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SECONDARY CHARACTERISTIC CLASSES OF
TRANSVERSELY HOMOGENEOUS FOLIATIONS

JESÚS A. ÁLVAREZ LÓPEZ AND HIRAKU NOZAWA

Abstract. Let G be a simple Lie group of real rank one, and Sq∞ the ideal
boundary of the corresponding hyperbolic symmetric space of noncompact type
(Hn

R, Hn
C, Hn

H or H2
O). We show the finiteness of the possible values of the

secondary characteristic classes of transversely homogeneous foliations on a
fixed manifold whose transverse structures are modeled on the G-action on
Sq∞, except the case of transversely conformally flat foliations of even codi-
mension q. For this exceptional case, we construct examples of foliations on a
manifold which break the finiteness and show a weaker form of the finiteness
result. These are generalizations of a finiteness theorem of secondary char-
acteristic classes of transversely projective foliations on a fixed manifold by
Brooks-Goldman and Heitsch to other transverse structures. We also show
Bott-Thurston-Heitsch type formulas to compute the secondary characteristic
classes of certain foliated bundles, and then obtain a rigidity result on trans-
versely homogeneous foliations on the unit tangent sphere bundles of hyperbolic
manifolds.
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Europe and the EPDI/JSPS/IHÉS Fellowship. This paper was written during the stay of the
second author at Institut des Hautes Études Scientifiques, Institut Mittag-Leffler and Centre
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1. Introduction

1.1. Secondary characteristic classes of foliations and a theorem of
Brooks-Goldman-Heitsch. For a codimension q smooth foliation F of a
smooth manifoldM , we have the characteristic homomorphism ∆F : H•(WOq)→
H•(M ; R) (see Section 2.1). The cohomology classes in the image of ∆F are
called the secondary characteristic classes of F . These are cobordism invari-
ants of foliations, which come from the continuous cohomology of the Hae-
fliger’s classifying space BΓq [Hae79]. The relation between the dynamics or
geometry of foliations and secondary characteristic classes has been one of the
main themes in the study of foliations (see the review article [Hur02] by Hur-
der or [CC03, Chapter 7] by Candel-Conlon). Main examples of foliations with
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nontrivial secondary characteristic classes are quotient of homogeneous folia-
tions on homogeneous spaces by lattices, which have been extensively stud-
ied [KT75b, Yam75, Bak78, Hei78, Pit79, Pel83, Asu10]. Transversely homo-
geneous foliations are generalizations of these foliations, whose secondary charac-
teristic classes can be computed in a similar way. These foliations were used in the
construction of families of foliations whose characteristic classes nontrivially and
continuously vary by Thurston [Thu72b, Bot78] and Rasmussen [Ras80]. Other
families with this property, constructed by Heitsch [Hei78], are quotient of homo-
geneous foliations on homogeneous spaces by lattices. Their constructions imply
that there are uncountably many foliations which are not mutually cobordant,
and certain homology groups with integer coefficients of the classifying space BΓq

are uncountable [Hei78, Section 6].
In spite of the role played by transversely homogeneous foliations in the con-

struction of these examples, Brooks-Goldman and Heitsch showed that trans-
versely projective foliations, a class of transversely homogeneous foliations, sat-
isfy the following remarkable finiteness property of the secondary characteristic
classes. Let G be a Lie group and P a closed subgroup of G. A (G,G/P )-foliation
is a foliation whose transverse structure is modeled on the G-action on G/P (see
Definition 3.1). When G = SL(q + 1; R) and G/P = Sq, a (G,G/P )-foliation is
called a transversely projective foliation. Fix a smooth manifold M with finitely
presented fundamental group. Let Fol(G,G/P ) be the set of (G,G/P )-foliations
on M , and let

Σ(G,G/P ) = #{∆F | F ∈ Fol(G,G/P ) } ,
where q = dimG/P .

Theorem 1.1 (Brooks-Goldman [BG84] in the case of q = 1 and Heitsch [Hei86]
for q > 1). Σ(SL(q + 1; R), Sq) <∞.

In this article, we will generalize Theorem 1.1 for other cases of (G,G/P ). We
also prove Bott-Thurston-Heitsch type formulas to compute secondary character-
istic classes and apply such formulas to obtain certain rigidity of foliations.

1.2. A sufficient condition for the finiteness of secondary characteristic
classes. We assume that G is linear algebraic and semisimple. Let GC be a
complex semisimple Lie group such that Lie(GC) = Lie(G)⊗ C as a Lie algebra
over R. Our first result is the following.

Theorem 1.2. If H•(GC/P ; R) → H•(G/P ; R) is trivial on positive degrees,
then Σ(G,G/P ) <∞.

When (G,G/P ) = (SL(q+ 1; R), Sq) for odd q, the assumption of Theorem 1.2
on (G,P ) is satisfied (see Section 6.2). So Theorem 1.2 implies Theorem 1.1 for
odd q. The following cases are our examples of (G,G/P ):

(SO (n+ 1, 1) , Sn∞) ,
(
SU (n+ 1, 1) , S2n+1

∞
)
,
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4 JESÚS A. ÁLVAREZ LÓPEZ AND HIRAKU NOZAWA(
Sp (n+ 1, 1) , S4n+3

∞
)
,
(
F4(−20), S

15
∞
)
,

where Sn∞, S2n+1
∞ , S4n+3

∞ and S15
∞ are the ideal boundaries of the corresponding

noncompact symmetric spaces Hn
R, Hn

C, Hn
H and H2

O, respectively. According to
the case of manifolds, (SO (n+ 1, 1) , Sn∞)-foliations are called transversely con-
formally flat foliations and (SU (n+ 1, 1) , S2n+1

∞ )-foliations are called transversely
spherical CR foliations. The unit tangent sphere bundles of hyperbolic manifolds
have typical examples of these (G,G/P )-foliations (see Example 2.3). The map
H•(GC/P ; R) → H•(G/P ; R) is trivial on positive degrees except in the case of
transversely conformally flat foliations of even codimension (see Section 6). Thus
we get the following.

Corollary 1.3. If (G,G/P ) is (SO(n+1, 1), Sn∞) for odd n, (SU(n+1, 1), S2n+1
∞ ),

(Sp(n+ 1, 1), S4n+3
∞ ) or

(
F4(−20), S

15
∞
)
, then Σ(G,G/P ) <∞.

Remark 1.4. Since SU(1, 1)∼=SL(2; R) and SO0(2, 1)∼=PSL(2; R), where SO0(2, 1)
is the identity component of SO(2, 1), Corollary 1.3 for (G,G/P ) = (SU(1, 1), S1

∞)
or (SO(2, 1), S1

∞) is essentially contained in Theorem 1.1. Hantout [Han88] also
investigated this type of finiteness results, but his result does not imply this
corollary.

Remark 1.5. Note that the actions of SU(n + 1, 1) and Sp(n + 1, 1) on spheres
may not be effective, depending on n, because their stabilizers are equal to the
centers. But, by a slight modification of the proof of Theorem 1.2, we can
show the finiteness for the case where (G,G/P ) is (PSU(n + 1, 1), S2n+1

∞ ) or
(PSp(n+ 1, 1), S4n+3

∞ ) (see Section 6.7).

Remark 1.6. It is not difficult to see that every nontrivial secondary characteristic
class of (G,G/P )-foliations is a multiple of the Godbillon-Vey class for these cases
(see Proposition 7.4).

Theorem 1.2 will be proved in Section 5 by using the complexification of char-
acteristic classes and an observation on certain spectral sequences.

1.3. Bott-Thurston-Heitsch type formulas. The Godbillon-Vey class GV(F)
of a foliation F is the secondary characteristic class first discovered in [GV71],
and it is specially important for transversely homogeneous foliations as suggested
by results of Pittie [Pit79]. In the standard notation, GV(F) = (2π)q+1∆F(h1c

q
1)

for a codimension q foliation [KT75a, Theorem 7.20]. A typical example of trans-
versely projective foliations is suspension foliations; namely, for a manifold N and

a homomorphism π1N→ SL(q + 1; R), we get an Sq-bundle p : Ñ ×π1N Sq→N
foliated by a transversely projective foliation transverse to the fibers of p (Ex-
ample 3.4). The Bott-Thurston-Heitsch formula for the Godbillon-Vey class of
transversely projective foliations computes the Godbillon-Vey class of such folia-
tions.
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Theorem 1.7 ([Thu72b] and [Bot78, Appendix by Brooks] for q = 1 and Heitsch
[Hei78, Theorem 4.2] and [Hei83, Theorem 2.3] for q > 1). Let N be a manifold
and hol : π1N → SL(q + 1; R) a homomorphism. Let pM : M → N be the Sq-
bundle over N with the suspension foliation F obtained from hol. Then, for any
orientation on the fibers of pM , we have

(1)
1

(2π)q+1

 
pM

GV(F) = e(pM)

in Hq+1(N ; R), where e(pM) is the Euler class of the Sq-bundle pM .

Remark 1.8. The case of q = 1 is special because there are different choices of
SL(2; R)-actions on S1. To get (1), the SL(2; R)-action on the homogeneous space
SL(2; R)/Aff(1; R) ≈ S1 should be used in the construction of the suspension
foliation F , where

Aff(1; R) =

{(
a b
0 1/a

) ∣∣∣ a ∈ R×, b ∈ R
}
.

This formula is important as one of few methods to calculate the Godbillon-Vey
class explicitly. Heitsch obtained a similar formula for other secondary character-
istic classes of transversely projective foliations ([Hei78, Theorem 4.2] and [Hei83,
Theorem 2.3]).

We generalize this formula. Note that, for a manifold N and a homomorphism
π1N → G, we have a suspension foliation of the total space of a G/P -bundle over
N , which naturally admits a structure of a (G,G/P )-foliation (Example 3.4). Let
SO0(n+ 1, 1) be the identity component of SO(n+ 1, 1).

Theorem 1.9. Let (G,G/P ) denote one of (SO0(n + 1, 1), Sn∞) for odd n > 1,
(SU(n + 1, 1), S2n+1

∞ ) for n > 0, (Sp(n + 1, 1), S4n+3
∞ ) or

(
F4(−20), S

15
∞
)
. Let

q = dimG/P (the codimension of (G,G/P )-foliations), N a manifold and hol :
π1N→G a homomorphism. Let pM : M→N be the G/P -bundle over N with the
suspension foliation F obtained from hol. Then, for any orientation on the fibers
of pM , we have

(2)
1

(2π)q+1

 
pM

GV(F) = rG e(pM)

in Hq+1(N ; R), where e(pM) is the Euler class of the Sq-bundle pM , and rG is the
constant, depending on (G,G/P ), given in the following table:
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(G,G/P ) rG

(SO0(n+ 1, 1), Sn∞) nn+1

(SU(n+ 1, 1), S2n+1
∞ )

2(n+ 1)2n+2

n+ 2
· (2n+ 1)!

n!(n+ 1)!

(Sp(n+ 1, 1), S4n+3
∞ )

23/2(2n+ 3)4n+3

(n+ 2)(n+ 3)n+1
· (4n+ 3)!

(2n+ 1)!(2n+ 2)!

(F4(−20), S
15
∞) 219 · 369/2 · 74 · 1116 · 13

Remark 1.10. Rasmussen [Ras80, Theorem 5.1] also obtained a similar formula
for the case of (SO0(3, 1), S2

∞). The codimension one case excluded from The-
orem 1.9, where (G,G/P ) is either of (SO0(2, 1), S1

∞) or (SU(1, 1), S1
∞), corre-

sponds to the original Bott-Thurston formula (Theorem 1.7 for q = 1).

We will prove Theorem 1.9 by a direct calculation on Lie algebra cohomology
with the application of the Hirzebruch’s proportionality principle in Section 7.
Note that it is not difficult to see that both sides of (2) are equal up to a nonzero
constant factor like in the case of the original Bott-Thurston formula for codi-
mension one case (see [BG84, Section 3]). This relation was already pointed out
in the case of (SO(n+ 1, 1), Sn∞) by Reznikov [Rez96, Section 5.16].

Remark 1.11. Note that, in the case of (SO0(n+ 1, 1), Sn∞) for even n, the Euler
classes of Sn-bundles are trivial with real coefficients. So this type of formulas is
not true in that case. But we will show a similar formula with the volume of the
holonomy homomorphism (see Proposition 7.14).

Remark 1.12. Theorem 1.7 for q = 1 was used by Brooks-Goldman [BG84] to
prove Theorem 1.1 for q = 1. Heitsch [Hei86] used Theorem 1.7 and its gener-
alization to other secondary characteristic classes to prove Theorem 1.1. Based
on a calculation similar to the proof of Theorem 1.9, we can give an alternative
proof of Theorem 1.1 for even q (see Remarks 8.5 and 8.7). This alternative proof
is slightly simpler than the original proof due to Heitsch [Hei86].

1.4. The case of G/P = Sq for even q. In this case, it is easy to see that
the assumption of Theorem 1.2 on the triviality of H•(GC/P ; R)→ H•(G/P ; R)
for positive degrees is never satisfied (see Proposition 6.1). In fact, by using a
Bott-Thurston-Heitsch type formula in Proposition 7.14 for the Godbillon-Vey
class of transversely conformally flat foliation of even codimension, we get the
following infiniteness result.
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Theorem 1.13. For each even q, there exists a connected noncompact smooth
manifold X with finitely presented fundamental group and a family {Fm}m∈Z of
codimension q transversely conformally flat foliations of X such that GV(Fm) 6=
GV(Fm′) if m 6= m′.

As far as we know, this is the first example of a family of transversely confor-
mal foliations on a connected manifold whose Godbillon-Vey classes take infin-
itely many different values. We do not know compact examples. Asuke [Asu10]
constructed finite families of transversely holomorphic foliations on compact ho-
mogeneous spaces whose Godbillon-Vey classes take different values. (Note that
complex codimension one transversely holomorphic foliations are real codimen-
sion two transversely conformal foliations.)

Remark 1.14. Asuke [Asu10] proved that the Godbillon-Vey class does not change
nontrivially for smooth families of transversely holomorphic foliations. As pointed
out by Morita [Mor79], it is not known if there exist a smooth family of trans-
versely conformal foliations of codimension greater than two whose Godbillon-Vey
classes continuously and nontrivially vary.

We will show the finiteness of secondary characteristic classes in a weaker
form in this case. Let χ(νF) be the Euler class of the normal bundle νF of
F . Let Σ(G,G/P ; R/Z) denote the number of homomorphisms H•(WOq) →
H•(M ; R/Z) induced by the homomorphisms ∆F with F ∈ Fol(G,G/P ), and let

Σ(G,G/P, z) = #{∆F | F ∈ Fol(G,G/P ), χ(νF) = z }
for any fixed z ∈ Hq(M ; R). We get the following.

Theorem 1.15. If G/P = Sq for even q, then

Σ(G,G/P ; R/Z) <∞ ,(3)

Σ(G,G/P, z) <∞ ,(4)

for each z ∈ Hq(M ; R).

The proof of Theorem 1.15 is based on simple arguments with Lie algebra
cohomology. Theorems 1.13 and 1.15 will be proved in Section 8.

