. The following proposition summarizes basic properties
of ShK(G,X)C that we will use.
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Proposition 4.2.2. (1) The line bundle of holomorphic forms of maximal degree on
X descends to ShK(G,X)C and extends uniquely to an ample line bundle LK

on ShK(G,X)C such that, at the generic points of the boundary components of
codimension one, it is given by n-th powers of forms with logarithmic poles. Let
K1 and K2 be neat compact open subgroups of G(Af) and g in G(Af) such that
K2 ⊂ gK1g

−1. Then the morphism from ShK2(G,X)C to ShK1(G,X)C induced by
g extends to a morphism f : ShK2(G,X)C −→ ShK1(G,X)C, and the line bundle
f∗LK1 is canonically isomorphic to LK2 .

(2) The canonical model ShK(G,X) of ShK(G,X)C over the reflex field E(G,X) ad-
mits a unique extension to a model ShK(G,X) of ShK(G,X)C over E(G,X). The
line bundle LK is naturally defined over E(G,X).

(3) Let ϕ : (H, Y ) −→ (G,X) be a morphism of Shimura data and KH ⊂ H(Af),
KG ⊂ G(Af) neat compact open subgroups with ϕ(KH) ⊂ KG. Then the canonical
map φ : ShKH

(H, Y ) −→ ShKG
(G,X) induced by ϕ extends to a morphism still

denoted by φ : ShKH
(H, Y ) −→ ShKG

(G,X).

Proof. The first statement is [2, lemma 10.8] and [24, prop.8.1, sections 8.2, 8.3]. The
second one is [24, theor.12.3.a]. The third statement is [28, theorem p.231] (over C) and
[24, theor. 12.3.b] (over E(G,X)). �

Definition 4.2.3. Given a complex subvariety Z ⊂ ShK(G,X)C we will denote by degLK
Z

the degree of the compactification Z ⊂ ShK(G,X)C with respect to the line bundle LK .
We will write deg Z when it is clear to which line bundle we are referring to.

Remark 4.2.4. More generally given a connected semi-simple algebraic Q-group G of
Hermitian type (and of non-compact type) with associated Hermitian domain X and
Γ ⊂ G(Q) a neat arithmetic lattice, the Baily-Borel compactification Γ\X of the quasi-
projective complex variety Γ\X and the bundle LΓ on Γ\X are well-defined.

4.2.2. Comparison of degrees for sub-Shimura data.

Proposition 4.2.5. Let φ : ShK(G,X)C −→ ShK ′(G′,X ′)C be a morphism of Shimura
varieties associated to a Shimura subdatum ϕ : (G,X) −→ (G′,X ′), a neat compact open
subgroup K of G(Af) and a neat compact open subgroup K ′ of G′(Af) containing ϕ(K).
Let ΛK,K ′ denotes the line bundle φ∗LK ′ ⊗L−1

K on ShK(G,X)C. Then for any subvariety
Z of ShK(G,X)C one has the inequality degΛK,K′ Z ≥ 0.

This proposition is a corollary of the following

Proposition 4.2.6. Let ϕ : G −→ G′ be a Q-morphism of connected semi-simple al-
gebraic Q-groups of Hermitian type (and of non-compact type) inducing a holomorphic
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totally geodesic embedding of the associated Hermitian domains φ : X+ −→ X ′+. Let
Γ ⊂ G(Q) be a neat arithmetic lattice and Γ′ ⊂ G′(Q) a neat arithmetic lattice containing
ϕ(Γ). Let ΛΓ,Γ′ denote the line bundle φ∗LΓ′ ⊗ L−1

Γ on Γ\X. Then for any subvariety Z

of Γ\X one has the inequality degΛΓ,Γ′
Z ≥ 0.

Proposition 4.2.6 implies the proposition 4.2.5. To prove proposition 4.2.5 one can assume
without loss of generality that the subvariety Z is irreducible, that Z is contained in the
connected component SK = ΓK\X+ and that φ : ShK(G,X)C −→ ShK ′(G′,X ′)C maps
SK to SK ′ = ΓK ′\X ′+. The morphism of reductive Q-groups ϕ : G −→ G′ induces a
Q-morphism ϕ : Gder −→ G′ad of semi-simple Q-groups. Let Γ denote the neat lattice
Gder(Q) ∩ K ⊂ Gder(Q) and Γ′ the neat lattice of Gad(Q) image of ΓK ′. Notice that
Γ′\X ′+ = ΓK ′\X ′+. Consider the diagram

(4.2) Γ\X+

φ◦π

%%KKKKKKKKK

π

��
ΓK\X+

φ
// Γ′\X ′+

with π the natural finite étale map. The proposition 4.2 (1) easily extends to this setting :

π∗(LΓK
) = LΓ .

By the projection formula the inequality degΛK,K′ Z ≥ 0 is implied by the inequality
degΛΓ,Γ′

π−1(Z) ≥ 0. This inequality follows from proposition 4.2.6.
�

Proof of the proposition 4.2.6. First notice that by the projection formula and by propo-
sition 4.2 (1), we can assume that the group G is simply connected and the group G′ is
adjoint.

Let G = G1 × · · · × Gr be the decomposition of G into Q-simple factors. Let ϕi :
Gi −→ G′, 1 ≤ i ≤ r denote the components of ϕ : G −→ G′. If Γ1 ⊂ Γ is a finite
index subgroup and p : Γ1\X+ −→ Γ\X+ is the corresponding finite étale morphism,
by proposition 4.2 the line bundle ΛΓ1,Γ′ corresponding to φ ◦ p is isomorphic to p∗ΛΓ,Γ′ .
The fact that degΛΓ,Γ′

Z ≥ 0 is implied by degΛΓ1,Γ′
p−1Z ≥ 0. Thus we can assume that

Γ = Γ1 × · · · × Γr, with Γi a neat arithmetic subgroup of Gi(Q). The variety Γ\X+

decomposes into a product

Γ\X+ = Γ1\X+
1 × · · · × Γr\X+

r
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and the line bundle ΛΓ,Γ′ on Γ\X+ decomposes as

ΛΓ,Γ′ = ΛΓ1,Γ′ ⊠ · · ·⊠ ΛΓr ,Γ′ ,

with ΛΓi,Γ′ = φ∗i LΓ′ ⊗ L−1
Γi

the corresponding line bundle on Γi\X+
i . Let pi : Γ\X+ −→

Γi\X+
i be the natural projection. As

degΛΓ,Γ′
Z =

r∑

i=1

degp∗i ΛΓi,Γ′
Z ,

the proposition follows from the following one applied to each of the Gi, 1 ≤ i ≤ r. �

Proposition 4.2.7. Assume that G is Q-simple.

(1) If G is Q-anisotropic then the line bundle ΛΓ,Γ′ on the smooth complex projective
variety Γ\X+ admits a metric of non negative curvature.

(2) If G is Q-isotropic then either the line bundle ΛΓ,Γ′ on ShK(G,X) is trivial or it
is ample.

Proof. Let G′ = G′
1 × · · · × G′

r′ be the decomposition of G′ into Q-simple factor and
ϕj : G −→ G′

j , 1 ≤ j ≤ r′, the components of ϕ : G −→ G′. By naturality of LΓ and LΓ′

(c.f. proposition 4.2) one can assume that Γ′ = Γ′
1 × · · ·Γ′

r′ . Accordingly one has

Γ′\X ′+ = Γ′
1\X ′

1
+ × · · · × Γ′

r′\X ′
r′

+
.

As ϕ : G −→ G′ is injective and G is Q-simple we can without loss of generality assume
that ϕ1 : G −→ G′

1 is injective. As

Λ = (φ∗1LΓ′
1
⊗ L−1

Γ )⊗ φ∗2LΓ′
2
⊗ · · ·φ∗r′LΓ′

r
,

and the LΓ′
j
, j ≥ 2, are ample on Γ′

j\X ′
j
+ it is enough to prove the statement replacing

ΛΓ,Γ′ by φ∗1LΓ′
1
⊗ L−1

Γ . Thus we can assume G′ is Q-simple.
By the adjunction formula the line bundle ΛΓ,Γ′ |Γ\X+ restriction of ΛΓ,Γ′ coincides with

ΛmaxN∗, where N denotes the automorphic bundle on Γ\X+ associated to the normal
bundle of X in X ′ and N∗ denotes its dual. A classical computation shows that the
automorphic line bundle ΛΓ,Γ′ |Γ\X+ admits a Hermitian metric of non-negative curvature.
This is enough to conclude the proof of the proposition in the case G is Q-anisotropic.

Suppose now G is Q-isotropic. For simplicity we denote ΛΓ,Γ′ by Λ from now on.
We have to prove that the boundary components of Γ\X+ do not essentially modify the
positivity of Λ|Γ\X+ . We use the notation and the results of Dynkin [13], Ihara [19] and
Satake [29]. Let X = X1 × · · · ×Xr (resp. X ′ = X ′

1 × · · · × X ′
r′) be the decomposition

of X (resp. X ′) into irreducible factors. Each Xi (resp. X ′
j) is the Hermitian symmetric

domain associated to an R-isotropic R-simple factor Gi (resp. G′
j) of GR (resp. G′

R). The
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group GR (resp. G′
R) decomposes as G0×G1×· · ·×Gr (resp. G′

0×G′
1×· · ·×G′

r′) with
G0 (resp. G′

0) an R-anisotropic group. Let m (resp. m′) be the r-tuple (resp. r′-tuple)
of non-negative integers defining the automorphic line bundle LK (resp. LK ′) (c.f. [29,
lemma 2]) and Mφ be the r′×r-matrix with integral coefficients associated to ϕ : G →֒ G′

(c.f. [29, section 2.1]). The automorphic line bundle Λ|Γ\X+ on Γ\X+ is associated to the
r-tuple of integers λ = m′Mϕ −m (where m and m′ are seen as row vectors). It admits
a locally homogeneous Hermitian metric of non-negative curvature if and only if λi ≥ 0,
1 ≤ i ≤ r (in which case we say that λ is non-negative).