1.5. Transversely conformal foliations. In this section, we assume that the
fixed manifoldM is compact. By a theorem of Tarquini [Tar04, Théorème 0.0.1], a
transversely real analytic conformal foliation of codimension q > 2 is Riemannian
or (PSO(q+ 1, 1), Sq∞) on each connected component of M . Let Folq,ωC be the set
of codimension q transversely real analytic conformal foliations on M . Let

Σq
C = #{∆F | F ∈ Folq,ωC } ,

Σq
C(z) = #{∆F | F ∈ Folq,ωC , z = χ(νF) }

for z in Hq(M ; R), and let Σq
C(R/Z) be the number of homomorphisms

H•(WOq)→ H•(M ; R/Z) induced by the homomorphisms ∆F with F ∈ Folq,ωC .
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8 JESÚS A. ÁLVAREZ LÓPEZ AND HIRAKU NOZAWA

Since the secondary characteristic classes of Riemannian foliations are trivial
(see [KT75a, Section 4.48 and Theorem 4.52]), we get the following corollary.

Corollary 1.16. (i) Σq
C <∞ for odd q > 1.

(ii) Σq
C(R/Z) <∞ and Σq

C(z) <∞ for each z ∈ Hq(M ; R) and even q > 2.

1.6. Rigidity of transversely homogeneous foliations with nontrivial sec-
ondary invariants. Let (G,G/P ) be (SO0(n+ 1, 1), Sn∞), (SU(n+ 1, 1), S2n+1

∞ ),
(Sp(n + 1, 1), S4n+3

∞ ) or
(
F4(−20), S

15
∞
)
. Let FΓ be the standard homogeneous

(G,G/P )-foliation on M = Γ\G/KP , where Γ is a torsion-free uniform lattice of
G and KP is a maximal compact subgroup of P (Example 2.3). Here GV(FΓ) is
nontrivial as computed in Corollary 7.12. Note that dimM = deg GV(FΓ). Fix
an orientation of M so that

´
M

GV(FΓ) > 0. Then we show the following.

Theorem 1.17. (i) If (G,G/P ) is one of (SO0(n+1, 1), Sn∞) for odd n > 1,
(SU(n+ 1, 1), S2n+1

∞ ) for n ≥ 1, (Sp(n+ 1, 1), Sq∞) or (F4(−20), S
15
∞), then

F is smoothly conjugate to FΓ.

(ii) If (G,G/P ) is (SO0(n+1, 1), Sn∞) for even n, then any (G,G/P )-foliation
F of M satisfies

´
M

GV(F) ≤
´
M

GV(FΓ). Moreover the equality holds
if and only if F is smoothly conjugate to FΓ.

The essential part of the proof is to generalize the Bott-Thurston-Heitsch type
formulas to foliations which may not be transverse to fibers (Lemma 9.1). It
allows us to apply the rigidity theory of representations of lattices; in particular,
the generalized Mostow rigidity [Cor91, Dun99, FK06] for lattices of PSO(n+1, 1)
or PSU(n+1, 1) and the superrigidity [Cor92] of lattices of Sp(n+1, 1) or F4(−20).

In the codimension one case, we will show the following.

Theorem 1.18. If (G,G/P ) is one of (SO0(2, 1), S1
∞) or (SU(1, 1), S1

∞), then
any (G,G/P )-foliation F of M satisfies GV(F) = GV(FΓ) or GV(F) = 0.
Moreover the former case holds if and only if F is smoothly conjugate to FΓ.

To prove Theorem 1.18, we will apply a minimality theorem of Chihi-ben Ram-
dane [CbR08] and theorems of Thurston [Thu72a] and Levitt [Lev78] to isotope
(G,G/P )-foliations with nontrivial Godbillon-Vey classes so that they are trans-
verse to the fibers of Γ\G/KP → Γ\G/KG, where KG is a maximal compact
subgroup of G. Then we can apply generalized Mostow rigidity [Gol88] for sur-
face group representations.

Theorems 1.17 and 1.18 will be proved in Section 9.

Remark 1.19. Theorem 1.18 improves a result of Brooks-Goldman [BG84, Theo-
rem 5]. Theorem 1.18 is also related to Mitsumatsu defect formula [Mit85] for the
C2 stable foliations of the geodesic flows of hyperbolic surfaces, and its generaliza-
tion with weaker regularity assumption by Hurder-Katok [HK90, Theorem 3.11].

Organization of the article. Sections 2 and 3 are devoted to recall fundamental
notions in this article, as indicated in the table of the contents. In Section 4, the
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complexification of secondary characteristic classes of transversely homogeneous
foliations is explained, which will be used in Section 5 to prove Theorem 1.2.
Section 6 is devoted to present the examples of the application of Theorem 1.2.
In Section 7, first, the characteristic classes of homogeneous foliations on homo-
geneous spaces are calculated in terms of Lie algebra cohomology, and then the
Bott-Thurston-Heitsch type formulas of Theorem 1.9 are deduced. Theorems 1.15
and 1.13 are proved in Section 8. (Note that the computation in Section 7 is used
in Section 8, but it is not necessary for the proof of Theorems 1.15 and 1.13.)
In Section 9, Theorems 1.17 and 1.18 are proved by applying the modification of
the Bott-Thurston-Heitsch type formulas of Theorem 1.9.

Acknowledgment. We thank Juan Francisco Torres Lopera, Takashi Tsuboi,
Bertrand Deroin, and MathOverFlow users Tilman and André Henriques for
helpful discussions about the contents of this paper. We are grateful to Michelle
Bucher because she taught the second author the application of the Hirzebruch
proportionality principle and the proof of the generalized Milnor-Wood inequality.

2. Secondary characteristic classes of foliations

2.1. Fundamentals of secondary characteristic classes. Consider the Weil
algebra W (gl(q; R)) =

∧
gl(q; R)∗ ⊗ Sgl(q; R)∗ of gl(q; R), and its O(q)-basic

subalgebra,

W (gl(q; R))O(q)

= { β ∈ W (gl(q; R)) | ιXβ = 0 ∀X ∈ o(q), Ad(g)∗β = β ∀g ∈ O(q) } .

For a principal GL(q; R)-bundle E over a smooth manifold M with a GL(q; R)-
connection ∇E, the Chern-Weil construction yields a homomorphism of differen-

tial graded algebras, ∆̂E :W (gl(q; R))→Ω•(E). Since the image ofW (gl(q; R))O(q)

under ∆̂E is contained in the image of the pull-back map π∗ : Ω•(E/O(q)) →
Ω•(E) by the O(q)-basicness, we get a differential map

∆E : W (gl(q; R))O(q) −→ Ω•(E/O(q)) .

By the contractibility of the fibers of E/O(q) → M , there exists a section s :
M → E/O(q). Thus we get a differential map given by the composite

W (gl(q; R))O(q)
∆E // Ω•(E/O(q))

s∗ // Ω•(M) .

It is known that

W (gl(q; R))O(q) =
∧

[h1, h3, . . . , h[q]]⊗ R[c1, c2, . . . , cq]

as a differential graded algebra, where [q] is the maximal odd number less than
q + 1. Its grading is given by deg hi = 2i− 1 and deg ci = 2i, and its differential
map is determined by dhi = ci and dci = 0. Here, ci is the i-th Chern polynomial
given by det(Iq+ t

2π
A) =

∑q
j=0 cj(A)tj [KT75a, p. 138 and 139]. (Note that these
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Chern polynomials differ from the usual one by
√
−1-factors.) This construction

yields nothing for a general GL(q; R)-connection because H•(W (gl(q; R))O(q)) =
0. The normal bundle νF = TM/TF of a foliated manifold (M,F) has a special
gl(q; R)-connection called a Bott connection [Bot72]. For a Bott connection ∇ on
νF , the frame bundle P(νF) with the principal GL(q; R)-connection associated
to ∇ satisfies ∆P(νF)(ci) = 0 for i > q by Bott vanishing theorem. Thus, letting

WOq =
∧

[h1, h3, . . . , h[q]]⊗ R[c1, c2, . . . , cq]/Iq ,

where Iq is the ideal of R[c1, c2, . . . , cq] generated by the elements of degree greater
than 2q, we get a differential map ∆F : WOq → Ω•(M). The map induced on
cohomology,

∆F : H•(WOq) −→ H•(M ; R) ,

depends only on F and is denoted with the same symbol. The cohomology
H•(WOq) is nontrivial, ∆F is called the characteristic homomorphism of F , and
the elements of its image are the secondary characteristic classes of F . For
I = {i1, . . . , ik} ⊆ {1, 3, · · · , [q]} and J = {j1, . . . , jl}, where 1 ≤ jm ≤ q, let
hIcJ = hi1 · · ·hikcj1 · · · cjl . Vey showed that the union of

(5) { cJ | j is even ∀j ∈ J }

and

(6) {hIcJ | i1 + |J | ≥ q + 1, i1 ≤ j for any odd j ∈ J }

is a basis of H•(WOq) as an R-vector space, where i1 = min I [Hei73, Theo-
rem 2]. The characteristic classes in (5) are the Pontryagin classes of νF . The
characteristic classes in (6) are called exotic.

Example 2.1. Let F be a codimention q foliation on M defined by the kernel
of a q-form ω. By the Frobenius theorem, we have dω=η∧ω for some 1-form η.
Then η∧(dη)q is a closed (2q+1)-form on M , which is equal to (2π)q+1[∆F(h1c

q
1)]

[KT75a, Theorem 7.20]. This characteristic class (2π)q+1[∆F(h1c
q
1)] is called the

Godbillon-Vey class of F [GV71]. The notation GV(F) = (2π)q+1[∆F(h1c
q
1)] is

standard.

2.2. Examples of foliations with nontrivial characteristic classes. Quo-
tient of homogeneous foliations on homogeneous spaces by lattices are the main
examples of foliations with nontrivial secondary characteristic classes.

Example 2.2 (Roussarie’s example [GV71]). Let Γ be a torsion-free uniform
lattice of SL(2; R). Let π : SL(2; R) → SL(2; R)/Aff(1; R) be the canonical pro-
jection, where Aff(1; R) is the subgroup of SL(2; R) given in Remark 1.8. Then
the fibers of π induce a codimension one foliation on M = Γ\ SL(2; R). Let
{ω, η, θ} be a basis of sl(2; R)∗ so that the fibers of π are defined by kerω and

dω = η ∧ ω , dη = ω ∧ θ , dθ = −η ∧ θ .
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By their left invariance, the 1-forms ω, η and θ on SL(2; R) induce 1-forms on M ,
which are denoted with the same symbols. Let F be the foliation on M defined
by the kernel of ω. By the definition of GV(F), we get

GV(F) = [η ∧ dη] = [η ∧ ω ∧ θ] .
Since η ∧ ω ∧ θ is a volume form on M , it follows that GV(F) 6= 0. In fact, by
the Bott-Thurston formula (Theorem 1.9 for q = 1), we getˆ

M

GV(F) = 4π2e ,

where e is the Euler number of the surface Γ\ SL(2; R)/ SO(2).

Example 2.3. The following example is a generalization of the last example to
higher dimensions. Let G be SO(n+1, 1), SU(n+1, 1), Sp(n+1, 1) or F4(−20), and
consider G/P as the ideal boundary of the corresponding hyperbolic symmetric
space G/KG:

Hn
R = SO(n+ 1, 1)/ S(O(n+ 1)× {±1}) ,

Hn
C = SU(n+ 1, 1)/ S(U(n+ 1) U(1)) ,

Hn
H = Sp(n+ 1, 1)/ Sp(n+ 1) Sp(1) ,

H2
O = F4(−20)/ Spin(9) .

Let KG be a maximal compact subgroup of G, and take a maximal compact
subgroup KP of P as KP = KG ∩ P . The ideal boundary of G/KG is a sphere
of real dimension n, 2n + 1, 4n + 3 and 15, respectively. Γ\G/KP admits a
foliation FΓ whose lift to G/KP is defined by the fibers of G/KP → G/P .
Here, Γ\G/KG is a real, complex, quaternionic or octonionic hyperbolic man-
ifold, and Γ\G/KP → Γ\G/KG is the total space of its unit tangent sphere
bundle (see Section 6), depending on the choice of G. Later, we will compute
GV(FΓ) (Proposition 7.9), and this Godbillon-Vey class is essentially the unique
nontrivial secondary characteristic class for these foliations (Section 7.3). Yam-
ato [Yam75] studied the secondary characteristic classes of FΓ in the case where
G = SO(n+ 1, 1).

Example 2.4. The following example is a further generalization of the last ex-
ample. Let G be a Lie group and P a closed subgroup of G. Let K be a closed
subgroup of P . Let Γ be a torsion-free uniform lattice of G. Then the fibers of
the canonical projection G/K → G/P define a foliation FΓ on a closed manifold
Γ\G/K. The characteristic classes of this type of foliations were extensively stud-
ied and calculated by Kamber-Tondeur [KT75b], Baker [Bak78], Heitsch [Hei78],
Pittie [Pit79], Pelletier [Pel83] and Asuke [Asu10].

3. Transversely homogeneous foliations

3.1. Definition of (G,G/P )-foliations. Let (M,F) be a foliated manifold. Let
G be a Lie group and P a closed subgroup of G. When the group G is endowed
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with the discrete topology, it is denoted by Gδ. We denote the G-action on G/P
by (g, xP ) 7→ g · xP .

Definition 3.1. A (Haefliger) cocycle with values in (G,G/P ), defining F , is a
triple ({Ui}, {πi}, {γij}), where:

(1) {Ui} is an open covering of M ,
(2) each πi is a submersion Ui → G/P such that the leaves of F|Ui are the

fibers of πi, and
(3) each γij is a continuous map Ui∩Uj → Gδ such that πi(x) = γij(x) ·πj(x)

for any x ∈ Ui ∩ Uj.
Two cocycles with values in (G,G/P ), defining F , are called equivalent when their
union is contained in some cocycle with values in (G,G/P ), defining F . When F
is endowed with an equivalence class of cocycles with values in (G,G/P ), defining
F , it is called a (G,G/P )-foliation.

Cocycles valued in (G,G/P ) are examples of 1-cocycles valued in groupoids
defined by Haefliger [Hae58]. Transversely homogeneous foliations are natural
generalizations of quotient of homogeneous foliations on homogeneous spaces in
terms of 1-cocycles valued in groupoids.

Remark 3.2. When G preserves a metric on G/P , any (G,G/P )-foliation is Rie-
mannian. In this case, the secondary characteristic classes are well known to be
trivial (for example, see [KT75a, Section 4.48 and Theorem 4.52]).

Example 3.3. Example 2.2 is an (SL(2; R), S1)-foliation, and Example 2.4 a
(G,G/P )-foliation. Example 2.3 is a special case of Example 2.4, where (G,G/P )
is (SO(n+ 1, 1), Sn∞), (SU(n+ 1, 1), S2n+1

∞ ), (Sp(n+ 1, 1), S4n+3
∞ ) or (F4(−20), S

15
∞),

and where Sn∞, S2n+1
∞ , S4n+3

∞ or S15
∞ are the ideal boundaries of the corresponding

hyperbolic symmetric spaces.

Example 3.4 (Suspension foliations). Let N be a smooth manifold and h :
π1N → G a homomorphism. A π1N -action on G/P is defined by π1N → G →
Diff(G/P ), where the second homomorphism is the G-action on G/P . Then

the quotient space Ñ ×π1N G/P of the diagonal π1N -action on Ñ × G/P has

a foliation F induced by the horizontal foliation Ñ × G/P =
⊔
x∈G/P Ñ × {x}.

Here, it is easy to see that F naturally admits a structure of (G,G/P )-foliation
by definition. (One can also apply Proposition 3.8 below.)

Example 3.5. Let (Mi,Fi) be a smooth manifold with a (G,G/P )-foliation for
i ∈ {0, 1}. Assume that we have a closed transversal Si of (Mi,Fi) such that
S0 is diffeomorphic to S1 as (G,G/P )-manifolds. Let Ui be an open tubular
neighborhood of Si such that the leaves of Fi|Ui are the fibers of a normal bundle
of Si. We can paste U0 \ S0 and U1 \ S1 to construct another manifold with
a (G,G/P )-foliation. Chihi and ben Ramdane [CbR08] used this method to
construct manifolds with (SL(2; R), S1)-foliations with nontrivial Godbillon-Vey
classes and dense holonomy groups in SL(2; R).
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Example 3.6. Let (M,F) be a smooth manifold with a (G,G/P )-foliation. If
we have a smooth map f : M ′ → M which is transverse to F , we can pull back
F to M ′ as a (G,G/P )-foliation. This construction can be used when f is a
branched covering whose branch locus is transverse to F .

Example 3.7. Thurston [Thu72b] constructed examples of codimension one fo-
liations on Seifert fibered 3-manifolds whose Godbillon-Vey class varies nontriv-
ially by making surgery to Example 2.2. Rasmussen [Ras80] generalized this
construction to the case of codimension two. Thurston also constructed families
of suspension foliations on the total spaces of S1-bundles over closed surfaces
of genus two whose characteristic classes vary nontrivially. These examples are
constructed by pasting two transversely projective foliations of the total space of
S1-bundles over punctured tori [Bot78, Section 4]. Heitsch [Hei78] constructed

families of (
∏k

i=1 SL(ni; R), S(
∑
i ni)−1)-foliations whose characteristic classes vary

by deforming
∏k

i=1 SL(ni; R)-actions on S(
∑
i ni)−1.

3.2. Haefliger type description of transversely homogeneous foliations.

3.2.1. Flat principal G-bundle associated to F and the holonomy homomorphism.
Let (M,F) be a (G,G/P )-foliation defined by a cocycle ({Ui}, {πi}, {γij}) valued
in (G,G/P ). The condition πi = γij · πj implies the 1-cocycle condition γik =
γij · γjk. Thus {γij} is a 1-cocycle valued in Gδ, which defines a flat principal
G-bundle πG : XG(F)→M . Recall that

XG(F) =
(⊔

i

Ui ×G
)/

(x, y) ∼ (x, γij(x)(y)) ,

and the projection πG is induced by the first factor projections Ui×G→ Ui. The
holonomy homomorphism π1M → G of this flat G-bundle is called the holonomy
homomorphism of F and denoted by hol(F).

3.2.2. The Haefliger structure of F . We recall the description of (G,G/P )-foli-
ations in terms of a G/P -bundle over M , which is a special case of the Haefliger
structures of general foliations. It was studied by Blumenthal [Blu79] and used
by Brooks-Goldman [BG84] and Heitsch [Hei86] to prove Theorem 1.1.

Proposition 3.8. A (G,G/P )-foliation F on M is determined by one of the
following data:

(i) A flat principal G-bundle XG → M and a section s of XG/P → M
such that s is transverse to the foliation E of XG/P defined by the flat
G-connection.

(ii) A homomorphism hol : π1M → G and a submersion dev : M̃ → G/P

such that dev(γ · x) = hol(γ) · dev(x) for any x ∈ M̃ and any γ ∈ π1M .

Let γij(x) : G/P → G/P be the diffeomorphism induced by the left prod-

uct of γij(x). Here, {γij} is a 1-cocycle valued in Diff(G/P )δ, which defines
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a G/P -bundle πG/P : XG/P (F) → M with a flat G-connection whose holonomy
homomorphism is equal to hol(F). Recall that

XG/P (F) =
(⊔

i

Ui ×G/P
)/

(x, y) ∼ (x, γij(x)(y)) = XG(F)/P ,

and the projection πG/P is induced by the first factor projections Ui×G/P → Ui.
The graphs of the maps πi,

Graph(πi) = { (x, πi(x)) | x ∈ Ui } ⊂ Ui ×G/P ,

define a subset of XG/P (F), which gives a global section s of XG/P (F) → M .
By construction, F is obtained as the pull-back by s of the foliation of XG/P (F)
defined by the flat connection. Summarizing, F determines a flat G/P -bundle
πG/P : XG/P (F)→M with a section s, which in turn determines F .

Let M̃ be the universal cover of M . The pull-back of XG(F)/P → M to M̃
is a trivial flat G/P -bundle. A section s of XG(F)/P → M yields a section s̃

of this trivial G/P -bundle over M̃ by pull-back. In an obvious way, giving s̃ is

equivalent to giving a submersion dev : M̃ → G/P that is π1M -equivariant with

respect to hol(F) : π1M → G; i.e., dev(γ · x) = hol(F)(γ) · dev(x) for x ∈ M̃ and
γ ∈ π1M .

3.2.3. Enlargement of the Haefliger structure of F . We will use a bundle larger
than the one described in the last section, which was used by Benson-Ellis [BE85].
Let KP be a maximal compact subgroup of P . We consider a G/KP -bundle
πG/KP : XG(F)/KP → M with a flat G-connection constructed by a 1-cocycle
valued in Diff(G/KP )δ in a way analogous to πG/P in the last section. There is
also a P/KP -bundle p : XG(F)/KP → XG(F)/P . Since P/KP is contractible,
there is a section s′ of p, which is unique up to homotopy. We get a section ŝ of
πG/KP defined by the composite

M
s // XG(F)/P

s′ // XG(F)/KP .

Clearly, ŝ is transverse to the foliation p∗Ehol(F) of XG(F)/KP , where Ehol(F) is
the foliation of XG(F)/P defined by the flat G-connection. Thus we get the
following.

Proposition 3.9. A (G,G/P )-foliation F on M is determined by one of the
following data:

(i) A flat principal G-bundle XG →M and a section ŝ of XG/KP →M such
that ŝ is transverse to the foliation p∗E of XG/KP , where p : XG/KP →
XG/P is the canonical projection and E is the foliation of XG/P defined
by the flat G-connection.

(ii) A homomorphism hol : π1M → G and a smooth map d̂ev : M̃ → G/KP

such that d̂ev is transverse to the foliation defined by the fibers of G/KP→
G/P and d̂ev(γ · x) = hol(γ) · d̂ev(x) for any x ∈ M̃ and γ ∈ π1M .



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
03

CHARACTERISTIC CLASSES OF TRANSVERSELY HOMOGENEOUS FOLIATIONS 15

4. Characteristic classes of transversely homogeneous foliations

4.1. Bott connections on the P/KP -coset foliation of G/KP . Assume that
G is semisimple and P is a closed subgroup of G. Recall that KP is a maximal
compact subgroup of P . In this section, we will recall the well known construction
of a left invariant Bott connection on the normal bundle of the right P/KP -coset
foliation FP on G/KP , originally due to Kamber-Tondeur [KT75b, Theorem 3.7]
(announced in [KT74]).

Let σ : g/p→ g be a splitting of the exact sequence

0 // p // g π // g/p // 0 .

Then consider the connection ∇̃ on the normal bundle νGP of the right P -coset
foliation GP on G determined by

∇̃XY = π
(
[(idg−σπ)X, σ(Y )]

)
for X ∈ g and Y ∈ g/p. Observe that ∇̃ is left invariant. For X ∈ p, we get

∇̃XY = ad(X)(Y ). This fact implies that ∇̃ is a Bott connection on νGP . If

we take an adKP -equivariant section σ, then ∇̃ induces a left invariant Bott
connection ∇ on νFP .

Let (
∧

g∗)KP be the KP -basic subalgebra of
∧

g∗; namely,(∧
g∗
)
KP

=
{
β ∈

∧
g∗
∣∣∣ ιXβ = 0 ∀X ∈ Lie(KP ), Ad(g)∗β = β ∀g ∈ KP

}
,

which is identified to the algebra of left invariant differential forms on G/KP . By
the left invariance of ∇, we get ∆FP : WOq → (

∧
g∗)KP . Let g∗C = HomC(g ⊗

C,C). Let PC be the connected Lie subgroup of GC such that Lie(PC) = Lie(P )⊗
C. By complexifying ∇, we get a complex connection ∇C on the complexified
normal bundle of the right PC-coset foliation FPC on GC/(KP )C, obtaining the
characteristic homomorphism ∆FPC

: WOq ⊗C→ (
∧

g∗C)(KP )C
. Thus we get that

the following diagram commutes:

(7) (
∧

g∗C)(KP )C

��
WOq ⊗ C

∆FPC
55jjjjjjjjjjjjjjj

∆FP

// (
∧

g∗)KP ⊗ C ,

where the vertical arrow is canonical.

4.2. Complexification of the enlargement of Haefliger structures. Let F
be a (G,G/P )-foliation of a manifold M . Let GC be the connected and simply
connected complex Lie group with Lie(GC) = Lie(G)⊗C. Let KP be the maximal
compact subgroup of P . Let πG/KP : XG(F)/KP →M be the enlargement of the
Haefliger structure considered in Proposition 3.9.
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We construct the fiberwise complexification of πG/KP as follows. Let hol(F)C
denote the composite

π1M
hol(F)

// G // GC .

Let XGC(F) be the quotient of M̃ ×GC by the diagonal action of π1M , obtaining
a flat principal GC-bundle πGC : XGC(F) → M whose holonomy homomorphism
is hol(F)C. Then we get a canonical map XG(F)/KP → XGC(F)/(KP )C, which
is a complexification map G/KP → GC/(KP )C on each fiber. Thus a section s of
XG(F)/KP →M gives a section sC of XGC(F)/(KP )C →M .

The universal covers of XG(F)/KP and XGC(F)/(KP )C are the products M̃ ×
G/KP and M̃ ×GC/(KP )C, respectively. Consider the diagram

(
∧

g∗C)(KP )C
//

��

Ω•(M̃ ×GC/(KP )C; C)

��

(
∧

g∗)KP ⊗ C // Ω•(M̃ ×G/KP ; C) ,

where the horizontal arrows are the pull-back by the second projections and the
vertical arrows are the canonical maps defined by complexification. Since π1M
acts on G/KP and GC/(KP )C by the left product of G, left invariant forms on
G/KP and GC/(KP )C descend to XG(F)/KP and XGC(F)/(KP )C. Thus we get
the commutative diagram

(8) (
∧

g∗C)(KP )C
//

��

Ω•(XGC(F)/(KP )C; C)

��
(
∧

g∗)KP ⊗ C // Ω•(XG(F)/KP ; C) .

Recall that PC is the connected Lie subgroup of GC with Lie(PC) = Lie(P )⊗C.
Combining the diagrams (7) and (8), we get the following.

Proposition 4.1. The following diagram is commutative:

H•(XGC(F)/(KP )C; C)

��
H•(WOq ⊗ C)

∆ÊC
33hhhhhhhhhhhhhhhhhhh

∆Ê

// H•(XG(F)/KP ; C) ,

where Ê is the pull-back of the (G,G/P )-foliation of XG(F)/P by the projection

XG(F)/KP → XG(F)/P , and ÊC is the pull-back of the (GC, GC/PC)-foliation of
XGC(F)/PC by the projection XGC(F)/(KP )C → XGC(F)/PC.

The following simple observation is the unique new idea in our proof of Theo-
rem 1.2.
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Proposition 4.2. Assume that H•(GC/P ; R) → H•(G/P ; R) is trivial on pos-
itive degrees. Then the image of ∆Ehol(F)

: H•(WOq) → H•(XG(F)/KP ; R) is

contained in the image of π∗G/KP : H•(M ; R)→ H•(XG(F)/KP ; R).

Proof. By Proposition 4.1, the image of ∆Ehol(F)
is contained in the image of

H•(XGC(F)/(KP )C; R) −→ H•(XG(F)/KP ; R) .

Consider the Leray-Serre spectral sequences associated to the fiber bundles

XGC(F)/(KP )C →M , XG(F)/KP →M .

Since (KP )C and KP are homotopically equivalent to P , it follows that
XGC(F)/(KP )C and XG(F)/KP are homotopically equivalent to XGC(F)/P and
XG(F)/P , respectively. Thus the restriction map between E2-terms is given by

r : H•
(
M,H•(GC/P )

)
−→ H•

(
M,H•(G/P )

)
,

where H•(GC/P ) and H•(G/P ) are the corresponding local systems associated
to XGC(F)/P and XG(F)/P , respectively. By the assumption of the triviality of
H•(GC/P ; R) → H•(G/P ; R) on positive degrees, it follows that the image of r
is contained in H•(M ; R). �

4.3. Two results of Benson-Ellis. Let H•(g, KP ) = H•((
∧

g∗)KP ). Let F be
a (G,G/P )-foliation of a manifold M . Assume that G is semisimple.

Theorem 4.3 (Benson-Ellis [BE85]). The following diagram commutes:

H•(g, KP )

''OOOOOOOOOOO

H•(WOq)

∆FP
77ppppppppppp

∆F

// H•(M ; R) ,

Note that the argument in the last section gives an alternative proof of Theo-
rem 4.3.

Let U be an open subset of R`.

Theorem 4.4 (Benson-Ellis [BE85], see also Haefliger [Hei86, Theorem in Sec-
tion 6]). For a smooth family {Ft}t∈U of (G,G/P )-foliations of M , the family
{∆Ft}t∈U is locally constant in Hom(H•(WOq), H

•(M ; R)).

This rigidity comes from the vanishing results of cohomology of representations
of semisimple Lie algebras.

5. Proof of Theorem 1.2

Like in the proof of Theorem 1.1 by Brooks-Goldman and Heitsch, the unique
essential part of the proof of Theorem 1.2 is the following proposition.

Proposition 5.1. If the holonomy homomorphisms of two (G,G/P )-foliations,
F0 and F1, on M are homotopic, then ∆F0 = ∆F1.
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Now, Theorem 1.2 follows from Proposition 5.1 with the arguments of Brooks-
Goldman [BG84, Lemma 2].

Proof of Theorem 1.2 by using Proposition 5.1. Recall that we assume that π1M
is finitely presented. It is well known that π0(Hom(π1M,G)) is finite (see Re-
mark 5.2 at the end of this section). Thus there exist a finite number of (G,G/P )-
foliations F1, . . . ,Fm of M such that, for any (G,G/P )-foliation F of M , its
holonomy homomorphism is in the same connected component of Hom(π1M,G)
as the holonomy homomorphism of some Fi. Thus Proposition 5.1 implies The-
orem 1.2. �

Proposition 5.1 directly follows from Theorem 4.4 and Proposition 4.2.

Proof of Proposition 5.1. Let XG(Fi)/KP → M be the enlargement of the Hae-
fliger structure of Fi considered in Proposition 3.9 for i ∈ {0, 1}. Recall that
a section si : M → XG(Fi)/KP is associated to Fi. Consider the foliation

Êi = p∗iEhol(Fi) of XG(Fi)/KP , where pi : XG(Fi)/KP → XG(Fi)/P is the canon-
ical projection and Ehol(Fi) is the foliation of XG(Fi)/P defined by the flat G-
connection.

The homotopy class of (XG(Fi)/KP , Êi) as a (G,G/P )-foliation is determined
by the homotopy class of the holonomy homomorphism of Fi. Thus, by assump-
tion and Theorem 4.4, we get ∆Ê0 = ∆Ê1 .