Lemma 4.2.8. The row vector λ is non-negative.

Proof. As G and G′ are defined over Q, both m and m′ are of rational type by [29, p.301].
So mi = m for all i, m′

j = m′ for all j. The equality λ = m′Mϕ −m can be written in
coordinates

(4.3) ∀i ∈ {1, · · · , r}, λi =
∑

1≤j≤r′
mj,i m

′ −m ,

with Mϕ = (mj,i). Fix i in {1, · · · r} and let prove that λi ≥ 0. As the mi,j’s and m′ are
non-negative, it is enough to exhibit one j, 1 ≤ j ≤ r′, with mj,i m

′ −m ≥ 0. Choose j

such that the component ϕi,j : Xi −→ X ′
j of the map ϕ : X1× · · ·×Xr −→ X ′

1× · · ·×X ′
r′

induced by ϕ : G −→ G′ is an embedding. Recall that with the notation of [29, p.290]
one has

mi =< H1,i,H1,i >i ,

where hi denotes the chosen Cartan subalgebra of gi(R) and <,>i denotes the canonical
scalar product on

√
−1hi. This gives the equality :

(4.4) mj,i m
′
j −mi =< φj(H1,i), φj(H1,i) >j − < H1,i,H1,i >i .

As Gi is R-simple, any two invariant non-degenerate forms on
√
−1hi are proportional :

there exists a positive real constant ci,j (called by Dynkin [13, p.130] the index of ϕi,j :
Gi −→ Gj) such that

∀X,Y ∈
√
−1hi, < φj(X), φj(Y ) >j= ci,j < X,Y >i .

Equation (4.4) thus gives :

(4.5) mj,i m
′
j −mi = (ci,j − 1) < H1,i,H1,i >i .

By [13, theorem 2.2. p.131] the constant ci,j is a positive integer. Thus mj,i m
′
j −mi is

non-negative and this finishes the proof that λ is non-negative. �
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By [29, cor.2 p.298] the sum M =
∑

1≤j≤r′ mj,i is independent of i (1 ≤ i ≤ r). This
implies that λ is of rational type : one of the λi is non-zero if and only if all are. In this
case λ is positive of rational type and Λ is ample on Γ\X+ by [29, theor.1].

If λ = 0, the line bundle Λ|Γ\X+ is trivial. As G is Q-simple, if G is not locally
isomorphic to SL2 the line bundle Λ on Γ\X+ is trivial.

The last case is treated in the following lemma :

Lemma 4.2.9. If λ = 0 and G is locally isomorphic to SL2, then φ : G −→ G′ is a local
isomorphism and the line bundle Λ on Γ\X+ is trivial.

Proof. It follows from the equation (4.3) that there exists a unique integer j such that
the morphism ϕj : GR −→ Gj is non trivial. In particular G′ is R-simple. Moreover the
equation (4.5) implies that index c of φ : G −→ G′ is equal to 1. Thus by [13, theorem 6.2
p.152] the Lie algebra g is a regular subalgebra of g′. If G′

R is classical, the equality [13,
(2.36) p.136] shows that necessarily φ : G −→ G′ is a local isomorphism. In particular
the line bundle Λ on Γ\X+ is trivial. If the group G′

R is an exceptional simple Lie group
of Hermitian type (thus E6 or E7), Dynkin shows in [13, Tables 16, 17 p.178-179] that
there is a unique realization of g as a regular subalgebra of g′ of index 1. However this
realization is not of Hermitian type : the coefficient α′

1(ϕ(H1)) is zero. Thus this case is
impossible. �

This finishes the proof of proposition 4.2.7.
�

Corollary 4.2.10. Let φ : ShK(G,X) −→ ShK ′(G′,X ′) be a morphism of Shimura va-
rieties associated to a Shimura subdatum ϕ : (G,X) −→ (G′,X ′), K ′ a compact open
subgroup of G(Af) and K = K ′∩G(Af). Then for any subvariety Z of ShK(G,X) whose
irreducible components are Hodge generic one has degLK

Z ≤ degLK′ φ(Z).

Proof. As the irreducible components of Z are Hodge generic in ShK(G,X) we know by
lemma 4.2 in [33] (and its proof) that φ|Z : Z −→ Z ′ is generically injective. In particular
by the projection formula one has

degLK
G′

Z ′ = degφ∗LK′ Z .

So the inequality degLK
Z ≤ degLK′ Z ′ is equivalent to the inequality degΛ Z ≥ 0 proven

in the proposition 4.2.6. �

4.3. p-adic closure of Zariski-dense groups. We recall the following well-known re-
sult :

176
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Proposition 4.3.1. Let H be a finitely generated subgroup of GLn(Z) and let H be the
Zariski-closure of H in GLn,Z. Suppose that H is semi-simple. Then for any prime
number p the closure of H in H(Zp) is open.

Proof. The case H finite is obvious. Suppose that H is infinite. Since H(Zp) is compact
and H is infinite, the closure Hp of H in H(Zp) is not discrete. Then it is a p-adic analytic
group and it has a Lie algebra L which is a Lie subalgebra of the Lie algebra Lie H of H
and projects non-trivially on any factor of Lie H. By construction L is invariant under
the adjoint action of H, thus also under the adjoint action of the Zariski-closure H of H.
Therefore L = Lie H, which implies that Hp is open in H(Zp). �

Remark 4.3.2. The easy proposition 4.3.1 can be strengthened to the following remarkable
theorem, due independently to Weisfeiler and Nori, which was used in [17] but which we
will not need :

Theorem 4.3.3 ([35], [23]). Let H be a finitely generated subgroup of GLn(Z) and let H
be the Zariski-closure of H in GLn,Z. Suppose that H(C) has finite fundamental group.
Then the closure of H in GLn(Af) is open in the closure of H(Z) in GLn(Af).

5. Inclusion of sub-Shimura datum.

In this section we prove the following proposition which implies part (b) of the theo-
rem 3.1.1.

Proposition 5.1. Suppose that the set Σ in the theorem 3.2.1 is such that with respect
to a faithful representation ρ : G −→ GLn the centers TV of the generic Mumford-Tate
groups HV lie in one GLn(Q)-orbit as V ranges through Σ. Then the set Σ′ obtained in
the proposition 3.2.2 admits a modification Σ′′ such that the centers TV ′ of the generic
Mumford-Tate groups HV ′ lie in one GLn(Q)-orbit as V ′ ranges through Σ′′.

We first prove the following general fact about Shimura data which will also be used at
another point in this paper.

Lemma 5.2. Let (G,X) be a Shimura datum such that G is the generic Mumford-Tate
group on X and (H,XH) be a sub-Shimura datum of (G,X). Let T (resp. Z) be the
connected center of G (resp. H). Then

T ⊂ Z .

Proof. The proof uses in a crucial way the fact that G is the generic Mumford-Tate group
on X. We write

G = TGder .
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As T ∩H is contained in the center Z of H, we can write

H = (T ∩H)H′

for some subgroup H′ of H. Clearly H′ ⊂ Gder.
Fix α an element of X that factors through HR = (T ∩H)RH′

R. As X is the G(R)
conjugacy class of α any element x ∈ X is of the form gαg−1 = αg for some g of G(R).
Thus x factors through

((T ∩H)R)g (Gder
R )g = (T ∩H)R Gder

R .

It follows that the Mumford-Tate group of x is contained in (T ∩H)Gder. For x Hodge
generic, we obtain

(T ∩H)Gder = G ,

hence T ∩H = T, therefore T ⊂ Z. �

To prove the proposition, first note that an inclusion of special subvarieties V ⊂ V ′

corresponds to an inclusion of Shimura data (H,XH) ⊂ (H′,XH′). The lemma above
implies that the centers T′ of the groups H′ are contained in a GLn(Q)-conjugacy class of
a fixed torus T. It follows that the tori T′ are split by the same field L. As there are only
finitely many subfields of L, a modification of Σ′ satisfies the condition that the splitting
field of the tori T′ is constant, say L. As in the discussion before the lemma 2.4 of [33],
we identify X∗(T′) with a submodule of X∗(ResL/QGmL) which has a canonical basis.
By the lemma 2.4 of [33], the coordinates of the characters (with respect to this basis)
occurring in the representation T′ ⊂ GLn are uniformly bounded. It follows that the tori
T′ lie in finitely many GLn(Q)-conjugacy classes. The result follows.

6. The geometric criterion.

We prove in this section that for certain elements m ∈ G(Ql), the inclusion Z ⊂ TmZ

implies that Z contains a special subvariety V ′ containing V properly.

Definition 6.0.4. Let (G,X) be a Shimura datum, K ⊂ G(Af) a compact open subgroup.
Let F ⊂ C be a number field containing the reflex field E(G,X). We use the following
common abuse of notation : a subvariety Z ⊂ ShK(G,X)C is called an F -irreducible F -
subvariety if Z = ZF ×Spec F Spec C, where ZF ⊂ ShK(G,X)F is an irreducible closed
subscheme.

Our main theorem in this section is the following :
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Theorem 6.1. Let (G,X) be a Shimura datum, K =
∏

p prime Kp ⊂ G(Af) an open
compact subgroup of G(Af). We assume there exists a prime p0 such that the compact
open subgroup Kp0 ⊂ G(Qp0) is neat. Let F be a number field containing the field of
definition of SK(G,X)C.

Let V be a non-strongly special subvariety of SK(G,X)C contained in a Hodge-generic
F -irreducible F -subvariety Z of SK(G,X)C.

Let l be a prime number splitting TV and m an element of TV (Ql). We assume that
the compact open subgroup K is of the form K = K l · Kl, where K l is a compact open
subgroup of G(Al

f) and Kl is a compact open subgroup of G(Ql).
Suppose that Z satisfies the conditions

(1) Z ⊂ TmZ.
(2) for every k1 and k2 in Kl the image of k1mk2 in Gad(Ql) generates an unbounded

subgroup of Gad(Ql)

Then Z contains a special subvariety V ′ containing V properly.

Proof.

Lemma 6.2. Suppose theorem 6.1 is true for any (G,X) Shimura datum with G of adjoint
type. Then theorem 6.1 is true.

Proof. Let G, X, K, V , Z, F , l and m as in the statement of theorem 6.1. Let λ : G −→
Gad be the natural morphism. Let (Gad,Xad) be the adjoint Shimura datum attached to
(G,X) and let Kad =

∏
p prime Kad

p be the compact open subgroup of Gad(Af) defined as
follows :

(1) Kad
p0
⊂ Gad(Qp0) is the compact open subgroup image of Kp0 by λ.

(2) Kad
l ⊂ Gad(Ql) is the compact open subgroup image of Kl by λ.

(3) If p 6= p0, l, Kad
p is a maximal compact open subgroup of Gad(Qp) containing the

image of Kp by λ.

The group Kad is neat because Kp0 , and therefore Kad
p0

, is. As the reflex field E(G,X)
contains the reflex field E(Gad,Xad), there is a finite morphism of Shimura varieties

f : ShK(G,X)F −→ ShKad(Gad,Xad)F

Let V ad be the image fC(V ). As V is non-strongly special, V ad is a non-strongly special
subvariety of SKad(Gad,Xad)C. Thus TV ad = λ(TV ) is a non-trivial torus.

We define the F -irreducible subvariety Zad
F of ShKad(Gad,Xad)F as the image of ZF

in ShKad(Gad,Xad)F by this morphism. Of course Zad := ZF ×F C is contained in
SKad(Gad,Xad)C. Let mad be the image of m in Tad

V (Ql). The inclusion Z ⊂ TmZ implies
that Zad ⊂ TmadZad.
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As Gad is of adjoint type, we can apply the theorem 6.1 to Gad, Xad, Kad, V ad, Zad,
F , l and mad. So Zad contains a special subvariety V

′ad containing V ad properly. As
irreducible components of the preimage by a finite morphism of a special subvariety are
special, Z contains a special subvariety V ′ containing V properly. �

From now on, we will assume the group G to be of adjoint type. Moreover for simplicity
of notation we replace in this proof the field E(G,X) by the field F . Thus Sh(G,X)
denotes the canonical model of Sh(G,X)C over F , SKl(G,X) is the connected component,
of ShKl(G,X) = ShKl(G,X)F (image of X+×{1}), etc. Moreover we will drop the label
(G,X) when it is obvious what Shimura datum we are referring to

Lemma 6.3. Let Z = Z1∪· · ·∪Zn be the decomposition of Z into geometrically irreducible
components. Each irreducible component Zi, 1 ≤ i ≤ n, is Hodge-generic.

Proof. As Z is Hodge-generic, at least one irreducible component, say Z1, is Hodge generic.
As ZF is irreducible, any irreducible component Zj , 1 ≤ j ≤ n, is of the form Zσ

1 for some
element σ ∈ Gal(Q/F ). As the conjugate under any Galois element of a special subvariety
of ShK(G,X)C is still special, one gets the result. �

We fix a Z-structure on G and its subgroups by choosing a finitely generated free Z-
module W , a faithful representation ξ : G →֒ GL(WQ) and considering Zariski-closures
in the Z-group-scheme GL(W ). We choose the representation ξ in such a way that K

is contained in GL(Ẑ ⊗Z W ) (i.e. K stabilizes Ẑ ⊗Z W ). This induces canonically a
Z-variation of Hodge structure on ShK(G,X)C : c.f. [17, section 3.2].

Let z be a Hodge-generic point of the smooth locus Zsm
1 of Z1. Let π1(Zsm

1 , z) be
the topological fundamental group of Zsm

1 at the point z. The representation ξ : G −→
GL(WQ) induces a polarizable variation of Z-Hodge structure F on ShK(G,X)C, in par-
ticular on its irreducible component SK(G,X)C. We choose a point z̃ of X lying above
z. This choice canonically identifies the fiber at z of the locally constant sheaf underly-
ing F with the Z-module W . The action of π1(Zsm

1 , z) on this fiber is described by the
monodromy representation

ρ : π1(Zsm
1 , z) −→ Γ = π1(SK(G,X)C, z) = G(Q) ∩K

ξ−→ GL(W ) .

As Γ is Zariski-dense in GC the algebraic monodromy group is GC. As Z is Hodge-generic
the group ρ(π1(Zsm

1 , z)) is Zariski-dense in GC by [1, theor. 1.4].
Let l be a prime as in the statement. The proposition 4.3.1 implies that the l-adic

closure of ρ(π1(Zsm
1 , z)) in G(Ql) is a compact open subgroup K ′

l ⊂ Kl.
Write K = K lKl with K l =

∏
p 6=l Kp. Let πKl

: ShKl −→ ShK be the Galois étale

cover of group Kl as defined in section 4.1.1. Let Z̃1 be an irreducible component of the
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preimage of Zsm
1 in ShKl and let Ṽ be an irreducible component of the preimage of V in

Z̃1. As πKl
: ShKl −→ ShK is étale the smooth locus Z̃1

sm
of Z̃1 naturally identifies with

an irreducible component Z̃sm
1 of π−1

Kl
(Zsm

1 ).

The idea of the proof is to show that the inclusion Z ⊂ TmZ implies that Z̃1 is stabilized
by a “big” group and then consider the orbit of Ṽ under the action of this group.

Lemma 6.4. The variety Z̃1 is stabilized by the group K ′
l . The set of irreducible compo-

nents of π−1
Kl

(Z1) naturally identifies with the finite set Kl/K
′
l .

Proof. We replace Z1 by Zsm
1 . Let z̃ be a geometric point of Z̃sm

1 lying over z. Let
̟(Z1, z) denote the algebraic fundamental group of Zsm

1 at z. The set of irreducible
components of π−1

Kl
(Z1) naturally identifies with the quotient Kl/ρalg(̟(Zsm

1 , z)), where
ρalg : ̟(Zsm

1 , z) −→ Kl ⊂ G(Ql) denotes the (continuous) monodromy representation of
the Kl-pro-étale cover πKl

: π−1
Kl

(Zsm
1 ) −→ Zsm

1 . The group ̟(Z1, z) naturally identifies
with the profinite completion of π1(Zsm

1 , z). One has the commutative diagram

(6.1) π1(Zsm
1 , z)

i
��

ρ
// G(Q)

j

��
̟1(Zsm

1 , z)
ρalg

// G(Ql)

where i : π1(Zsm
1 , z) −→ ̟1(Zsm

1 , z) and j : G(Q) −→ G(Ql) denote the natural homo-
morphisms. As i(π1(Zsm

1 , z)) is dense in ̟1(Zsm
1 , z) and ρalg is continuous one deduces

that ρalg(̟1(Zsm
1 , z)) = K ′

l . Thus the set of irreducible components of π−1
Kl

(Zsm
1 ) identifies

with Kl/K
′
l and Z̃sm

1 is K ′
l-stable. �

Lemma 6.5. There exist elements k1, k2 of Kl and an integer n ≥ 1 such that

Z̃1 = Z̃1 · (k1mk2)n

Proof. The inclusion Z ⊂ TmZ implies that for every geometrically irreducible component
Zi, 1 ≤ i ≤ n, of Z, there is a geometric irreducible component Z̃i of π−1

Kl
(Zi) which is also

a geometric irreducible component of the preimage of TmZ by πKl
: ShKl −→ ShK . As the

geometric irreducible components of π−1
Kl

(TmZ) are of the form Z̃i · (k1mk2), k1, k2 ∈ Kl,
there exists an index i, 1 ≤ i ≤ n, and two elements k1, k2 in Kl such that

Z̃1 = Z̃i · k1mk2 .