By Proposition 4.2, the image of ∆Ê0 is contained in the image of p∗ : H•(M ; R)

→ H•(XG(F0)/KP ; R). Thus (s0)∗∆Ê0 = (s1)∗∆Ê0 on H•(WOq), and therefore

∆F0 = (s0)∗∆Ê0 = (s1)∗∆Ê0 = (s1)∗∆Ê1 = ∆F1 . �

Remark 5.2. For a finitely presented group S with k generators, we can give
Hom(S,GL(n; R)) the structure of a real algebraic variety via a tautological em-
bedding j : Hom(S,GL(n; R))→ GL(n; R)k (this is an observation of Lusztig as
written in [Sul76, Footnote of p. 186]). For an algebraic group G of GL(n; R), we
see that

Hom(S,G) = j
(

Hom
(
S,GL(n; R)

))
∩Gk

is also a real algebraic variety. Thus π0

(
Hom(S,G)

)
is finite by a theorem of

Whitney [Whi57].

Remark 5.3. We indicate an alternative way to prove the finiteness of the
Godbillon-Vey class by using the complexification of the Haefliger structure of
F under the assumption of the triviality of H•(GC/PC; R) → H•(G/P ; R) on
positive degrees. Note that this assumption is weaker than the assumption of the
triviality of H•(GC/P ; R)→ H•(G/P ; R) on positive degrees. Consider a GC/PC-
bundle XGC(F)/PC → M , which is regarded as the complexification of the Hae-
fliger structure XG(F)/P →M of F . Assume that c1(EC

hol(F)) is trivial if dimG/P

is even. By results of Asuke [Asu03, Corollary 1.9 and Proposition 2.2], the
Godbillon-Vey class extends to XGC(F)/PC. So, if H•(GC/PC; R)→ H•(G/P ; R)
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is trivial on positive degrees, then we get the finiteness of the Godbillon-Vey class
like in the above proof of Theorem 1.2.

Remark 5.4. We can show the triviality of H•(GC/PC; R) → H•(G/P ; R) on
positive degrees by using the Schubert cell decomposition of GC/PC if GC/PC is a
generalized Bott tower; namely, the total space of consecutive complex projective
space bundles and G/P is the total space of the corresponding consecutive real
projective space bundles. The Schubert cell decomposition of GC/PC is a cell
decomposition whose cells are orbits of the action of a Borel subgroup of GC.
This cell decomposition induces a cell decomposition of G/P . In the case of
generalized Bott towers, we can contract the inclusion G/P → GC/PC cell by cell
to a constant map.

6. Examples

6.1. The Euler class of the bundle GC/P → GC/G. Let us consider the case
of G/P = Sq. We characterize the assumption of Theorem 1.2 by the nontriviality
of the Euler class of the sphere bundle

G/P // GC/P // GC/G ,

which is homotopy equivalent to

(9) KG/KP
// KGC/KP

ϕ // KGC/KG .

Proposition 6.1. H•(GC/P ; R) → H•(G/P ; R) is trivial on positive degrees if
and only if the Euler class e of ϕ is nontrivial in Hq+1(GC/G; R).

Proof. From the Gysin sequence of ϕ, we get an exact sequence

Hq(GC/P ; R)

ffl
ϕ // H0(GC/G; R)

∧e // Hq+1(GC/G; R) .

Thus e is nontrivial if and only if the image of
ffl
ϕ

is nontrivial. In turn, the image

of
ffl
ϕ

is nontrivial if and only if the restriction map Hq(GC/P ) → Hq(G/P ) is

nontrivial. �

6.2. The case of transversely projective foliations of odd codimension.
In this case, (G,G/P ) = (SL(q + 1; R), Sq) for odd q. Let q = 2k − 1 and
Y` = SU(`)/ SO(`). Now, the sphere bundle (9) is

(10) SO(2k)/ SO(2k − 1) // SU(2k)/ SO(2k − 1)
pk // Y2k .

We show that the nontriviality of the Euler class of (10) follows from the Borel’s
computation of the Betti numbers of homogeneous spaces [Bor53].

Lemma 6.2. The Euler class of (10) is nontrivial in H2k(Y2k).
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Proof. According to the computation ofH•(Y`) by Borel [Bor53, Proposition 31.4],
we get that

(11) H•(Y2k) −→ H•(Y2k−1)

is surjective and

(12) dimH•(Y2k) = 2 dimH•(Y2k−1) .

Consider also the fibration

Y2k−1
ι // SU(2k)/ SO(2k − 1) // SU(2k)/ SU(2k − 1) ∼= S4k−1 .

Assume that the Euler class of pk is trivial. Then

(13) dimH•(SU(2k)/ SO(2k − 1)) = dimH•(S2k−1) · dimH•(Y2k) ;

in particular, p∗k : H•(Y2k)→ H•(SU(2k)/ SO(2k−1)) is injective. By the surjec-
tivity of (11), we get the surjectivity of ι∗ : H•(SU(2k)/ SO(2k−1))→ H•(Y2k−1).
Thus, by the Leray-Hirsch theorem, we obtain

(14) dimH•(SU(2k)/ SO(2k − 1)) = dimH•(Y2k−1) · dimH•(S4k−1) .

But (13) and (14) contradict (12). Thus the Euler class of pk is nontrivial. �

So H•(KGC/KP ; R) → H•(KG/KP ; R) is trivial on positive degrees. Thus
Theorem 1.2 gives an alternative proof of Theorem 1.1 for the case of odd codi-
mension.

6.3. The case of transversely conformally flat foliations. Now, (G,G/P ) =
(SO(n+ 1, 1), Sn∞). So GC = SO(n+ 2; C), and

KGC = SO(n+ 2) , KG = S(O(n+ 1)× {±1}) , KP = S(O(n)× {±1}) .

Thus the sphere bundle (9) is

S(O(n+ 1)× {±1})/ S(O(n)× {±1}) // SO(n+ 2)/ S(O(n)× {±1})

ζSO
��

SO(n+ 2)/ S(O(n+ 1)× {±1}) .

The isotropy group of the SO(n+ 2)-action on the unit tangent sphere bundle of
SO(n + 2)/ S(O(n + 1) × {±1}) is S(O(n) × {±1}). So ζSO is the unit tangent
sphere bundle of SO(n + 2)/ S(O(n + 1) × {±1}) ∼= RP n+1. Hence the Euler
class of ζSO is equal to the fundamental class of RP n+1 if n is odd. Thus, by
Proposition 6.1, the assumption of Theorem 1.2 is satisfied in this case.
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6.4. The case of transversely spherical CR foliations. Now, (G,G/P ) =
(SU(n + 1, 1), S2n+1

∞ ), where the codimension q = 2n + 1 is odd. In this case,
GC = SL(n+ 2; C) and

KGC = SU(n+ 2) , KG = S(U(n+ 1) U(1)) , KP = S(U(n) U(1)) .

Thus the sphere bundle (9) is

S(U(n+ 1) U(1))/ S(U(n) U(1)) // SU(n+ 2)/ S(U(n) U(1))

ζSU
��

SU(n+ 2)/ S(U(n+ 1) U(1)) .

The isotropy group of the SU(n+ 2)-action on the unit tangent sphere bundle of
SU(n + 2)/ S(U(n + 1) U(1)) is S(U(n) U(1)). So ζSU is the unit tangent sphere
bundle of SU(n + 2)/ S(U(n + 1) U(1)) ∼= CP n+1. Thus the Euler class of ζSU is
equal to n + 2 times the fundamental class of CP n+1. By Proposition 6.1, the
assumption of Theorem 1.2 is satisfied in this case.

6.5. The case (G,G/P ) = (Sp(n + 1, 1), S4n+3
∞ ). Note that the codimension is

always odd in this case. We get GC = Sp(n+ 2; C) and

KGC = Sp(n+ 2) , KG = Sp(n+ 1) Sp(1) , KP = Sp(n) Sp(1) .

Thus the sphere bundle (9) is

Sp(n+ 1) Sp(1)/ Sp(n) Sp(1) // Sp(n+ 2)/ Sp(n) Sp(1)

ζSp
��

Sp(n+ 2)/ Sp(n+ 1) Sp(1) .

The isotropy group of the Sp(n+ 2)-action on the unit tangent sphere bundle of
Sp(n + 2)/ Sp(n + 1) Sp(1) is Sp(n). Thus ζSp is the unit tangent sphere bundle
of Sp(n + 2)/ Sp(n + 1) Sp(1) ∼= HP n+1. Hence the Euler class of ζSp is equal to
n+ 2 times the fundamental class of HP n+1. By Proposition 6.1, the assumption
of Theorem 1.2 is satisfied in this case.

6.6. The case (G,G/P ) = (F4(−20), S
15
∞). We recall the explicit presentation of

F4(−20), F4 and FC
4 as automorphism groups of Jordan algebras due to Freuden-

thal [Fre85] and Yokota [Yok75]. We follow Yokota [Yok09]. Let O be the Cayley
algebra over R. Let M(3; O) be the 3 × 3 matrix group with coefficients in O.

Let X∗ = tX, where the bar denotes conjugation in O. Let I ′′1 =
(
−1 0 0

0 1 0
0 0 1

)
,

J (1, 2) = {X ∈M(3; O) | I ′′1X∗I ′′1 = X} ,
J = {X ∈M(3; O) |X∗ = X} ,
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and J C = J ⊗ C. A product ◦ is defined on these R-vector spaces by X ◦ Y =
1
2
(XY + Y X). Endowed with this product, J (1, 2), J and J C are called Jordan

algebras. J can be written as follows:

J =


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 ∈M(3; O)

∣∣∣∣∣ ξi ∈ R, xi ∈ O

 .

Here, F4(−20), F4 and FC
4 are defined as the automorphism groups of these Jordan

algebras:

F4(−20) = {σ ∈ AutR(J (1, 2)) | σ(x ◦ y) = σ(x) ◦ σ(y) } ,
F4 = {σ ∈ AutR(J ) | σ(x ◦ y) = σ(x) ◦ σ(y) } ,
FC

4 = {σ ∈ AutC(J C) | σ(x ◦ y) = σ(x) ◦ σ(y) } .

It is well known that GC = FC
4 and KGC = F4. We will get an explicit form of

the parabolic subgroup P .

Lemma 6.3 (Announced by Borel [Bor50] and proved by Matsushima [Mat52]).

The isotropy group of the F4-action on J at E11 =
(

1 0 0
0 0 0
0 0 0

)
is Spin(9). Thus

the orbit of E11 under the F4-action is the octonionic projective plane OP 2 =
F4/ Spin(9).

Here, OP 2 is given by the following formula [Yok75]:

OP 2 = {X ∈M(3; O) | X2 = X, trX = 1 } .

There is a left G-action on OP 2 defined by (g,X) 7→ gX
tr(gX)

. The orbit of E11

under this G-action is the octonionic hyperbolic plane H2
O = F4(−20)/ Spin(9),

and the boundary ∂H2
O of H2

O in OP 2 is given by

∂H2
O = {X ∈ OP 2 | tr(X ◦ I ′′1X) = 0 } .

Since OP 2 consists of the matrices

X =

ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 ∈ J
such that

ξ2ξ3 = |x1|2 , ξ3ξ1 = |x2|2 , ξ1ξ2 = |x3|2 ,
x2x3 = ξ1x1 , x3x1= ξ2x2 , x1x2 = ξ3x3 ,

ξ1 + ξ2 + ξ3 = 1 ,

a simple calculation shows that tr(X ◦I ′′1X) = 0 is equivalent to ξ1 = 1
2

for points
X ∈ OP 2 as above, obtaining a diffeomorphism

∂H2
O ≈ { (x2, x3) ∈ O2 | |x2|2 + |x3|2 = 1/4 } ;



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
03

CHARACTERISTIC CLASSES OF TRANSVERSELY HOMOGENEOUS FOLIATIONS 23

in particular, ∂H2
O ≈ S15. Then P is the isotropy group of the G-action on ∂H2

O

at X0 =

(
1/2 0 1/2
0 0 0

1/2 0 1/2

)
.

We determine the sphere bundle (9) in this case. Let KG denote the isotropy

group of the F4-action at E22 =
(

0 0 0
0 1 0
0 0 0

)
, which is a maximal compact subgroup of

G isomorphic to Spin(9) by Lemma 6.3. A maximal compact subgroup KP of P is
given by KP = KG∩P . Since the F4-action on J fixes the identity matrix [Yok09,
Lemma 2.2.4] or [Yok75, Lemma 2.3-(1)], KP is equal to the isotropy group

of the Spin(9)-action on J at
(

0 0 1
0 0 0
1 0 0

)
, which is isomorphic to Spin(7) [Yok09,

Theorem 2.7.5] or [Yok75, Remark 6.3]. Thus the sphere bundle (9) is

S15 ∼= Spin(9)/ Spin(7) // F4/ Spin(7)
ζF4 // F4/ Spin(9) .

We will show the following.

Lemma 6.4. ζF4 is diffeomorphic to the unit tangent sphere bundle of F4/ Spin(9).

The orbit K of E11 under the F4-action on J is OP 2 = F4/ Spin(9) by
Lemma 6.3. Let us describe the tangent space TE11K of K at E11.

Lemma 6.5. We have

(15) TE11K =


 0 x3 x2

x3 0 0
x2 0 0

 ∈M(3; O)

∣∣∣∣∣ x2, x3 ∈ O

 .

Proof. Let f4 = Lie(F4). Consider the infinitesimal f4-action ρ : f4 → TE11K at

E11. We get ρ(f4) = TE11K by definition. Let σ =
(

1 0 0
0 −1 0
0 0 −1

)
. Since σ2 = 1,

we obtain an involution σ : f4 → f4 given by σ(X) = σXσ. Then we get a
decomposition f4 = (f4)σ ⊕ (f4)−σ, where (f4)σ is the σ-invariant part and (f4)−σ
is the σ-antiinvariant part. By [Yok09, Theorem 2.9.1] or [Yok90, Theorem 2.4.4],
we get Spin(9) = (F4)σ. By Lemma 6.3, it follows that ρ((f4)σ) = 0. On the other
hand, for X ∈ (f4)−σ, we get σ(X)E11 = σXσE11 = −E11. Thus ρ(f4) = TE11K
is contained in the σ-antiinvariant part (J )−σ of J . Since it is easy to see that
(J )−σ is equal to the right hand side of (15) and dim(J )−σ = dimK, we get the
equality (15). �

We saw that KP is the isotropy group of the adjoint KG-action on

(J )−σ =


 0 x3 x2

x3 0 0
x2 0 0

 ∣∣∣∣∣ x2, x3 ∈ O


at
(

0 0 1
0 0 0
1 0 0

)
. Thus Lemma 6.5 implies that KP is the isotropy group of the KG-

action on TE11K. This proves Lemma 6.4. Hence, according to [Hir49] or [Yok55],
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the Euler class of ζF4 is equal to 3 times the fundamental class of OP 2 by the
cell decomposition of OP 2. So the assumption of Theorem 1.2 is satisfied in this
case.

6.7. A remark on the center. The G-actions on G/P are not effective for
some of the pairs (G,G/P ) considered in Corollary 1.3. In fact, in the case where
G is either (SU(n+ 1, 1), S2n+1

∞ ) or (Sp(n+ 1, 1), S4n+3
∞ ) for even n, the stabilizers

of the G-action on G/P are given by { cIn+2 | c ∈ C×, cn+2 = 1} and {±In+2},
respectively, where they are equal to the centers Z(G) of G. In the other cases
considered in Corollary 1.3, the G-actions on G/P are effective. The quotient of
SU(n + 1, 1) and Sp(n + 1, 1) by the centers are denoted by PSU(n + 1, 1) and
PSp(n+ 1, 1).