As Z is F -irreducible there exists σ of Gal(Q/F ) such that Zi = σ(Z1). As the morphism
πKl

: ShKl
−→ ShK is defined over F , the subvariety σ(Z̃1) of ShKl satisfies πKl

(σ(Z̃1)) =
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Zi. Thus the subvarieties σ(Z̃1) and Z̃i of ShKl are both irreducible components of π−1
Kl

(Zi).
Thus there exists an element k of Kl such that

Z̃i = σ(Z̃1) · k .

By replacing k1 with kk1, we obtain k1, k2 in Kl such that

(6.2) Z̃1 = σ(Z̃1) · (k1mk2) .

As the G(Af)-action is defined over F , the previous equation implies :

(6.3) ∀ i ∈ N, Z̃1 = σi(Z̃1) · (k1mk2)i .

As the set of connected components of Z is finite, there exists a positive integer m such that
σm(Z1) = Z1. Thus the Abelian group (σm)Z acts on the set of irreducible components
of π−1

Kl
(Z1). By the previous lemma this set is finite. So there exists a positive integer

n (multiple of m) such that σn(Z̃1) = Z̃1. The equality (6.3) applied to i = n gives the
proposition. �

From the lemmas 6.4 and 6.5 one obtains the

Corollary 6.6. Let Ul be the group 〈K ′
l , (k1mk2)n〉. The variety Z̃1 is stabilized by Ul.

To conclude the proof of theorem 6.1 we first study the group Ul in more detail. Let
G =

∏s
i=1 Gi be the decomposition of G into Q-simple factors. Let pi : G −→ Gi denote

the natural projections. By the hypothesis on m the group Ul is unbounded in G(Ql).
After possibly renumbering the factors, we can assume that p1(Ul) is unbounded in G1(Ql).
In particular the torus p1(T) is non-trivial. Indeed if it was trivial, then the group p1(Ul)
would be contained in p1(Kl) which is compact and therefore bounded. Choose a simple
Ql-factor H1 of G1,Ql

such that the image of Ul under the projection h1 : GQl
−→ H1 is

unbounded in H1(Ql). Let τ : G̃Ql
−→ GQl

(resp. τ1 : H̃1 −→ H1) be the universal cover
of GQl

(resp. H1).

Sublemma 6.7. The group Ul ∩H1(Ql) contains the group τ1(H̃1(Ql)) with finite index.

Proof. Let h̃1 : G̃Ql
−→ H̃1 be the canonical projection. Let Ũl = τ−1(Ul) ⊂ G̃Ql

(Ql).
As Ul is an open non-compact subgroup of GQl

(Ql), the group Ũl is open non-compact in
G̃Ql

(Ql). As h1(Ul) is non-compact in H1(Ql) the projection h̃1(Ũl) is open non-compact
in the group H̃1(Ql). As the group H̃1 is simple and simply connected, we obtain by the
theorem (T) of [26] the equality h̃1(Ũl) = H̃1(Ql). This implies that the group Ũl∩H̃1(Ql)
is normal in H̃1(Ql) : given h ∈ H̃1(Ql), let g ∈ Ũl satisfying h̃1(g) = h. Then

(Ũl ∩ H̃1(Ql))h = (Ũl ∩ H̃1(Ql))g = (Ũl ∩ H̃1(Ql)) .
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As the group Ũl ∩ H̃1(Ql) is an open normal subgroup of H̃1(Ql) and the group H̃1 is
simply-connected, we obtain the equality Ũl ∩ H̃1(Ql) = H̃1(Ql). As τ1 is an isogeny of
algebraic groups, we get that Ul ∩H1(Ql) contains τ1(H̃1(Ql)) with finite index. �

Definition 6.8. We replace Ul by its subgroup τ1(H̃1(Ql)). We denote by V ′ the Zariski-

closure πKl
(Ṽ · Ul)

Zar
.

Lemma 6.9. The subvariety V ′ of Z is special.

Proof. Without loss of generality we can assume that K = K1 × · · · × Ks, where Ki,
1 ≤ i ≤ s, is a compact open subgroup of Gi(Af).

Let (G>1,X>1) be the product of Shimura data (
∏s

i=2 Gi,
∏s

i=2 Xi), and K>1 be the
compact open subgroup

∏s
i=2 Ki of G>1(Af). The connected component SK(G,X)C of

the Shimura variety ShK(G,X)C decomposes as a product

SK(G,X)C = SK1(G1,X1)C × SK>1(G>1,X>1)C

with SK>1(G>1,X>1)C =
∏s

i=2 SKi(Gi,Xi)C. By [17, th.6.1] one obtains

V ′ = SK1(G1,X1)C × V>1 ,

where V>1 denotes the special subvariety of SK>1(G>1,X>1)C projection of V . In partic-
ular V ′ is special. �

Lemma 6.10. The subvariety V ′ of Z contains V properly.

Proof. As the Mumford-Tate group H of V centralizes the torus T, the projection H1 of
H on G1 centralizes the non-trivial torus T1 projection of T on G1. In particular H1 is
a proper algebraic subgroup of G1. But as

V ′ = SK1(G1,X1)C × V>1 ,

the group G1 is a direct factor of the Mumford-Tate group of V ′. �

�

7. Existence of suitable Hecke correspondences.

In this section we prove under some conditions on the compact open subgroup Kl the
existence of Hecke correspondences of small degree candidates for applying theorem 6.1
assuming the Galois orbits of V is sufficiently big.

Definition 7.0.5. Let G be a reductive Q-group and T ⊂ G a split torus. Let l be a
prime number. A compact open subgroup Ul of G(Ql) is said to be in good position with
respect to T if Ul ∩T(Ql) is the maximal compact open subgroup of T(Ql).
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Our main result in this section is the following :

Theorem 7.1. Let (G,X) be a Shimura datum, K ⊂ G(Af) a neat open compact subgroup
of G(Af) and F a number field containing the field of definition of SK(G,X)C. There is
a positive integer k such that the following holds.

Let V be a non-strongly special subvariety contained in a Hodge-generic F -irreducible
F -subvariety Z of SK(G,X)C.

Let l be a prime number splitting TV and m an element of TV (Ql). We assume that
the compact open subgroup K is of the form K = K l · Kl, where K l is a compact open
subgroup of G(Al

f) and Kl is a compact open subgroup of G(Ql) contained in an Iwahori
subgroup Il of G(Ql) (c.f. next paragraph) in good position with respect to TV .

Then there exists an element m ∈ TV (Ql) satisfying the following conditions :

(1) Gal(F/F ) · V ⊂ Z ∩ TmZ.
(2) For every k1, k2 ∈ Kl the image of k1mk2 in Gad(Ql) generates an unbounded

subgroup of Gad(Ql).
(3) [Kl : Kl ∩mKlm

−1] < lk.

Remark 7.0.6. As notices in the introduction, the restriction Kl ⊂ Il is a necessary condi-
tion. One easily constructs counter-example to the conclusion of theorem 7.1 if Kl ⊂ G(Ql)
is special maximal compact open.

7.1. Some properties of Iwahori subgroups. We refer to [5], [6] and [18] for basic
facts about buildings, Iwahori subgroups and Iwahori-Hecke algebras.

We first recall the definition on an Iwahori subgroup. Let l be a prime number. Let G
be a reductive algebraic isotropic Ql-group and A ⊂ G a maximal split torus of G. We
denote by M ⊂ G the centralizer of A in G. We choose P = M ·N a minimal parabolic
subgroup of G, where N denotes the unipotent radical of P. Let X be the (extended)
Bruhat-Tits building of G, A ⊂ X the apartment of X associated to A. Let Km

l ⊂ G(Ql)
be a special maximal subgroup of G(Ql) such that Km

l,A = Km
l ∩A(Ql) is the maximal

compact open subgroup of A(Ql). We denote by x0 ∈ A the unique Kl-fixed vertex in X ,
by C ⊂ A the unique Weyl chamber with apex at x0 whose stabilizer at infinity is P(Ql),
by C the unique chamber (or alcove) of C having x0 for one of its vertices and by Il ⊂ Kl

the Iwahori subgroup fixing C pointwise.

Remark 7.1.1. Strictly speaking (i.e. with the notations of Bruhat-Tits [5]) the group Il

as defined above is an Iwahori subgroup only in the case where the group G is simply-
connected. Our terminology is a well-established abuse of notations.
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THE ANDRÉ-OORT CONJECTURE. 33

Definition 7.1.2. We denote by ordM : M(Ql) −→ X∗(M) the homomorphism charac-
terized by

< ordM(m), α >= ordQl
(α(m)) ,

where ordQl
denotes the normalized (additive) valuation in Ql and X∗(M) denotes the

group of cocharacters of M. We denote by Λ ⊂ X∗(M) the free Z-module ordM(M(Ql)).

The group M(Ql) (in particular the group A(Ql)) acts on A via Λ-translations.

Definition 7.1.3. Let Λ+ ⊂ Λ be the positive cone associated to the Weyl chamber C.

Elements of Λ+ acting on A map C to C.

Proposition 7.1.4. Let m be an element of A(Ql) with non-trivial image ordM (m) ∈ Λ+.
Then for any elements i1, i2 ∈ Il, the element i1mi2 ∈G(Ql) is not contained in a compact
subgroup of G(Ql).

Proof. Let W0 be the finite Weyl group of G, let W be the modified affine Weyl group
associated to A and Ω the finite subgroup of W taking the chamber C to itself. Let
∆ = {α1, · · · , αm} be the set of affine roots on A which are positive on C and whose null
set Hα is a wall of C. For α ∈ ∆ we denote by Sα the reflexion of A along the wall Hα.
The group W is generated by Ω and the Sα’s, α ∈ ∆. It identifies with the semi-direct
product W0 ⋉ Λ (c.f. [6, p.140]).

Recall the Bruhat-Tits decomposition :

(7.1) G(Ql) = Il ·W · Il .

Let r : G(Ql) −→ W be the map sending g ∈ G(Ql) to the unique r(g) ∈ W such that
r(g) ∈ IlgIl. Geometrically speaking the map r essentially coincides with the retraction
ρA,C of the Bruhat-Tits building X with center the chamber C onto the apartment A ([5,
I, theor.2.3.4]).

Let H(G, Il) be the Hecke algebra (for the convolution product) of bi-Il-invariant com-
pactly supported continuous complex functions on G(Ql). By the equation (7.1) this is an
associative algebra with a vector space basis Tw = 1IlwIl

, w ∈W , where 1IlwIl
denotes the

characteristic function of the double coset IlwIl. A presentation of the algebra H(G, Il)
with generators Tω, ω ∈ Ω, and Tα, α ∈ ∆, is given in [6, theorem 3.6 p.142] (or [4,
p.242-243]). Given w ∈ W let l(w) ∈ N be the number of hyperplanes Hα separating the
two chambers C and wC. One obtains in particular (c.f. [6, theorem 3.6 (b)] or [3, section
3.2, 1) and 6)]) :

(7.2) ∀w,w′ ∈W, Tw · Tw′ = Tww′ if l(ww’)= l(w) +l(w’) .
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Let δ ∈ X∗(M) be the determinant of the adjoint action of M on the Lie algebra of N.
For λ ∈ Λ+ ⊂W one easily shows the equality :

(7.3) l(λ) =< δ, λ > .

In particular any two elements λ, µ in Λ+ ⊂ W satisfy l(λ · µ) = l(λ) + l(µ). Thus the
equation (7.2) implies the relation :

(7.4) TλTµ = Tλ+µ .

Remark 7.1.5. Equality (7.4) is stated in [18, (1.15)]) for the Iwahori-Hecke algebra of a
split adjoint group, but generalizes easily.

Let m, i1, i2 as in the statement of the proposition and denote by g the element
i1mi2 ∈G(Ql). By equation (7.4) one has the equality :

r(gn) = n · r(g) = n · ordM(m) .

This implies that the chamber ρA,C(gnC) = n · ordM(m) ·C leaves any compact of A as n

tends to infinity. As a corollary the chamber gnC of X also leaves any compact of X when
n tends to infinity. This proves that the group gZ is not contained in a compact subgroup
of G(Ql). �

7.2. Some uniformity results. In this section we prove some uniformity results con-
cerning Shimura data and reciprocity morphisms. The fist is this simple observation :

Lemma 7.2.1. Let (G,X) be a Shimura datum. There is constant R such that for any
sub-Shimura datum (H,XH), the degree of the reflex field E(H,XH) over E(G,X) is
bounded by R.

Proof. This is a direct consequence of the definition of the reflex field. �

Proposition 7.2.2. Let (G,X) be a Shimura datum, K ⊂ G(Af) a neat open compact
subgroup of G(Af).

There is a positive integer h such that the following holds.
Let V be a non-strongly special subvariety of SK(G,X)C and l be a prime splitting TV .

For any m in TV (Ql), mh satisfies the condition that for some σ ∈ Gal(Q/F )

σ(V ) ⊂ Tmh(V ).

Proof. Let V be as above. For simplicity of notations we write T for TV , H for HV and
C for CV . By definition a constant is called uniform if it is independent of V .

To show the existence of an element h as in the statement, we will prove several lemmas.
The first one is the following.
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Lemma 7.2.3. There is a uniform integer n1 such that for any m ∈ T(Ql), the power mn1

is in the preimage of r(C,{x})((Ql ⊗ F )∗) in T(Ql) by the natural map T(Ql) −→ C(Ql).

Proof. Let L be the torus ResF/QGmF . The element x gives a cocharacter µC : GmC −→
CC defined by µC(z) = xC(z, 1). The morphism r(C,{x}) : L −→ C corresponds to the
morphism on cocharacter groups X∗(L) −→ X∗(C) which sends the cocharacter µσ ∈
X∗(L) (induced by σ ∈ Gal(F/Q)) to σ(µC). The lemma 4.4 of [33] says that there is
a basis (χi) of characters of C such that the < χi, σ(µC) > are uniformly bounded. It
follows that the index of r(C,{x})((Ql ⊗ F )∗) in C(Ql) is finite (this is the consequence of
the fact that r(C,{x}) is surjective) and uniformly bounded. Let n1 be a uniform bound
on this index. It follows that for any m ∈ T(Ql), the power mn1 is in the preimage of
r(C,{x})((Ql ⊗ F )∗) in T(Ql). �

Recall that we have an exact sequence

Gal(Q/F )
r(H,XH)−→ π(H)

p−→ π(C) .

We know that p(mn1) is in p ◦ r(H,XH)(Gal(Q/F )) = r(C,{x})(Gal(Q/F )). Hence, there is
an element σ of Gal(Q/F ) such that

p(mn1) = (p ◦ r(H,XH))(σ) .

It follows that there exists an element y in the kernel of p such that

mn1 = yr(H,XH)(σ) ,

where mn1 denotes the image of mn1 in π(H).
Our next aim is to show that a uniform power of m is actually in r(H,XH)(Gal(Q/F )).

This follows directly from the following lemma.

Lemma 7.2.4. There exists a uniform integer n such that any element of the kernel of p

is killed by n.

Proof. Let y be an element of H(Af) whose image in π(H) belongs to the kernel of p.
Using that H = THder and that T∩Hder is finite of uniformly bounded order we see that
there is a uniform integer n2, an element t in T(Af) and α in Hder(Af) such that

yn2 = t · α .

As Hder(Af)/ρ ˜Hder(Af) is killed by a uniform integer n3, we have in π(H),

yn2n3 = tn3 ∈ T(Af) ,
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where the bar denotes “image in π(H)”. As y (and hence yn2n3) is in the kernel of p, the
image of tn3 in C(Af) is in C(Q). Using the exact sequence

W −→ T ν−→ C

where W is finite of uniformly bounded order, say n4, we see that n4-th power of any
element of C(Q) is in the image of T(Q) hence there exists a q in T(Q) such that

ν(tn3n4) = ν(q) .

It follows that
tn3n4 = qw ,

where w is in W (Af) (the kernel of ν on adelic points). As W (Q) is killed by n4, we see
that tn3n2

4 = qn4 ∈ T(Q).
The image of tn3n2

4 in π(H) equals the image of yn2n3n2
4 hence we can take n to be

n2n3n
2
4. �

We have proved the following:

Lemma 7.2.5. There is a uniform integer h such that the image of mh in π(H) is in
r(H,XH)(Gal(Q/F )).

Proof. Take h = n1n2n3n
2
4. �

It remains to see that some Galois conjugate (and therefore the whole of the Galois
orbit) of V is in TmhV . The variety V is the image of (X+

H, 1) in ShK(G,X). Let σ be the
element of Gal(Q/F ) as above. By definition of the Galois action on the set of connected
components of a Shimura variety, we get

σ(V ) = (X+
H,mh) ⊂ TmhV

�

7.3. Proof of theorem 7.1. As V is non-strongly special, the torus Tad
V := λ(TV ) is a

non-trivial torus in Gad, where λ : G −→ Gad denotes the natural morphism. Let Aad

be a maximal split torus of Gad
Ql

containing Tad
V,Ql

. Let C be the unique chamber of the
Bruhat-Tits building X of Gad

Ql
fixed by Il and x0 a special vertex in the closure of C

such that the intersection of its stabilizer with Tad
V (Ql) is maximal compact in Tad

V (Ql).
Choose a minimal parabolic subgroup Pad of Gad

Ql
whose Levi subgroup is the centralizer

Mad of Aad.
We use the notations of section 7.1 applied to Gad

Ql
. By lemma 2.4 of [33] and the

proposition 7.4.3 of [17] there exists a uniform constant k1 and an element m ∈ TV (Ql)
such that λ(m) has a non-trivial image in Λ+ ⊂ X∗(Mad) and [Kl : Kl ∩mKlm

−1] < lk1.
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By proposition 7.2.2, there is a uniform constant h such that for some σ ∈ Gal(F/F ), one
has σ(V ) ⊂ TmhV .

The uniform constant k = k1h and the element mh satisfies the conditions of the
theorem :

From σ(V ) ⊂ TmhV ⊂ TmhZ and as TmhZ is defined over F , we deduce V ⊂ TmhZ. As
V ⊂ Z we obtain condition (1).

As λ(m) has a non-trivial image in Λ+ ⊂ X∗(Mad), λ(mh) too. By proposition 7.1.4,
for any k1, k2 in Kl, the image of k1 ·m · k2 in Gad(Ql) generates an unbounded subgroup
of Gad(Ql) : this is condition (2).

As deg Tm = [Kl : Kl ∩mKlm
−1] < lk1 and Tmh ⊂ (Tm)h as algebraic correspondences,

[Kl : Kl ∩mKlm
−1] = deg Tmh ≤ (deg Tm)h ≤ lk : this is condition (3).