The finiteness of Σ(PSU(n+1, 1), S2n+1
∞ ) and Σ(PSp(n+1, 1), S4n+3

∞ ) is proved
like in the cases Σ(SU(n+1, 1), S2n+1

∞ ) and Σ(Sp(n+1, 1), S4n+3
∞ ) of Theorem 1.2.

We only need to notice the following two facts. By the discreteness of Z(G), there
is no difference when we consider their Lie algebras. Since Z(G) is contained in
Z(GC) and KP in both cases, the canonical embedding G/KP → GC/(KP )C is
not changed by taking quotient by Z(G).

7. Bott-Thurston-Heitsch type formulas

7.1. Pittie’s Bott connections. The purpose of Section 7 is to prove Bott-
Thurston-Heitsch type formulas (Theorem 1.9). Section 7.1 is devoted to recall
the Pittie’s construction of a Bott connection for the P/KP -coset foliation FP of
G/KP , where G is semisimple and P is parabolic. It will be used to caluculate
the Godbillon-Vey class of FP in Lie algebra cohomology in Section 7.2. Since
(G,G/P )-foliations are classified by FP in the sense of Proposition 3.9-(ii), this
computation can be applied to (G,G/P )-foliations (Section 7.4). By using the
computation in Section 7.2, we will also show that the Godbillon-Vey class is the
essentially unique nontrivial secondary characteristic class for (G,G/P )-foliations
in Section 7.3.

First we recall the decompositions of the semisimple gC and parabolic pC. Let
h be a Cartan subalgebra of gC contained in pC. Let

gC = h⊕
⊕
α∈Υ

(gC)α

be the root-space decomposition of gC, where Υ is the set of roots. Fix a set
Π of simple roots which additively generate Υ, and let Υ+ be the set of corre-
sponding positive roots. Since a Borel subalgebra contained in pC is conjugate
to the standard Borel subalgebra

⊕
α∈Υ+(gC)α, we can assume that pC contains⊕

α∈Υ+(gC)α. Then there exists a subset Φ of Υ+ such that

(16) pC =
⊕
α∈−Φ

(gC)α ⊕ h⊕
⊕
α∈Υ+

(gC)α .
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Thus, with

r =
⊕

α∈Φ∪(−Φ)

(gC)α ⊕ h , u =
⊕

α∈Υ+\Φ

(gC)α , v =
⊕

α∈Υ+\Φ

(gC)−α ,

we get a decomposition

(17) gC = pC + v = r + u + v .

Here, r is a reductive subalgebra of gC called the Levi part of pC. Note that u
and v are ad r-invariant and nilpotent.

Let F̂PC the right PC-coset foliation of GC. Left invariant complex connections

on the normal bundle νF̂PC of F̂PC are in one-to-one correspondence with C-linear
maps gC → gl(gC/pC; C). Let σ : gC → pC be the projection with respect to the

decomposition (17). Consider the connection ∇̃ on νF̂PC determined by

(18) ∇̃XY = π
(
[(idg−σπ)X, σ(Y )]

)
for X ∈ gC and Y ∈ gC/pC. The connection form Θ of ∇̃C is regarded as an
element of g∗C ⊗ gl(gC/pC; C). Pittie observed that, if we identify gC/pC to v
via the canonical projection, then the connection form Θ of the connection given
by (18) is the Maurer-Cartan form of the adjoint action of pC on v, which is given
by

(19) θij(X) = ηi([X, Yj])

for 1 ≤ i ≤ q, 1 ≤ j ≤ q, where {Yj} is a basis of v and {ηj} is the basis of v∗

dual to {Yj}. Let pu∗∧v∗ denote the composite∧2
g∗C =

∧2
p∗C ⊕ p∗C ∧ v∗ ⊕

∧2
v∗ // p∗C ∧ v∗ // u∗ ∧ v∗

of the projections with respect to the decompositions (16) and (17). Let us denote
the composite

(20) g∗C
d // ∧2

g∗C
pu∗∧v∗// u∗ ∧ v∗

by d̂. The curvature form Ω of Θ is the element of
∧2

g∗C⊗ gl(gC/pC; C) given by
Ω = dΘ−Θ ∧Θ. We will use the following observation of Pittie.

Proposition 7.1 ([Pit79, Proposition 2.1]). d̂Θ = Ω.

This formula is a consequence of the (ad r)-invariance of u and v.
Let Υ+ \Φ = {αi}1≤i≤q. We will use the following observation of Pittie, which

is a direct consequence of the formula (19).

Proposition 7.2 ([Pit79, Theorem 2.3]). ∆FP (h1) = − 1
2π

∑q
i=1 αi.

Pittie observed that −∆FP (c1) is a Kähler form of GC/PC under the identifi-
cation of

∧
u∗ ⊗

∧
v∗ with the left invariant de Rham complex of GC/PC in a

standard way. By using the Lefschetz decomposition of cohomology of Kähler
manifolds, Pittie showed the following.
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Theorem 7.3 ([Pit79, Theorem 3.1]). ∆FP (H•(WOq)) is linearly spanned by
the Pontryagin classes and

{
∆FP (h1hIc

q
1) | I ⊆ {3, 5, . . . , [q]}

}
, where [q] is the

maximal odd number less than q + 1.

7.2. Computation in Lie algebra cohomology.

7.2.1. The case (G,G/P ) = (SL(q + 1; R), Sq). Let q′ = q + 1. In this case, pC
and v are the subalgebras of gC = sl(q′; C) consisting of the matrices of the form

∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 and


0 0 · · · 0
∗ 0 · · · 0
...

...
. . .

...
∗ 0 · · · 0

 ,

respectively. Let Eij be the element of gC with 1 at the (i, j)-th entry and 0
at the other entries. Let E∨ij be the dual of Eij. In this case, {E1j}2≤j≤q′ is a
basis of v. Let Θ = (θij)2≤i,j≤q′ be the matrix presentation of Θ with respect to
{E1j}2≤j≤q′ . From [Ekh, Elj] = δhlEkj − δjkElh and E∨ji(Ekh) = δjkδih, we get

θij(Ekh) = E∨1i([Ekh, E1j]) = δh1δ1kδij − δjkδih .
Then

Θ = (θij)2≤i,j≤q′ =


E∨22 − E∨11 E∨32 · · · E∨q′2

E∨23 E∨33 − E∨11 · · · E∨q′3
...

...
. . .

...
E∨2q′ E∨3q′ · · · E∨q′q′ − E∨11

 .

By observing that
∑q′

i=1E
∨
ii = 0 on g∗C, we get

∆FP (h1) =
1

2π
tr Θ =

1

2π

q′∑
i=2

(E∨ii − E∨11) = − q′

2π
E∨11 ,

∆FP (c1) = d∆FP (h1) =
q′

2π

q′∑
k=2

E∨1k ∧ E∨k1 .

Note that Θ equals the Maurer-Cartan form ΘMC = (E∨ij)2≤i,j≤q′ of sl(q; C) mod-
ulo ∆FP (h1). Thus

∆FP (h1c
q
1) = −(q′)q+1 q′!

(2π)q+1
E∨11 ∧

q′∧
k=2

E∨1k ∧ E∨k1 ,(21)

∆FP (h1hIc
q
1) = ∆FP (h1c

q
1)hI(ΘMC) .(22)

We will use these formulas to give an alternative proof of Theorem 1.1. Heitsch
obtained more general formulas of this type for secondary characteristic classes
of the form hIcJ by the application of his residues formulas ([Hei78, Theorem 4.2]
and [Hei83, Theorem 2.3]).
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7.2.2. The case (G,G/P ) = (SO(n+ 1, 1), Sn∞). Note that Yamato [Yam75] also
made computation of characteristic classes of this case in a different way. Let
n′ = n+ 1 and n′′ = n+ 2. Let

(23) I ′n′′ =

 0 0 −1
0 In 0
−1 0 0

 ∈ gl(n′′; R) ,

where In is the n × n identity matrix. We use the following description of g =
so(n+ 1, 1):

g =
{
X ∈ gl(n′′; R) | tXI ′n′′ + I ′n′′X = 0

}
=


a u 0
tv A tu
0 v −a

 ∈ gl(n′′; R)

∣∣∣∣∣ a ∈ R, A ∈ so(n; R), u, v ∈ Rn

 .

Since e1 =

(
1
0
...
0

)
is a vector in the light cone, we get

p = {X ∈ g | ∃a ∈ R so that Xe1 = ae1 }

=


a u 0

0 A tu
0 0 −a

 ∈ gl(n′′; R)

∣∣∣∣∣ a ∈ R, A ∈ so(n; R), u ∈ Rn

 .

Then

gC =


a u 0
tv A tu
0 v −a

 ∈ gl(n′′; C)

∣∣∣∣∣ a ∈ C, A ∈ so(n; C), u, v ∈ Cn

 ,

pC =


a u 0

0 A tu
0 0 −a

 ∈ gl(n′′; C)

∣∣∣∣∣ a ∈ C, A ∈ so(n; C), u ∈ Cn

 ,

v =


 0 0 0
tv 0 0
0 v 0

 ∈ gl(n′′; C)

∣∣∣∣∣ v ∈ Cn

 .

Let

a = E11 − En′′n′′ , vj = Ej1 + En′′j , Akh = Ekh − Ehk .
Then we get a basis

(24) {vj}2≤j≤n′ ∪ {a} ∪ {tvj}2≤j≤n′ ∪ {Akh}2≤k<h≤n′

of gC. Here {vj}2≤j≤n′ is a basis of v and {a} ∪ {tvj}2≤j≤n′ ∪ {Akh}2≤k<h≤n′ is a
basis of pC. We get

[a, vj] = −vj , [tvi, vj] = δija , [Akh, vj] = δjhvk − δjkvh .
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For z ∈ gC, let z∨ ∈ g∗C denote the dual of z with respect to the basis (24). Since
θij(X) = v∨i ([X, vj]) for X ∈ pC, it follows that

θij(a) = −δij , θij(
tvl) = 0 , θij(Akh) = δjhδik − δjkδih .

Thus

Θ = (θij) =


−a∨ A∨32 · · · A∨n′2

A∨23 −a∨ ...
...

. . . A∨n′n
A∨2n′ · · · A∨nn′ −a∨

 .

Since d̂(a∨) = −
∑n

k=2
tv∨k ∧ v∨k and d̂A∨kh = 0 (see (20) for the definition of d̂),

Proposition 7.1 implies

Ω =


∑n′

k=2
tv∨k ∧ v∨k 0 · · · 0

0
∑n′

k=2
tv∨k ∧ v∨k

...
...

. . . 0

0 · · · 0
∑n′

k=2
tv∨k ∧ v∨k

 .

We get

(25) ∆FP (h1c
n
1 ) = − nn+1n!

(2π)n+1
a∨ ∧

n+1∧
k=2

tv∨k ∧ v∨k .

The Godbillon-Vey class of FP is given by this formula and the well known
relation GV(FP ) = (2π)n+1∆FP (h1c

n
1 ) [KT75a, Theorem 7.20]. Later, in Propo-

sition 7.4, we will show that any other nontrivial secondary characteristic class
is a multiple of the Godbillon-Vey class by using (25). To be used later in the
proof of Theorem 1.9, we state also the following equation:

(26) ∆FP (h1c
n
1 ) =

(−1)
n(n−1)

2
+1nn+1n!

22n+1πn+1
a∨ ∧

n+1∧
k=2

(tv∨k + v∨k ) ∧
n+1∧
k=2

(v∨k − tv∨k ) .

To derive (26) from (25), we note that

(27) sign

(
1 2 3 · · · m m+ 1 m+ 2 · · · 2m− 1 2m
1 3 5 · · · 2m− 1 2 4 · · · 2m− 2 2m

)
=
m(m− 1)

2
.

7.2.3. The case (G,G/P ) = (SU(n+1, 1), S2n+1
∞ ). Let n′ = n+1 and n′′ = n+2.

Let I ′n′′ be the matrix given by (23). We use the following description of g =
su(n′, 1):

g =
{
X ∈ sl(n′′; C) | tXI ′n′′ + I ′n′′X = 0

}
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=


 a u

√
−1c

tv A tu√
−1g v −a

 ∈ sl(n′′; C)

∣∣∣∣∣ a ∈ C, c, g ∈ R,
A ∈ u(n), u, v ∈ Cn

 .

Since e1 =

(
1
0
...
0

)
is a vector in the light cone, we get

p = {X ∈ g | ∃a ∈ C so that Xe1 = ae1 }

=

{a u
√
−1c

0 A tu
0 0 −a

 ∈ sl(n′′; C)

∣∣∣∣∣ a ∈ C, c ∈ R,
A ∈ u(n), u ∈ Cn

}
.

Then gC = sl(n′′; C), and

pC =


a1 u1 c

0 A tu2

0 0 a2

 ∈ sl(n′′; C)

∣∣∣∣∣ a1, a2, c ∈ C, u1, u2 ∈ Cn,
A ∈ gl(n; C)

 ,

v =


 0 0 0
tv1 0 0
g v2 0

 ∈ sl(n′′; C)

∣∣∣∣∣ g ∈ C, v1, v2 ∈ Cn

 .

We can compute Θ and Ω like in the last case. But here we compute only the
Godbillon-Vey class of FP . By using the computation, we will see that any
other nontrivial secondary characteristic classes are multiples of the Godbillon-
Vey class (Proposition 7.4). We will apply Proposition 7.2 to compute ∆FP (h1).
As a Cartan subalgebra h, we take the subalgebra of gC consisting of diagonal
matrices. As a basis of v consisting of root vectors, we can take {Ek1}2≤k≤n′ ∪
{En′′1} ∪ {En′′k}2≤k≤n′ . For a root vector z ∈ gC, let z∨ ∈ g∗C be the element
such that z∨(z) = 1 and z∨(z′) = 0 for any z′ ∈ h and any root vector z′

which is linearly independent of z. The root of Eij is given by E∨ii − E∨jj. Thus
Proposition 7.2 implies

∆FP (h1) =
1

2π

(
E∨n′′n′′ − E∨11 +

n′∑
k=2

(E∨kk − E∨11) +
n′∑
k=2

(E∨n′′n′′ − E∨kk)
)

= − n
′

2π
(E∨11 − E∨n′′n′′) .

So

∆FP (c1) = d
(
∆FP (h1)

)
=
n′

2π

(
n′′∑
k=2

E∨1k ∧ E∨k1 +
n′∑
k=1

E∨kn′′ ∧ E∨n′′k

)
.

Thus we get the following formula:

(28) ∆FP (h1c
2n+1
1 ) = −2(n′)2n+2(2n+ 1)!

(2π)2n+2
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× (E∨11 − E∨n′′n′′) ∧
n′′∧
k=2

(E∨1k ∧ E∨k1) ∧
n′∧
k=2

(E∨kn′′ ∧ E∨n′′k) .

The Godbillon-Vey class of FP is given by this formula and the well known
relation GV(FP ) = (2π)2n+2∆FP (h1c

2n+1
1 ) [KT75a, Theorem 7.20]. Later, in

Proposition 7.4, we will show that any other nontrivial secondary characteristic
class of transversely spherical CR foliations is a multiple of the Godbillon-Vey
class by using (28). To use later for the proof of Theorem 1.9, we state also the
following direct consequence of (28) and (27):

(29) ∆FP (h1c
2n+1
1 ) = (−1)n+1 2(n′)2n+2(2n+ 1)!