This finishes the proof of theorem 7.1.

8. Condition on the prime l

In this section, we use theorem 2.2.2, theorem 6.1, theorem 7.1 to show (under one
of the assumption of theorem 3.1.1) that the existence of a prime number l satisfying
certain conditions forces a subvariety Z of ShK(G,X)C containing a non-strongly special
subvariety V to contain a special subvariety V ′ containing V properly.

8.1. Passing to an Iwahori subgroup. In the process of creating V ′ we will encounter
one minor technical difficulty : we will have to lift the situation to an Iwahori level in
order to apply theorem 7.1. The following lemma introduces an absolute constant f which
controls this phenomenon.

Lemma 8.1.1. Let G be a reductive Q-group.
a) For any prime l, any split torus T ⊂ G and any special maximal compact subgroup

Kl ⊂ G(Ql) in good position with respect to T, there exists an Iwahori subgroup Il of Kl

in good position with respect to T.
b) There exists an integer f such that for any prime l and any special maximal compact

subgroup Kl of G(Ql), any Iwahori subgroup Il ⊂ Kl is of index |Kl/Il| smaller than lf .

Proof. To prove a) let l, T and Kl as in the statement. Choose A a maximal split torus
of GQl

containing TQl
, denote by M the centralizer of A in GQl

and choose any minimal
parabolic P with Levi M. By construction the Iwahori subgroup Il of Kl defined by P
(c.f. section 7.1) satisfies that Il∩A(Ql) is the maximal compact open subgroup of A(Ql).
In particular Il ∩T(Ql) is the maximal compact open subgroup of T(Ql).
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To prove b) notice that the set Kl/Il naturally identifies with the Fl-points of some flag
variety over Fl. The dimension of these flag varieties is bounded independently of l. This
implies the result. �

8.2. The criterion. We can now state the main result of this section :

Theorem 8.2.1. Assume the GRH.
Let (G,X) be a Shimura datum, K =

∏
p prime Kp a neat compact open subgroup of

G(Af), and F a number field containing the reflex field E(G,X). Let N be a positive
integer, k the constant defined in theorem 7.1, and f the constant defined in lemma 8.1.1.

Let V ⊂ SK(G,X)C be a non-strongly special subvariety. Let l be a prime splitting TV

such that Kl is contained in a special maximal compact subgroup Kmax
l of G(Ql) in good

position with respect to TV .
Let Z be a Hodge-generic F -irreducible F -subvariety SK(G,X)C containing V and sat-

isfying

(8.1) l(k+2f)·2a(r+1) · (degLK
Z)2

a(r)
< C(N)αV βN

V ,

where r denotes dim Z − dim V and a : N −→ N is the function defined by a(n) = n(n+1)
2 .

Then Z contains a special subvariety V ′ that contains V properly.
Moreover if one considers only the subvarieties V such that the associated tori TV lie

in one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

8.3. An auxiliary proposition. In addition to theorem 2.2.2, theorem 6.1, and theo-
rem 7.1, the main ingredient for the proof of theorem 8.2.1 is the following :

Proposition 8.3.1. Assume the GRH.
Let (G,X) be a Shimura datum, K =

∏
p prime Kp a neat compact open subgroup of

G(Af), and F a number field containing the reflex field E(G,X). Let N be a positive
integer. Let V ⊂ SK(G,X)C be a non-strongly special subvariety.

Let l be a prime splitting TV such that Kl is contained in an Iwahori subgroup Il of
G(Ql) in good position with respect to TV .

Let Z be a Hodge-generic F -irreducible F -subvariety of SK(G,X)C containing V and
satisfying

(8.2) lk·2
r−1

(degLK
Z)2

r
< C(N)αV βN

V

for r = dim Z − dim V .
Let m be an element of TV (Ql) satisfying the conclusion of theorem 7.1 with respect to

Z. Then one of the following holds :

(a) Z ⊂ TmZ.
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(b) there exists an F -irreducible subvariety Y of SK(G,X)C satisfying the following
properties :

– Gal(F/F ) · V ( Y ⊂ Z ∩ TmZ ( Z.
– degLK

Y ≤ lk·2
r−1 · (degLK

Z)2
r
.

– V is not strongly special in ShKY
(GY ,XGY

)C, where GY ⊂ G denotes the
generic Mumford-Tate group of a component Y1 of Y containing V , (GY ,XGY

)
is the corresponding Shimura sub-datum of (G,X) and KY denotes the inter-
section K ∩GY (Af).

Moreover if one considers only the subvarieties V such that the associated tori TV lie in
one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

8.3.1. We start with the following auxiliary lemma :

Lemma 8.3.2. Assume the GRH.
Let (G,X) be a Shimura datum, K =

∏
p prime Kp a neat compact open subgroup of

G(Af), and F a number field containing the reflex field E(G,X). Let N be a positive
integer. Let V ⊂ SK(G,X)C be a non-strongly special subvariety.

Let Y1 be a geometrically irreducible subvariety of SK(G,X)C which satisfies the fol-
lowing conditions :

(a) V ( Y1.
(b) rTV

(Gal(F/F )) · Y1 ⊂ Y := Gal(F/F ) · Y1.
(c) degLK

Y ≤ C(N)αV βN
V .

Then V is a non-strongly special subvariety of ShKY
(GY ,XY )C, where GY ⊂ G denotes

the generic Mumford-Tate group of Y1, (GY ,XY ) ⊂ (G,X) is the corresponding Shimura
sub-datum and KY denotes the intersection K ∩GY (Af).

Moreover if one considers only the subvarieties V such that the associated tori TV lie
in one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

Proof. Suppose by contradiction that V is strongly special in ShKY
(GY ,XY )C. Thus the

connected center TV of HV is contained in the connected center Z(GY )0 of GY . By
lemma 5.2, one obtains the equality :

TV = Z(GY )0 .

Let’s define the compact open subgroup Km
Y ⊂ GY (Af) as the product Km

TV
· KY and

consider the diagram deduced from the inclusion KY ⊂ Km
Y :
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V
� � //

��

Y1

��

� � // ShKY
(GY ,XY )C

π
��

V m � � // Y m
1

� � // ShKm
Y

(GY ,XY )C

.

The morphism π : ShKY
(GY ,XY )C −→ ShKm

Y
(GY ,XY )C is a Galois étale cover of

group Km
Y /KY . Exactly as in [33] we obtain degLK

Y ≥ deg(Y ∩π−1(Y m
1 ))×#(Gal(F/F )·

Y m
1 ). The first factor is larger than C(N)αV , the second is larger than βN

V . This contra-
dicts the assumption (c) : degLK

Y ≤ C(N)αV βN
V . �

8.3.2. Proof of proposition 8.3.1.

Proof. Suppose we are not in case (a).

Step 1 : As V ⊂ Z∩TmZ, there exists a geometric irreducible component Y1 of Z∩TmZ

containing V . Notice that Z and TmZ do not have any geometric irreducible component in
common as Z and TmZ are defined over F , Z is F -irreducible and Z 6⊂ TmZ. In particular
dim Y1 < dim Z.

Lemma 8.3.3. V ( Y1

Proof. Otherwise V = Y1 and Gal(F/F ) · V is a union of geometrically irreducible com-
ponents of Z ∩ TmZ. Thus

degLK
(Gal(F/F ) · V ) ≤ degLK

(Z ∩ TmZ) ≤ (degLK
Z)2[Kl : Kl ∩mKlm

−1] .

As m satisfies the conclusion of theorem 7.1, [Kl : Kl ∩mKlm
−1] < lk.

As degLK
(Gal(F/F ) ·V ) ≥ C(N)αV βN

V by theorem 2.2.2, we finally obtain the inequal-
ity :

C(N)αV βN
V ≤ (degLK

Z)2lk .

Contradiction to inequality 8.2 on page 38. �

Let Y be the Gal(F/F )-orbit of Y1. We obtain Gal(F/F ) · V ( Y ⊂ Z ∩ TmZ ( Z.
Moreover degLK

Y ≤ (degLK
Z)2lk < C(N)αV βN

V .

Step 2 : Let G1 be the generic Mumford-Tate group of Y1, (G1,X1) ⊂ (G,X) the
sub-Shimura datum it induces, KY1 the compact open subgroup K ∩GY1(Af) of G1(Af).

If V is non-strongly special in ShK1(G1,X1)C then Y satisfies the condition (b) of
proposition 8.3.1 and we are done.

Thus we can assume that V is strongly special in ShK1(G1,X1)C. As V ( Y1 and
degLK

Y ≤ C(N)αV βN
V , by lemma 8.3.2 we know there exists σ ∈ Gal(F/F ) such that

rTV
(σ) · Y1 6⊂ Gal(F/F ) · Y1.
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As σ(V ) = rTV
(σ)V , we have σ(V ) ⊂ σ(Y1) ∩ rTV

(σ) · Y1. Thus

Gal(F/F ) · V ⊂ Y ∩ rTV
(σ)(Y ) .

Let Y2 be a geometric irreducible component of Y ∩ rTV
(σ)(Y ) containing V . We obtain

Gal(F/F ) · V ⊂ Gal(F/F ) · Y2 ( Y .