22n+1(2π)2n+2

× (E∨11 − E∨n′′n′′) ∧
n′′∧
k=2

(E∨1k + E∨k1) ∧
n′∧
k=2

(E∨kn′′ + E∨n′′k)

∧
n′′∧
k=2

(E∨k1 − E∨1k) ∧
n′∧
k=2

(E∨n′′k − E∨kn′′) .

7.2.4. The case (G,G/P ) = (Sp(n+ 1, 1), S4n+3
∞ ). Let n′ = n+ 1 and n′′ = n+ 2.

Let

J ′ =

(
0 I ′n′′
−I ′n′′ 0

)
,

where I ′n′′ is the matrix given by (23). We use the following description of g =
sp(n′, 1):

g =

{
X =

(
Z1 Z2

Z3 Z4

)
∈ gl(2n′′; C)

∣∣∣∣∣ tXJ ′ + J ′X = 0,
Z4 = Z1, Z2 = −Z3

}
.

Here,

p = {X ∈ g | ∃s, t ∈ C so that Xe1 = se1 + ten′′+1 } ,
where ei is the i-th standard unit vector of C2n′′ . Thus p consists of the matrices
of the form: 

a b
√
−1c d f g

0 A tb 0 B −tf
0 0 −a 0 0 d
−d −f −g a b −

√
−1c

0 −B tf 0 A tb
0 0 −d 0 0 −a

 ,

where c ∈ R, a, e ∈ C, b, d ∈ Cn, A ∈ sl(n; C) with A = tA, and B ∈ u(n). We
get

gC = sp(n′′; C) =
{
X ∈ gl(2n′′; C) | tXJ ′ + J ′X = 0

}
,
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which consists of the matrices of the form

X =

(
Z1 Z2

Z3 Z4

)
∈ gl(2n′′; C)

such that

tZ1I
′
n′′ + I ′n′′Z4 = −tZ3I

′
n′′ + I ′n′′Z3 = −tZ2I

′
n′′ + I ′n′′Z2 = 0 .

Then pC is the subalgebra of gC consisting of the matrices
a1 b1 c d1 f1 g1

0 A tb2 0 B1 −tf 1

0 0 a2 0 0 d1

d2 f2 g2 −a2 b2 −tc
0 B2 −tf 2 0 −tA tb1

0 0 d2 0 0 −a1

 ,

where a1, a2, c, f1, f2, g1, g2 ∈ C, b1, b2, d1, d2 ∈ Cn, A ∈ sl(n; C) and B1, B2 ∈
u(n). Let h be a Cartan subalgebra of gC with the following basis:

(30) {E11 − E2n′′ 2n′′} ∪ {Ekk − En′′+k n′′+k}2≤k≤n′ ∪ {En′′ n′′ − En′′+1n′′+1} .

Thus v consists of the matrices
0 0 0 0 0 0
tu1 0 0 −tx1 0 0
v u2 0 y1 x1 0
0 0 0 0 0 0
−tx2 0 0 tu2 0 0
y2 x2 0 −v u1 0

 ,

where v, y1, y2 ∈ C and u1, u2, x1, x2 ∈ Cn.
Here, we compute the Godbillon-Vey class like in the last example by using

Proposition 7.2. Later, by using the computation, we will see any other non-
trivial secondary characteristic class is a multiple of the Godbillon-Vey class (see
Proposition 7.4). As a basis of v consisting of root vectors, take

u1,k = Ek 1 + E2n′′ n′′+k , 2 ≤ k ≤ n′ ,

u2,k = En′′ k + En′′+k n′′+1 , 2 ≤ k ≤ n′ ,

v = En′′ 1 − E2n′′ n′′+1 ,

x1,k = −Ek n′′+1 + En′′ n′′+k , 2 ≤ k ≤ n′ ,

y1 = En′′ n′′+1 ,

x2,k = −En′′+k 1 + E2n′′ k , 2 ≤ k ≤ n′ ,

y2 = E2n′′ 1 .
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32 JESÚS A. ÁLVAREZ LÓPEZ AND HIRAKU NOZAWA

Let {γi}1≤i≤n′′ be the basis of h∗ dual to (30). The roots corresponding to these
vectors are given as follows:

u1,k u2,k v x1,k y1 x2,k y2

−γ1 + γk −γk + γn′′ −γ1 + γn′′ γk + γn′′ 2γn′′ −γ1 − γk −2γ1

Here, 2 ≤ k ≤ n′. Thus, by Proposition 7.2,

(31) ∆FP (h1) = −2n+ 3

2π
(γ1 − γn′′) .

For a root vector z ∈ gC, let z∨ ∈ g∗C be determined by z∨(z) = 1 and z∨(z′) = 0
for any z′ ∈ h and any root vector z′ which is linearly independent of z. We have

d̂γ1 = −
n′∑
k=2

(tu∨1,k ∧ u∨1,k)− (tv∨ ∧ v∨)−
n′∑
k=2

(tx∨2,k ∧ x∨2,k)− (ty∨2 ∧ y∨2 ) ,

d̂γn′′ = (tv∨ ∧ v∨) +
n′∑
k=2

(tu∨2,k ∧ u∨2,k) + (ty∨1 ∧ y∨1 ) +
n′∑
k=2

(tx∨1,k ∧ x∨1,k)

(see (20) for the definition of d̂). Let ζ be the standard symplectic form on u⊕ v
defined by

ζ =
n′∑
k=2

(tu∨1,k ∧ u∨1,k) + 2(tv∨ ∧ v∨) +
n′∑
k=2

(tx∨2,k ∧ x∨2,k) + (ty∨2 ∧ y∨2 )

+
n′∑
k=2

(tu∨2,k ∧ u∨2,k) + (ty∨1 ∧ y∨1 ) +
n′∑
k=2

(tx∨1,k ∧ x∨1,k) .

Then

(32) ∆FP (c1) = d
(
∆FP (h1)

)
=

2n+ 3

2π
ζ .

By (31) and (32), we obtain the following formula of the Godbillon-Vey class:

(33) ∆FP (h1c
4n+3
1 ) = −(2n+ 3)4n+4

24n+4π4n+4
(γ1 − γn′′) ∧ ζ4n+3 .

This formula gives the Godbillon-Vey class of FP by the well known relation
GV(FP ) = (2π)4n+4∆FP (h1c

4n+3
1 ) [KT75a, Theorem 7.20]. Later, in Proposi-

tion 7.4, we will show that any other nontrivial secondary characteristic class
of (Sp(n + 1, 1), S4n+3)-foliations is a multiple of the Godbillon-Vey class by us-
ing (33). To use later for the proof of Theorem 1.9, we also state the following
direct consequence of (33) and (27):

(34) ∆FP (h1c
4n+3
1 )

=
(2n+ 3)4n+4(4n+ 3)!

28n+6π4n+4
(γ1 − γn′′) ∧

∧
z

(tz∨ + z∨) ∧
∧
z

(z∨ − tz∨) ,
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where z runs in

{u1,k}2≤k≤n′ ∪ {u2,k}2≤k≤n′ ∪ {x1,k}2≤k≤n′ ∪ {x2,k}2≤k≤n′ ∪ {y1, y2, v}
in this order.

7.2.5. The case (G,G/P ) = (F4(−20), S
15
∞). Here, we refer to [Yok09, Section 2.6]

for the structure of fC4 = Lie(FC
4 ). The Dynkin diagram of the Lie algebra fC4 is:

(35)
c
α1

c
α2

>c
α3

c
α4

,

where the roots {αi}1≤i≤4, for a standard choice of a Cartan subalgebra h =⊕3
i=0 CHi, are given by

α1 = λ0 − λ1 , α2 = λ1 − λ2 , α3 = λ2 , α4 =
1

2
(−λ0 − λ1 − λ2 + λ3) ,

where λi = B(·, Hi) with respect to the Killing form B of fC4 . The list of positive
roots of fC4 for this simple root system is given by

λ0 = α1 + α2 + α3 , λ1 = α2 + α3 ,

λ2 = α3 , λ3 = α1 + 2α2 + 3α3 + 2α4 ,

λ0 − λ1 = α1 , λ0 − λ2 = α1 + α2 ,

−λ0 + λ3 = α2 + 2α3 + 2α4 , λ1 − λ2 = α2 ,

−λ1 + λ3 = α1 + α2 + 2α3 + 2α4 , −λ2 + λ3 = α1 + 2α2 + 2α3 + 2α4 ,

λ0 + λ1 = α1 + 2α2 + 2α3 , λ0 + λ2 = α1 + α2 + 2α3 ,

λ0 + λ3 = 2α1 + 3α2 + 4α3 + 2α4 , λ1 + λ2 = α2 + 2α3 ,

λ1 + λ3 = α1 + 3α2 + 4α3 + 2α4 , λ2 + λ3 = α1 + 2α2 + 4α3 + 4α4 ,
1
2
(λ0 + λ1 + λ2 + λ3) = α1 + 2α2 + 3α3 + α4 ,

1
2
(−λ0 − λ1 − λ2 + λ3) = + α4 ,
1
2
(λ0 + λ1 − λ2 + λ3) = α1 + 2α2 + 2α3 + α4 ,

1
2
(λ0 − λ1 + λ2 + λ3) = α1 + α2 + 2α3 + α4 ,

1
2
(−λ0 − λ1 + λ2 + λ3) = α3 + α4 ,

1
2
(−λ0 + λ1 − λ2 + λ3) = α2 + α3 + α4 ,
1
2
(λ0 − λ1 − λ2 + λ3) = α1 + α2 + α3 + α4 ,

1
2
(−λ0 + λ1 + λ2 + λ3) = α2 + 2α3 + α4 .

As mentioned in Section 6.6, the semisimple part of the Levi part of pC is
so(7; C), whose Dynkin diagram is:c c >c .

According to the Dynkin diagram (35) of fC4 , the unique possibility of Φ ∩ Π
in (16) is {α1, α2, α3}. Then v is spanned by the 15 negative roots that are not
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generated by {−α1,−α2,−α3}, whose sum is −11λ3, as can be computed by using
the above list of positive roots. By Proposition 7.2, we get ∆FP (h1) = − 11

2π
λ3.

Take root vectors {Eα}α∈Υ so that B(Eα, E−α) = 1 for the Killing form B of
fC4 . For α ∈ Υ, let Hα be the element of h such that B(H,Hα) = α(H) for any
H ∈ h. By Proposition 7.1 and since

dλ3(Eα, E−α) = −B(Eα, E−α)λ3(Hα) = −λ3(Hα) ,

we get

∆FP (c1) = d∆FP (h1) =
11

2π

∑
α∈Υ+\Φ

λ3(Hα)E∨α ∧ E∨−α .

By using B(
∑4

i=1 λiHi,
∑4

j=1 λ
′
jHj) = 18

∑4
i=1 λiλ

′
i, we can compute λ3(Hα) in

terms of the above list of positive roots of fC4 . Then we get the following formula
of the Godbillon-Vey class:

(36) ∆FP (h1c
15
1 ) = −1116 1815 15!

224π16
λ3 ∧

∧
α∈Υ+\Φ

E∨α ∧ E∨−α .

This formula gives GV(FP ) by the well known relation GV(FP )=(2π)16∆FP (h1c
15
1 )

[KT75a, Theorem 7.20]. In Proposition 7.4, we will show that any other nontriv-
ial secondary characteristic class of (F4(−20), S

15
∞)-foliations is a multiple of the

Godbillon-Vey class by using (36). To be used later in the proof of Theorem 1.9,
we also state the following direct consequence of (36) and (27):

(37) ∆FP (h1c
15
1 )

=
1116 330 15!

224π16
λ3 ∧

∧
α∈Υ+\Φ

(E∨α + E∨−α) ∧
∧

α∈Υ+\Φ

(E∨−α − E∨α ) .

7.3. The Godbillon-Vey class spans the secondary characteristic classes.
We assume that (G,G/P ) is equal to (SO(n + 1, 1), Sn∞), (SU(n + 1, 1), S2n+1

∞ ),
(Sp(n + 1, 1), S4n+3

∞ ) or (F4(−20), S
15
∞). In the last section, we saw that the

Godbillon-Vey class of FP is nontrivial, being given by a volume form on G/KP .
By using the computation, we will prove the following result in this section.

Proposition 7.4. ∆F(H•(WOq)) is spanned by the Godbillon-Vey class ∆F(h1c
q
1)

for any (G,G/P )-foliation F of M .

Recall that the secondary characteristic classes of the form ∆FP (hIcJ) with
nonempty I are called exotic. First, we observe the following.

Lemma 7.5. Every nontrivial exotic secondary characteristic class of FP is a
multiple of the Godbillon-Vey class ∆FP (h1c

q
1) in H•(g, KP ).

Proof. Note that deg hIcJ ≥ 2q+ 1 for any hIcJ in WOq with nonempty I. Since
(G,G/P ) is (SO(n + 1, 1), Sn∞), (SU(n + 1, 1), S2n+1

∞ ), (Sp(n + 1, 1), S4n+3
∞ ) or

(F4(−20), S
15
∞), we have G/KP = 1 + 2 dimG/P . Then ∆FP (hIcJ) = 0 for any
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hIcJ in WOq with deg hIcJ > 2q + 1, and ∆F(hIcJ) is a multiple of a volume
form on G/KP for any hIcJ in WOq with deg hIcJ = 2q+1. Since the Godbillon-
Vey class is represented by a volume form on G/KP by (25), (28), (33) and (36),
the proof is concluded. �

For the Pontryagin classes, an argument similar to Heitsch [Hei86, Section 4]
for transversely projective foliations implies the following.

Lemma 7.6. For any (G,G/P )-foliation F of M , the Pontryagin classes of νF
are zero in H•(M).

Proof. Let T0(G/KG) be the complement of the zero section of the total space
of the tangent bundle of G/KG. Since G/KP is G-equivariantly diffeomorphic to
the total space of the unit tangent bundle of G/KG in these cases as mentioned
in Section 6, we identify G/KP as a submanifold of T0(G/KG). We have a G-
equivariant contraction γ : T0(G/KG) → G/KP . Let ρ : T0(G/KG) → G/KG be
the projection. Consider the vector bundle [ker ρ∗ on T0(G/KG) consisting of
vertical vectors. Let E = (ker ρ∗)|G/KP . We have νFP ⊕Rγ = E, where Rγ is the
trivial vector bundle of rank one over G/KP spanned by vectors tangent to the
fibers of γ. Here, E has a G-invariant flat connection ∇′ induced from the vector
bundle structure of ker ρ∗. Thus, the total Pontryagin form p(E,∇′) of (E,∇′)
is zero.

Let M̃ be the universal cover of M and d̂ev : M̃ → G/KP be a π1M -equivariant

map such that F̃ = d̂ev
∗
FP , where F̃ is the lift of F to M̃ (see Proposition 3.9).

By the π1M -equivariance of d̂ev, the vector bundles d̂ev
∗
Rγ and d̂ev

∗
E over M̃

descend to vector bundles overM , which are denoted by RM and EM , respectively.
Since EM admits a flat connection by construction, the total Pontryagin class
p(EM) of EM is 0. By νF⊕RM = EM and the product formula of total Pontryagin
classes, we get p(νF) = p(EM) = 0. �

Proposition 7.4 is a consequence of Lemmas 7.5 and 7.6 and Theorem 4.3.