Moreover degLK
(Gal(F/F ) · Y2) ≤ degLK

(Y ∩ rTV
(σ)(Y )) ≤ ((degLK

Z)2lk)2. Once more
the inequality 8.2 on page 38 implies that V is a proper subvariety of Y2.

We now iterate step 2, replacing Y1 by Y2. As dim V < dimY2 < dimY1 < dimZ, in at
most r = dim Z − dimV iterations we obtain the variety Y of case (b).

�

8.4. Proof of theorem 8.2.1. We prove theorem 8.2.1 by induction on r = dim Z −
dim V .

8.4.1. Case r = 1. Let (G,X) be a Shimura datum, K =
∏

p prime Kp a neat compact
open subgroup of G(Af), and F a number field containing the reflex field E(G,X). Let l

be a prime splitting TV such that Kl is contained in a special maximal compact subgroup
Kmax

l of G(Ql) in good position with respect to TV . Let V ⊂ SK(G,X)C be a non-
strongly special subvariety contained as an hypersurface in a Hodge-generic F -irreducible
subvariety Z of SK(G,X)C.

We denote dZ := degLK
Z and we suppose the condition 8.1 on page 38 for r = 1 :

(8.3) l3(k+2f) · (degLK
Z)2 < C(N)αV βN

V .

In order to apply theorem 7.1 for producing V ′, we first lift the situation to an Iwahori-
level at the prime l.

Let I ⊂ K be the compact open subgroup K lIl of G(Af) where Il denotes the inter-
section of Kl and an Iwahori subgroup of Kmax

l as in the lemma 8.1.1. As K is neat its
subgroup I is also neat. We get a finite morphism of Shimura varieties

πF : ShI(G,X)F −→ ShK(G,X)F ,

of degree bounded above by lf by lemma 8.1.1,b).
Let Z̃F be an irreducible component of π−1

F ZF . Its base change Z̃ := Z̃F ×F C is the
union of the Gal(F/F )-conjugates of an irreducible component of π−1(Z). The image of
Z̃ in ShK(G,X)C is Z and

degLI
Z̃ ≤ lf · degLK

Z .
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Let Ṽ be an irreducible component of the preimage of V in Z̃, this is a non-strongly special
subvariety of ShI(G,X)C contained in Z̃. We have the inequality

degLI
(Gal(F/F ) · Ṽ ) ≥ degLK

(Gal(F/F ) · V ) .

As the morphism π : ShI(G,X)C −→ ShK(G,X)C is finite and preserves the property of
a subvariety of being special, exhibiting a special subvariety V ′ such that V ( V ′ ⊂ Z is
equivalent to exhibiting a special subvariety Ṽ ′ such that Ṽ ( Ṽ ′ ⊂ Z̃.

Thus by replacing K by I, Z by Z̃, V by Ṽ , we can (and we will from now on) assume
that Kl is contained in an Iwahori-subgroup of G(Ql) in good position with respect to TV

up to the modification degK Z ≤ dZ · lf .

As Kl is contained in an Iwahori-subgroup of G(Ql) in good position with respect to TV ,
we can apply theorem 7.1. Let m satisfying the conclusion of theorem 7.1. By condition (1)
of theorem 7.1, Gal(F/F ) · V ⊂ Z ∩ TmZ. If Z and TmZ have no common (geometric)
irreducible component, then any σ(V ), σ ∈ Gal(F/F ) is an irreducible component of
Z ∩ TmZ for dimension reasons. By Bezout theorem, we get

C(N)αV βN
V ≤ degLK

(Gal(F/F ) · V ) ≤ degLK
(Z ∩ TmZ)

≤ (degLK
Z)2[Kl : Kl ∩mKlm

−1] < lk+2f · d2
Z .

Contradiction to the inequality (8.3). Thus we are in case (a) of proposition 8.3.1 :
Z ⊂ TmZ. As m also satisfies condition (2) of theorem 7.1, we can apply theorem 6.1 to
this m : there exists V ′ special subvariety of Z containing V properly.

8.4.2. The induction. Fix r > 1 an integer and suppose by induction that theorem 8.2.1
holds for dimZ − dim V < r. Let G, X, K, V , l as in the statement of theorem 8.2.1
and let Z be a Hodge-generic F -irreducible F -subvariety of SK(G,X), containing V with
dim Z − dim V = r. Let dZ := degLK

Z and suppose the inequality 8.1 on page 38 is
satisfied :

l(k+2f)·2a(r+1) · (dZ)2
a(r)

< C(N)αV βN
V .

As in the case r = 1, we can assume that Kl is contained in an Iwahori-subgroup of
G(Ql) in good position with respect to TV up to the modification : degK Z ≤ dZ · lf .
Choose m ∈ G(Ql) satisfying the conclusion of theorem 7.1. As condition 8.1 on page 38
implies condition 8.2 on page 38, one can apply proposition 8.3.1.

If we are in case (a) of proposition 8.3.1, once more as in the case r = 1 we are done by
theorem 6.1.
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Thus we can assume we are in case (b) : there exists an F -irreducible subvariety Y of
ShK(G,X) satisfying the following properties :

• Gal(F/F ) · V ( Y ⊂ Z ∩ TmZ ( Z.
• degLK

Y ≤ l(k+2f)·2r−1
d2r

Z .
• V is not strongly special in ShKY

(GY , ,XGY
)C, where GY ⊂ G denotes the generic

Mumford-Tate group of a component Y1 of Y containing V , (GY ,XGY
) ⊂ (G,X)

is the corresponding Shimura sub-datum and KY denotes the intersection K ∩
GY (Af).

We obtain a finite morphism of Shimura varieties π : ShKY
(GY ,XY )C −→ ShK(G,X)C,

which is generically of degree one ([33]). Let E(GY ,XY ) be the reflex field of the Shimura
datum (GY ,XY ) and let F ′ be the composite field

F ′ = F · E(GY ,XY ) .

The variety Y1 contains the non-strongly special subvariety V . Let Y ′ be the Gal(F/F ′)-
orbit of Y1 in ShKY

(GY ,XY )C, Y ′ is an F ′-irreducible F ′-subvariety of ShKY
(GY ,XY )C.

Let us check that GY , XY , KY , F ′, V , l and Y ′ satisfy the assumptions of theorem 8.2.1.
The compact open subgroup KY = K ∩GY (Af) is a product

∏
p prime KY,p, with KY,p =

Kp ∩ GY (Qp). As Kl is contained in a special maximal compact open subgroup Kmax
l

of G(Ql) in good position with respect to TV , KY,l is contained in the compact open
subgroup Kmax

l ∩GY (Ql), which is still in good position with respect to TV as TV ⊂ GY .
It remains to check that

l(k+2f)·2a(rY +1) · (degLKGY

Y ′)2
a(rY ) < C(N)αV βN

V ,

where rY = dim Y ′ − dim V .
As

degLKGY

Y ′ ≤ degLK
Y ′ ≤ degLK

Y ≤ l(k+2f)·2r · d2r+1

Z ,

we are reduced to check the inequality

l(k+2f)·(2a(rY +1)+2r−1+a(rY )) · d2r+a(rY )

Z < C(N)αV βN
V .

As Z satisfies condition 8.1 on page 38, it is enough to check that
{

2a(rY +1) + 2r−1+a(rY ) ≤ 2a(r+1)

2r+a(rY ) ≤ 2a(r)
.

The second equation is obviously satisfied because the function a is increasing, rY ≤ r−1
and r + a(r − 1) = a(r).
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For the first one, notice that r − 1 + a(rY ) ≤ r + a(r − 1) = a(r), thus :

2a(rY +1) + 2r−1+a(rY ) ≤ 2× 2a(r) = 2a(r)+1 ≤ 2a(r+1)

and we are done.
As dim Y ′ − dim V < dim Z − dim V = r, we can by induction apply the theorem 8.2.1

to GY , XY , KY , F ′, V , l and Y ′ : there exists a special subvariety V ′
Y of ShKY

(GY ,XY )
such that V ( V ′

Y ⊂ Y ′. Let V ′ denote the special subvariety π(V ′
Y ) of ShK(G,X). As

π(Y ′) ⊂ Y ⊂ Z and π is finite, we obtain V ( V ′ ⊂ Z and we are done. This finishes the
induction and the proof of theorem 8.2.1.

9. The choice of a prime l

9.1. Effective Chebotarev. The choice of a prime l satisfying condition 8.1 on page 38
will be possible thanks to the effective Cebotarev theorem, which we now recall.

Definition 9.1.1. Let L be a number field of degree nL and absolute discriminant dL. Let
x be a positive real number. We denote by π(x) the number of primes p such that p is split
in L and p ≤ x.

Proposition 9.1.2. Assume the Generalized Riemann Hypothesis (GRH). There exists
a constant A such that the following holds. For any number field L and for any x >

max(A, 2 log(dL)2(log(log(dL)))2) we have

π(x) ≥ x

3nL log(x)
.

Furthermore, if we consider number fields such that dL is constant, then the assumption
of the GRH can be dropped.