7.4. Proof of Bott-Thurston-Heitsch type formulas.

7.4.1. The volume of flat G/KG-bundles. Here, we recall the definition of the
characteristic classes of G/KG-bundles with flat G-connections. For a G/KG-
bundle pQ : Q→ N with a flat G-connection whose holonomy homomorphism is
h : π1N → G, we have the Chern-Weil homomorphism H•(g, KG) → H•(Q; R).
The sections s of pQ are unique up to isotopy because of the contractibility of
G/KG. By composing the pull-back by s with the Chern-Weil homomorphism,
we get a map H•(g, KG) → H•(N ; R). Since this map depends only on h, we
denote it by Ξh.

We fix an orientation on G/KG. Let ωG/KG be the corresponding left invariant
volume form on G/KG of norm 1 with respect to the metric obtained from the
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Killing metric on g. Let volG/KG = [ωG/KG ] and

vol(h) = Ξh(volG/KG) ∈ Hm(N ; R) ,

where m = dimG/KG. The class vol(h) is called the volume of Q or of the
holonomy presentation h.

Example 7.7. For the case where N = Γ\G/KG for a torsion-free uniform lattice
Γ of G, the volume of Γ ↪→ G is denoted by vol(Γ), which is represented by the
volume form on N induced from ωG/KG .

Remark 7.8. Ξh is called the Borel regulator map by algebraic geometers. For the
importance of the volume in algebraic geometry, see [Rez96] and the references
therein.

7.4.2. Bott-Thurston-Heitsch type formulas for homogeneous foliations. We ap-
ply the computation of the last section to calculate the Godbillon-Vey classes
of homogeneous foliations FΓ in Example 2.3. We consider the KG/KP -bundle
φKG : Γ\G/KP → Γ\G/KG. In the next proposition, we will need orientations of
the fibers of φKG and of G/KG to define the fiber integration along φKG and to
determine a volume form ωG/KG on Γ\G/KG. In the proof, we will take these ori-
entations by using the decomposition of the volume form of G/KP into a volume
form of G/KG and a fiberwise volume form of φKG .

Proposition 7.9. Let (G,G/P ) be one of (SO0(n+1, 1), Sn∞),(SU(n+1, 1),S2n+1
∞ ),

(Sp(n+ 1, 1), S4n+3
∞ ) or (F4(−20), S

15
∞). Let q = dimG/P (the codimension of FΓ).

We have  
φKG

∆FΓ
(h1c

q
1) = cG ωG/KG(38)

in Ωq+1(Γ\G/KG) for some orientations of G/KG and of the fibers of φKG, where
cG is the constant depending on (G,G/P ) given by the following table:

(G,G/P ) cG

(SO0(n+ 1, 1), Sn∞)
(−1)

n(n−1)
2

+1n
n+1

2 n! vol(Sn)

2
3n+3

2 πn+1

(SU(n+ 1, 1), S2n+1
∞ )

(−1)n+1(n+ 1)2n+2(2n+ 1)! vol(S2n+1)

2n+1π2n+2(n+ 2)n+1

(Sp(n+ 1, 1), S4n+3
∞ )

(2n+ 3)4n+4(4n+ 3)! vol(S4n+3)

26n+ 11
2 π4n+4(n+ 3)2n+2

(F4(−20), S
15
∞)

3
35
2 74 1116 15! vol(S15)

26π16
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Here, vol(Sq) is the volume of the unit sphere in Rq+1, given by vol(Sq) =
(2π)(q+1)/2

2·4···(q−1)
for odd q and vol(Sq) = 2(2π)q/2

1·3···(q−1)
for even q.

Proof. Consider the case where (G,G/P ) = (SO0(n+ 1, 1), Sn∞). We will use the
notation of Sections 7.2.2. Let kG = kP ⊕ m be the orthogonal decomposition
with respect to the Killing metric. Regarding g as a subalgebra of gl(n + 2; R)
like in Section 7.2.2, kG and m are realized as

kG = {A ∈ g | A = −A∗} ,(39)

m =
{(

0 −x 0
tx 0 −tx
0 x 0

)
∈ gl(n+ 2; R)

∣∣∣x ∈ Rn
}
.(40)

By (26), GV(FP ) is a wedge product of two components; the first component
is a wedge product of Hermitian matrices and the second is a wedge product
of skew-Hermitian matrices. By using (39), it is easy to see that the first part
a∨ ∧

∧n+1
k=2(tv∨k + v∨k ) is KG-basic; namely, it is the pull-back of a volume form

on G/KG by the projection φKG : G/KP → G/KG. We orient G/KG with this
volume form. Since the Killing metric Bθ of gC is given by Bθ(X, Y ) = n tr(XY ∗),
the norm of a∨ and tv∨k + v∨k are 1√

2n
and 1√

n
, respectively. Thus, letting ωG/KG

be the volume form on G/KG defining the same orientation and of norm 1 with
respect to the Killing metric, we get

(41) a∨ ∧
n+1∧
k=2

(tv∨k + v∨k ) =
1

√
2n

n+1
2

φ∗KGωG/KG .

Recall that KG
∼= SO(n + 1). We consider the standard SO(n + 1)-action on

Rn+1 so that the orbit of the first fundamental vector e1 is Sn. We can identify m
with Te1S

n by the infinitesimal action. Under this identification, the second part∧n+1
k=2(tv∨k − v∨k ) of the right hand side of (26) gives the invariant volume form

on Sn of norm 2n/2 with respect to the standard metric on Rn+1. We orient the
Sn-fibers of φKG with this volume form. Then, by (41), we get

(42)

 
a∨ ∧

n+1∧
k=2

(tv∨k + v∨k ) ∧
n+1∧
k=2

(tv∨k − v∨k ) =
2
n−1

2 vol(Sn)

n
n+1

2

ωG/KG .

Here, (38) in the case where (G,G/P ) = (SO0(n + 1, 1), Sn∞) follows from (26)
and (42).

In the case where (G,G/P ) = (SU(n + 1, 1), S2n+1
∞ ) or (Sp(n + 1, 1), S4n+3

∞ ),
Equation (38) is proved in a way similar to the last case of (G,G/P ) = (SO0(n+
1, 1), Sn∞) by using (29) and (34). We will use the notation in Sections 7.2.3
and 7.2.4. The right hand sides of (29) and (34) are wedge products of two parts;
the first one is a wedge product of Hermitian matrices and the second one is
a wedge product of skew-Hermitian matrices. Regarding g as a subalgebra of
gl(n + 2; C) (resp., gl(2n + 4; C)) as in Section 7.2.3 (resp., 7.2.4), (39) is true.
Then, we can easily see that the first part is KG-basic. So we orient G/KG with
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the corresponding volume form on G/KG like in the last case. The Killing metric
Bθ of gC is given by Bθ(X, Y ) = 2(n+2) tr(XY ∗) (resp., 4(n+3) tr(XY ∗)) for the
case where (G,G/P ) is (SU(n+ 1, 1), S2n+1

∞ ) (resp., (Sp(n+ 1, 1), S4n+3
∞ )). Thus,

letting ωG/KG be the volume form on G/KG of compatible orientation and of
norm 1 with respect to the Killing metric of g, we get the equation corresponding
to (41):

(43) (E∨11 − E∨n′′n′′) ∧
n′′∧
k=2

(E∨1k + E∨k1) ∧
n′∧
k=2

(E∨kn′′ + E∨n′′k)

=
1

(n+ 2)n+1
φ∗KGωG/KG

for the case where (G,G/P ) = (SU(n+ 1, 1), S2n+1
∞ ) and

(44) (γ1 − γn′′) ∧
∧
z

(tz∨ + z∨) =
1

24n+3(n+ 3)2n+2
φ∗KGωG/KG

for the case where (G,G/P ) = (Sp(n+ 1, 1), S4n+3
∞ ), where z runs in

(45) {u1,k}2≤k≤n′ ∪ {u2,k}2≤k≤n′ ∪ {x1,k}2≤k≤n′ ∪ {x2,k}2≤k≤n′ ∪ {y1, y2, v}

in this order. We embed KG/KP into Cn+1 (resp., Hn+1) as the standard unit
sphere. The orthogonal complement m of kP in kG is also described in a way similar
to (40). Like in the case of (G,G/P ) = (SO0(n + 1, 1), Sn∞), the second part of
the right hand side of (29) (resp., (34)) is a volume form on S2n+1 (resp., S4n+3).
So we orient the fibers of G/KG with this volume form. Taking into account the
structure of the Hopf fibration S1 → S2n+1 → CP n (resp., S3 → S4n+3 → HP n),
we see that, under the identification of m and the tangent space of S2n+1 (resp.,
S4n+3), the norm of the invariant multivector fields

n′′∧
k=2

(E1k − Ek1) ∧
n′∧
k=2

(Ekn′′ − En′′k)

(resp.,
∧
z(
tz − z), where z runs in (45)) with respect to the standard metric on

the standard unit sphere in Cn+1 (resp., Hn+1) is 2n (resp., 22n+ 1
2 ). By using the

pairing of invariant volume forms on KG/KP with the above multivector fields,
we see that

n′′∧
k=2

(E∨1k − E∨k1) ∧
n′∧
k=2

(E∨kn′′ − E∨n′′k)

(resp.,
∧
z(
tz∨−z∨), where z runs in (45)) is the invariant volume form on KG/KP

with norm with respect to the standard metric is 23n+1 (resp., 26n+ 7
2 ). Thus,

by (43) or (44), we get the equation corresponding to (41) in each case:
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(46)

 
(E∨11 − E∨n′′n′′) ∧

n′′∧
k=2

(E∨1k + E∨k1) ∧
n′∧
k=2

(E∨kn′′ + E∨n′′k)

∧
n′′∧
k=2

(E∨1k − E∨k1) ∧
n′∧
k=2

(E∨kn′′ − E∨n′′k) =
23n+1 vol(S2n+1)

(n+ 2)n+1
ωG/KG

for the case where (G,G/P ) = (SU(n+ 1, 1), S2n+1
∞ ) and

(47)

 
(γ1 − γn′′) ∧

∧
z

(tz∨ + z∨) ∧
∧
z

(tz∨ − z∨) =
22n+ 1

2 vol(S4n+3)

(n+ 3)2n+2
ωG/KG

for the case where (G,G/P ) = (Sp(n + 1, 1), S4n+3
∞ ), where z runs in (45) in

the given order. Then (38) for the case where (G,G/P ) = (SU(n + 1, 1), S2n+1
∞ )

(resp., (Sp(n+ 1, 1), S4n+3
∞ )) follows from (46) and (29) (resp., (47) and (34)).

In the case where (G,G/P ) = (F4(−20), S
15
∞), GV(FP ) is divided into two parts

in a similar way to the other cases. We will use the notation of Section 7.2.5. We
orient G/KG and the fibers of φKG in a way similar to the other cases using the

first and second components of (37). By Bθ(H3, H3) =
√

18 and Bθ(Eα, Eα) = 1,
letting ωG/KG be a volume form on G/KG of compatible orientation and of norm
1 with respect to the Killing metric, we get the equation corresponding to (41):

(48) λ3 ∧
∧

α∈Υ+\Φ

(E∨α + E∨−α) =
27

3
φ∗KGωG/KG .

The computation of the norm of
∧
α∈Υ+\Φ(E∨α − E∨−α) as an invariant volume

form on S15
∞ is more complicated, reflecting the structure of the KG-action on

S15
∞ . Recall that KG = Spin(9) and KP is a subgroup of Spin(9) isomorphic to

Spin(7) (Section 6.6). Let so(9)C = so(8)C⊕m1 (resp., so(8)C = (kP )C⊕m2) be a
decompositions as an so(8)C-module (resp., (kP )C-module). Here m1⊕m2, m1 and
m2 are identified with the tangent space of KG/KP ≈ S15, Spin(9)/ Spin(8) ≈
S8 and Spin(8)/KP ≈ S7 at a point, respectively. Here so(9)C and so(8)C are
spanned by the root vectors Eα of fC4 used in Section 7.2.5, because the Cartan
subalgebra h = ⊕4

i=1CHi of fC4 used in Section 7.2.5 is contained in so(9)C and
so(8)C. The Killing form Bso(n)C of so(n)C is given by Bso(n)C(X, Y ) = (n −
2) tr(XY ). Since

Bso(n)C

(
4∑
i=1

λiHi,
4∑
i=1

λ′iHi

)
= 2(n− 2)

4∑
i=1

λiλ
′
i

=
n− 2

9
B

(
4∑
i=1

λiHi,

4∑
i=1

λ′iHi

)
and

Bso(n)C(Eα, E−α)H ′α = [Eα, E−α] = B(Eα, E−α)Hα ,
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where H ′α is the element of h determined by Bso(n)C(H ′α, H) = α(H) for any
H ∈ h, we get

(49) Bso(n)C(Eα, E−α) =
n− 2

9
B(Eα, E−α) =

n− 2

9

for n ∈ {8, 9}. Let Υ+ \ Φ = {αj}15
j=1 so that

m1 =
7⊕
j=1

C(Eαj − E−αj) , m2 =
15⊕
j=8

C(Eαj − E−αj) .

By (49) and the fact that kP is conjugate to so(7) in O(8) [Yok09, Remark
after Theorem 2.7.5], it follows that (3

2
)7/2

∧7
j=1(E∨αj − E

∨
−αj) corresponds to the

invariant volume form on S7 of norm 27/2 and ( 3√
7
)8
∧15
j=8(E∨αj−E

∨
−αj) corresponds

to the invariant volume form of S8 of norm 24. Thus, by (48), we get
 
λ3 ∧

∧
α∈Υ+\Φ

(E∨α + E∨−α) ∧
∧

α∈Υ+\Φ

(E∨α − E∨−α) =
218 74 vol(S15)

325/2
ωG/KG .

Thus, combining this equation with (37), we get (38) for this case. �

The same computation gives the following relation of the Godbillon-Vey class
and the volume in the level of Lie algebra cohomology.

Proposition 7.10. Let (G,G/P ) be one of (SO0(n+1, 1), Sn∞),(SU(n+1, 1),S2n+1
∞ ),

(Sp(n+1, 1), S4n+3
∞ ) or (F4(−20), S

15
∞). Let q = dimG/P (the codimension of FP ).

We have

(50)

 
φKP

∆FP (h1c
q
1) = cG ωG/KG

in
(∧q+1

g∗
)
KG

for some orientations of G/KG and the fibers of φKG : G/KP →
G/KG, where cG is the constant depending on (G,G/P ) given in Proposition 7.9.

Remark 7.11. By [KT75a, Theorem 7.83], the following diagram commutes:

(51) H•(g, KP ) //

ffl
��

H•(Γ\G/KP )
ffl

��
H•(g, KG) κ

// H•(Γ\G/KG) .

The homomorphism κ is well known to be injective. The commutativity describes
the relation between Propositions 7.9 and 7.10.

By the well known relation GV(FP ) = (2π)q+1 [∆FP (h1c
q
1)] [KT75a, Theo-

rem 7.20], Proposition 7.9 or 7.10 implies the following.
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Corollary 7.12. Under the assumption of Proposition 7.9, we have

1

(2π)q+1

ˆ
Γ\G/KP

GV(FP ) = cG vol(Γ\G/KP ) ,

where vol(Γ\G/KP ) is the volume of Γ\G/KP with the metric induced from the
Killing metric of g.