Proof. The first statement (assuming the GRH) is proved in the Appendix N of [16] and
the second is a direct consequence of the classical Cebotarev theorem. �

9.2. Proof of theorem 3.2.1.

Proof. Let (G,X) be a Shimura datum and K a compact open subgroup of G(Af). Let
F be a number field containing the reflex field E(G,X). Let Z be a Hodge-generic F -
irreducible F -subvariety of ShK(G,X)C. Suppose that Z contains a Zariski dense set Σ,
which is a union of special subvarieties V , V ∈ Σ, all of the same dimension n(Σ) and such
that for some positive integer N and for any modification Σ′ of Σ the set {αV βV , V ∈ Σ′}
is unbounded. We want to show, under one of the two assumptions of theorem 3.2.1, that
for every V in Σ there exists a special subvariety V ′ such that V ( V ′ ⊂ Z (possibly after
replacing Σ by a modification).
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Lemma 9.2.1. Without loss of generality we can assume that :

(1) The group K is a product of compact open subgroups Kp of the G(Qp), p prime.
(2) There is a prime number p0 such that Kp0 is sufficiently small so that the group

K is neat.
(3) Up to a modification of Σ, the subvarieties V ∈ Σ are non-strongly special.

Proof. To fulfill the first condition, let K̃ ⊂ K be a compact open subgroup which is a
product. Let Z̃ be an F -irreducible component of the preimage of f−1(Z), where f :
Sh eK(G,X)C −→ ShK(G,X)C is the canonical finite morphism. The Hodge-generic F -
irreducible F -subvariety Z̃ of Sh eK(G,X)C contains a Zariski-dense set Σ̃, which is a
union of special subvarieties V , V ∈ Σ̃, all of the same dimension n(Σ) : Σ̃ is the set of all
irreducible components Ṽ of f−1(V ) contained in Z̃ as V ranges through Σ. Notice that
for any modification Σ̃′ of Σ̃ the set {αV ′(N)βV ′ , V ′ ∈ Σ̃′} is unbounded : βV ′ = βf(V ′)

and αV ′(N) is equal to αf(V ′)(N) up to a factor independent of V ′. Thus Z̃ satisfies the
assumptions of theorem 3.2.1. As a subvariety of ShK(G,X)C is special if and only if some
(equivalently any) irreducible component of its preimage by f is special, theorem 3.2.1 for
Z̃ implies theorem 3.2.1 for Z.

To fulfill the second condition, replace Kp0 by a smaller subgroup satisfying lemma 4.1.2.
The same argument as above shows that it is safe to do this.

For the third condition : otherwise there exists a modification of Σ containing only
strongly special subvarieties. But then Z is automatically special by the theorem 2.1.1
and we are done. �

From now on, we fix a faithful rational representation ρ : G →֒ GLn such that K is
contained in GLn(Ẑ). In the case of the assumption (2) in theorem 3.2.1, we take for ρ the
representation which has the property that the centers TV lie in one GLn(Q)-conjugacy
class (possibly replacing K by K ∩GLn(Ẑ)) as V ranges through Σ.

For almost all prime l, Kl is a special maximal compact open subgroup of G(Ql) and
furthermore Kl = G(Zl), where the Z-structure on G is given by taking the Zariski-closure
in in GLn,Z via ρ. Moreover, if the group TV,Fl

is a split torus then Kl is in good position
with respect to TV .

By theorem 8.2.1, it is then enough for proving theorem 3.2.1 to show that for any V

in Σ (up to a modification), there exists a prime l satisfying the following conditions :

(1) the prime l splits TV .
(2) TV,Fl

is a split torus.
(3) l(k+2f)·2a(r+1) · (degLK

Z)2
a(r)

< C(N)αV βN
V .
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Proposition 9.1. For every D > 0, ǫ > 0 and every integer m ≥ max(ǫ, 6), there exists
an integer M such that (up to a modification of Σ) : for every V in Σ with αV βV larger
than M there exists a prime l satisfying the following conditions

(1) l < Dαǫ
V βm

V .
(2) (TV )Fl

is a split torus.

Moreover the number of such primes goes to infinity as αV βV goes to infinity.

Proof. For V in Σ recall that nV is the degree of the splitting field LV of CV = HV /Hder
V

over Q. By [37, Lemma 4.2], there exists an integer n such that nV < n when V ranges
through Σ.

Fix D > 0, ǫ > 0 and m ≥ 6. For V in Σ, let

xV := Dαǫ
V βm

V

As we are assuming either GRH, or that the connected centers TV of the generic Mumford-
Tate groups HV of V lie in one GLn(Q)-conjugacy class under ρ as V ranges through Σ,
in which case dLV

is independent of V , we can apply proposition 9.1.2 :

π(xV ) ≥ xV

3n log(xV )

provided that xV is larger than some absolute constant and β3
V .

If xV ≥ 4 (which is true if αV βV is large enough), then
√

xV ≥ log(xV )

and it follows that

π(xV ) ≥
√

xV

3n
=

(Dαǫ
V βm

V )
1
2

3n
To prove the proposition we have to show that π(xV ) > i(TV ) if αV βV is large enough.

Definition 9.2.2. Given a positive real number t we denote by Σt the set of V in Σ with
i(TV ) > t.

We consider two cases.

• Suppose that for any t the set Σt is a modification of Σ. In particular the function
iV := i(TV ) is unbounded as V ranges through Σ. Recall (Proposition 4.3.9 of
[17] and proof of the proposition 5.11 of [33]) that |Km

TV
/KTV

| ≫ ∏
p pnp where

the product ranges over the iV primes such that TV,Fp is not a torus and np ≥ 1.
As the pth prime is at least p we get the inequality

αV = BiV |Km
TV

/KTV
| > BiV iV ! .
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THE ANDRÉ-OORT CONJECTURE. 47

Recall the well-known inequality: for every integer n ≥ 1,

enne−n < n! < enn+1e−n .

That gives :

αV > e(
BiV

e
)iV > (

BiV
e

)iV .

Hence :

α
ǫ
2
V > (

BiV
e

)
ǫiV
2 .

For iV > 4
ǫ we obtain :

α
ǫ
2
V > (

BiV
e

)2 .

As moreover βV ≥ 1 we obtain :

π(xV ) >
D1/2B2

2e2n
· i2V .

Hence, whenever iV > t = 2e2n
D1/2B2 we obtain π(xV ) > iV . As the set Σt is a

modification of Σ we get the proposition 9.1 (for any constant M).
• Otherwise there exists a positive number t such that Σ − Σt is a modification of

Σ. Replacing Σ by Σ − Σt the function iV is bounded as V ranges through Σ.
Let H be an upper bound for iV . Of course π(xV ) will be larger than iV when
π(xV ) ≥ H. The inequality we want to prove then is

α
ǫ
2
V β

m
2

V >
3nH

D
1
2

.

The inequality α
ǫ/2
V β

m/2
V ≥ (αV βV )ǫ/2 shows that in this case M can be taken to

be (3nH/D1/2)2/ǫ.

�

Let r := dim Z − n(Σ). Let N be a positive integer. Let ε < 1
(k+2f)·2a(r+1) , D =

( C(N)

(degLK
Z)2

a(r) )
1

(k+2f)·2a(r+1) and n = N
(k+2f)·2a(r+1) . Let M be the integer provided by propo-

sition 9.1.
We apply proposition 9.1 for ǫ, k and D : up to a modification of Σ, for every V ∈ Σ

we can choose a prime l 6= p0 such that l splits TV , TV,Fl
is a split torus and l < Dαǫ

V βk
V .

This last inequality is exactly condition 8.1 on page 38 of theorem 8.2.1.
Finally for every V in Σ we can apply theorem 8.2.1 to Z, V and l and we are done. �
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Appendix A

In this appendix we prove theorem 2.1.1 (and thus also theorem 2.1.1) assuming [33,
theorem 3.8]. Let (G,X) be a Shimura datum, K =

∏
p premier Kp be a compact open sub-

group of G(Af) and T be an R-anisotropic Q-subtorus of Gad. Let (Vn)n∈N be a sequence
of T-special subvarieties of ShK(G,X)C and µVn , n ∈ N, be the canonical probability
measure on ShK(G,X)C supported by Vn. Without loss of generality we can assume
that all the Vn are contained in SK(G,X)C. Let λ : G −→ Gad be the adjoint mor-
phism and f : (G,X) −→ (Gad,Xad) be the associated morphism of Shimura data. Let
Kad be any compact open subgroup of Gad(Af) containing λ(K). We choose Kad such
that the finite morphism π : ShK(G,X)C −→ ShKad(Gad,Xad)C is of degree one in re-
striction to SK(G,X)C. For n ∈ N let Vn ⊂ ShKad(Gad,Xad) be the image π(Vn). The
sequence of special subvarieties (Vn)n∈N is still T-special in ShKad(Gad,Xad)C. The canon-
ical probability measure µVn

supported by Vn identifies with π∗µVn . By [33, theorem 3.8],
there exists a T-special subvariety V ⊂ ShKad(Gad,Xad)C and a subsequence (µVnk

)k∈N

weakly converging to µV . Furthermore V contains Vnk
for all k sufficiently large. Let

V = π−1(V ∩ SK(G,X)C. As π is of degree one in restriction to SK(G,X)C, V is a spe-
cial subvariety, T -special because V is. Moreover V contains all Vnk

for k sufficiently large
and the sequence µVnk

weakly converges to µV . This finishes the proof of the theorem.
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[1] Y. André, Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compo-

sitio Math. 82 (1992) 1-24

[2] W.L. Baily, A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Annals

of Math., 84 (1966), 442-528

[3] A. Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de
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