7.4.3. Bott-Thurston-Heitsch type formulas for suspension foliations. The homo-
geneous foliations are suspension foliations over locally symmetric spaces whose
holonomy homomorphisms are the canonical embeddings of lattices. We will
show Bott-Thurston-Heitsch type formulas (Theorem 1.9) which can be applied
to more general suspension foliations.

Suspension foliations F in the statement of Theorem 1.9 are (G,G/P )-foliations
on the total spaces of G/P -bundles over manifolds N which are transverse to the
G/P -fibers by construction. In the case where dimG/P > 1, it is easy to see
that, conversely, any (G,G/P )-foliation on the total space of a G/P -bundle over
a manifold N which is transverse to G/P -fibers is a suspension foliation in the
statement of Theorem 1.9. In this section, we prove Theorem 1.9 for (G,G/P )-
foliations on the total spaces of G/P -bundles over manifolds N which are trans-
verse to the G/P -fibers. Part of the argument will be used later in a more general
situation.

Let (G,G/P ) be (SO0(n+1, 1), Sn∞), (SU(n+1, 1), S2n+1
∞ ), (Sp(n+1, 1), S4n+3

∞ )
or (F4(−20), S

15
∞). Let q = dimG/P (the codimension of (G,G/P )-foliations).

Consider the case of codimension q > 1; namely, all cases except (SO0(2, 1), S1
∞)

and (SU(1, 1), S1
∞). Let N be a smooth manifold, and pM : M → N an Sq-bundle

over N . Let F be a (G,G/P )-foliation of M which is transverse to the fibers of
pM . Since G preserves an orientation of G/P , it follows that pM is orientable.

We have two G-equivariant fibrations on G/KP :

G/P G/KP
φPoo

φKG
��

G/KG .

Now, it is easy to see that the fibers of φP and φKG are of complementary dimen-
sion and transverse to each other. This observation implies the following.

Lemma 7.13. Let dev : M̃ → G/P be the developing map of F . For any π1M-

equivariant map s : M̃ → G/KG, there exists a unique map d̂ev : M̃ → G/KP

which is π1M-equivariant, satisfies F̂ = d̂ev
∗
FP and makes the following diagram
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commutative:

G/P G/KP
φPoo

φKG
��

M̃

dev

OO

s
//

d̂ev
66nnnnnnnnnnnnnnn
G/KG .

Moreover, if s is submersive at a point x ∈ M̃ , then d̂ev is submersive at x.

The equality F̂ = d̂ev
∗
FP is a trivial consequence of the construction like in

Proposition 3.9. To prove the latter part of Lemma 7.13, note that dev is a
submersion.

Regard hol(F) as a homomorphism π1N ∼= π1M → G. Given an orientation of
G/KG, the volume vol(hol(F)) of hol(F) is defined in Hq+1(N ; R) as mentioned
in Section 7.4.1.

Proposition 7.14. We orient G/KG and the fibers of φKG like in Proposition 7.9.
Then we have

(52)
1

(2π)q+1

 
pM

GV(F) = cG vol(holF)

in Hq+1(N ; R) for an orientation of the fibers of pM , where cG is the function of
(G,G/P ) mentioned in Proposition 7.9.

Proof. Take a π1N -equivariant map s : Ñ → G/KG. We get a π1M -equivariant

map s = s ◦ pM̃ : M̃ → G/KG, where pM̃ : M̃ → Ñ is the canonical projection.

By Lemma 7.13, we get a π1M -equivariant map d̂ev : M̃ → G/KP which makes
the following diagram commutative:

(53) M̃
d̂ev //

p
M̃

��

G/KP

φKG
��

Ñ s
// G/KG .

Since F is transverse to the fibers of pM , the restriction of d̂ev to each fiber of
pM̃ is a covering map onto a fiber of φKG . Since pM̃ and φKG are Sq-bundles

and q > 1, the restriction of d̂ev to each fiber of pM̃ is a diffeomorphism. Thus
the diagram (53) is the pull-back of fiber bundles. We fix an orientation of the
fibers of pM so that it is compatible with the orientation of the fibers of φKG
under d̂ev

∗
. Then

ffl
p
M̃

d̂ev
∗
β = s∗

ffl
φKG

β for any β ∈ Ω•(G/KP ). We haveffl
φKG

∆FP (h1c
q
1) = cG ωG/KG in (

∧q+1
g∗)KP by Proposition 7.10. Let F̃ be the

lift of F to M̃ . Since F̃ = d̂ev
∗
FP by Lemma 7.13, we have
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p
M̃

∆F̃(h1c
q
1) =

 
p
M̃

d̂ev
∗
∆FP (h1c

q
1) = s∗

 
φKG

∆FP (h1c
q
1) = cG s

∗ωG/KG

in Ω•(Ñ)π1N . Eq. (52) follows from this equality and the well known relation
GV(F) = (2π)q+1[∆F(h1c

q
1)] [KT75a, Theorem 7.20]. �

Proof of Theorem 1.9. Since the sign of both sides of (2) change when the orien-
tation of the fibers of pM changes, it suffices to prove (2) for any fixed orientation
of the fibers of pM . We orient G/KG and the fibers of φKG as in Proposition 7.9.
Then we choose the orientation of the fibers of pM like in the statement of Propo-
sition 7.14.

By assumption, G/KG is of even dimension q + 1. Since G/KG has a G-
invariant metric, the Euler form e of the oriented tangent bundle of G/KG is a
left invariant volume form on G/KG. Thus there exists a constant µ such that
e = µ volG/KG , where volG/KG is the left invariant form of compatible orientation
and of norm 1 with respect to the Killing metric on g. Let volΓ and eΓ be the
volume forms on Γ\G/KG such that p∗N volΓ = volG/KG and p∗NeΓ = e, where
pN : G/KG → N is the universal covering of N . By the Hirzebruch proportion-
ality principle [CGW76, Theorem 3.3] (see also [KO90]), we can compute the
constant µ by using the compact dual KGC/KG of G/KG as follows:

µ =

´
Γ\G/KG

eΓ´
Γ\G/KG

volΓ
= (−1)(q+1)/2 e(KGC/KG)

vol(KGC/KG)
,

where e(KGC/KG) is the Euler number of KGC/KG and vol(KGC/KG) is the vol-
ume of KGC/KG with respect to the metric induced by the Killing form on gC.
The volume vol(KGC/KG) was computed in [AY97], obtaining:

KGC/KG e vol

RP n+1 1 2
n−1

2 n
n+1

2 vol(Sn+1)

CP n+1 n+ 2
2n+1(n+ 2)n+1πn+1

(n+ 1)!

HP n+1 n+ 2
26(n+1)(n+ 3)n+1π2(n+1)

(2n+ 3)!

OP 2 3
7286π8

11!

Here, we also indicate the Euler number e(KGC/KG) of KGC/KG. Thus Theo-
rem 1.9 follows from Proposition 7.14, where the constant rG in (2) is obtained
from cG in Proposition 7.14 by rG = (−1)(q+1)/2µ−1cG. �
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8. The case where G/P = Sq for even q

8.1. Integration along the fibers of Haefliger structures. For transversely
projective foliations, the integration of secondary invariants along the fibers of
the Haefliger structures was computed by Brooks-Goldman [BG84, Lemma 2]
and Heitsch [Hei86, Lemma in Section 5] to prove Proposition 5.1, which is an
essential part of the proof of Theorem 1.1. In this section, we will see that such
computation is reduced to a computation in Lie algebra cohomology in the case
where G/P is a sphere. This observation enables us to state a sufficient condition,
that implies Proposition 5.1, in terms of Lie algebra cohomology. We will also
see that Proposition 5.1 is not true for transversely conformally flat foliations of
even codimensions. In this section, the coefficient ring of cohomology is C.

Let XG(F) be the principal G-bundle over M associated to F . Consider the
diagram of bundle maps between fiber bundles over M ,

(54) XGC(F)/KP

��

XG(F)/KP

��

oo

XGC(F)/KG XG(F)/KG ,oo

where the horizontal maps are inclusions defined by fiberwise complexification
and the vertical maps are canonical projections. Let H•(GC/KP ), H•(G/KP )
and H•(GC/KG) be the local systems over M associated to the fiber bundles
XGC(F)/KP , XG(F)/KP and XGC(F)/KG, respectively. Note that the local sys-
tem associated to XG(F)/KG is trivial because the fiber G/KG is contractible.
By using integration along fibers of the vertical maps of (54), we get the commu-
tative diagram

(55) H•(M ;H•(GC/KP ))
ffl

��

// H•(M ;H•(G/KP ))
ffl

��
H•(M ;H•(GC/KG)) // H•(M) .

Observe that we have natural isomorphisms

H•(g, KP )⊗ C ∼= H•(kGC , KP )⊗ C ∼= H•(KGC/KP ) ∼= H•(GC/KP ) ,(56)

H•(g, KG)⊗ C ∼= H•(kGC , KG)⊗ C ∼= H•(KGC/KG) ∼= H•(GC/KG) ,(57)

where the first isomorphisms in the two equations are the well known isomorphism
in the Weyl’s trick [KO90, Section 3]. We get the commutative diagram

(58) H•(g, KP )⊗ C
ffl

��

// H•(GC/KP )
ffl

��

// H•(M ;H•(GC/KP ))
ffl

��
H•(g, KG)⊗ C // H•(GC/KG) // H•(M ;H•(GC/KG)) .
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Recall that XGC(F)/KP has a (G,G/P )-foliation p∗Ehol(F), which is obtained
by pulling back the foliation Ehol(F) on XGC(F)/P defined by the flat G-connection
by the canonical projection p : XGC(F)/KP → XGC(F)/P . By combining Theo-
rem 4.3, diagrams (55) and (58), and the definition of the characteristic homo-
morphisms, we get the following.

Proposition 8.1. The following diagram is commutative:

(59) H•(WOq)

∆FP
��

∆′
p∗Ehol(F)

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

H•(g, KP )⊗ C
ffl

��

// H•(M ;H•(GC/KP ))
ffl

��

// H•(M ;H•(G/KP ))
ffl

��
H•(g, KG)⊗ C //

Ξhol(F)

44
H•(M ;H•(GC/KG)) // H•(M) ,

where ∆′p∗Ehol(F)
is the map induced by the characteristic homomorphism ∆p∗Ehol(F)

of p∗Ehol(F), and Ξhol(F) : H•(g, KG) → H•(M) is the characteristic homomor-
phism of the flat G/KG-bundle XG(F)/KG →M mentioned in Section 7.4.1.

This proposition is specially useful when G/P is a sphere because of the fol-
lowing.

Lemma 8.2. Let σ be a cohomology class of XG(F)/KP . Then σ belongs to the
image of π∗G/KP : H•(M)→ H•(XG(F)/KP ) if and only if

ffl
σ = 0.

Proof. Note that XG(F)/KP is homotopy equivalent to a sphere bundle XG(F)/P
over M . Since XG(F)/P has a section, the Gysin sequence splits to give the exact
sequence

0 // H•(M)
π∗
G/KP// H•(XG(F)/KP )

ffl
// H•(M) // 0 . �

The composite of the upper horizontal maps of (59) is induced on the E2-terms
of the Leray-Hirsch spectral sequence of XG(F)/KP → M by the characteristic
homomorphism H•(g, KP )→ H•(XG(F)/KP ) of the (G,G/P )-foliation p∗Ehol(F)

on XG(F)/KP mentioned in Proposition 3.9. Thus, as a consequence of Propo-
sition 8.1 and Lemma 8.2, we get the following.

Proposition 8.3. If
ffl

∆FP (σ) = 0 for σ ∈ H•(g, KP ), then ∆p∗Ehol(F)
(σ) belongs

to the image of π∗G/KP : H•(M)→ H•(XG(F)/KP ).

This proposition reduces the latter condition to the former condition, which
involves only Lie algebra cohomology. Thus the following proposition gives an
alternative proof of a consequence of the residue formulas of Heitsch.
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Proposition 8.4 (Heitsch [Hei78, Theorem 4.2] and [Hei83, Theorem 2.3]). In
the case where (G,G/P ) = (SL(q + 1; R), Sq) for even q, we have

ffl
∆FP (σ) = 0

for any σ ∈ H•(WOq).

Proof. We will use the notation of Example 7.2.1. First, we show
ffl

∆FP (h1c
q
1) =

0. By (21) and (27), we get

∆FP (h1c
q
1) = −(q′)q+1 q′!

(2π)q+1
E∨11 ∧

q′∧
k=2

E∨1k ∧ E∨k1

=
(−1)

q(q−1)
2

+1(q′)q+1 q′!

2q(2π)q+1
E∨11 ∧

q′∧
k=2

(E∨1k + E∨k1) ∧
q′∧
k=2

(E∨1k − E∨k1) .

Here,
∧q′

k=2(E∨1k−E∨k1) is a volume form of SO(q′)/ SO(q) ≈ Sq. Thus
ffl

∆FP (h1c
q
1)

is obtained by integrating E∨11 ∧
∧q′

k=2(E∨1k + E∨k1) over Sq. But, since q is even,

E∨11 ∧
∧q′

k=2(E∨1k + E∨k1) is an odd function on Sq; namely, we have

s∗
(
E∨11 ∧

q′∧
k=2

(E∨1k + E∨k1)
)

= −E∨11 ∧
q′∧
k=2

(E∨1k + E∨k1) ,

where s is the antipodal map of Sq. So the integration of E∨11 ∧
∧q′

k=2(E∨1k +E∨k1)
over Sq is zero. This implies that

ffl
∆FP (h1c

q
1) = 0.

Note that hI(ΘMC) is KG-basic; namely, hI(ΘMC) is the pull-back of a differ-
ential form on GC/KG. Thus, by (22), 

∆FP (h1hIc
q
1) = hI(ΘMC)

 
∆FP (h1c

q
1) = 0 .

Since other secondary characteristic classes are generated by the classes of the
form h1hIc

q
1 by Theorem 7.3, the result follows. �

Remark 8.5. Heitsch [Hei86] applied consequences of his residue formulas, The-
orem 1.7 and Proposition 8.4, to prove our Proposition 5.1 for the case where
(G,G/P ) = (SL(q + 1; R), Sq) for any q, and therefore Theorem 1.1. For even
q, our proof of Proposition 8.4 is slightly simpler than the original proof of
Heitsch [Hei86]. It is because we directly computed the map H•(g, KP ) →
H•(g, KG) in Section 7, while Heitsch applied his residue formulas ([Hei78, The-
orem 4.2] and [Hei83, Theorem 2.3]). Thus we obtained a slightly simpler proof
of Theorem 1.1 for even q. Note that we already gave an alternative proof of
Theorem 1.1 for odd q in Section 6.2 by using Theorem 1.2.

In the case where (G,G/P ) is (SO(n+1, 1), Sn∞) for odd n, (SU(n+1, 1), S2n+1
∞ ),

(Sp(n + 1, 1), S4n+3
∞ ) or

(
F4(−20), S

15
∞
)
, our Bott-Thurston-Heitsch type formulas

(Theorem 1.9) imply that the integration of GV(FP ) along the fibers of the sphere
bundle G/KP → G/KG is nonzero, but it is a constant multiple of the Euler
class of the tangent sphere bundle of G/KG. So we cannot apply Proposition 8.3
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in this case to show Proposition 5.1. Nevertheless we get the following. Let
ϕ : XG(F)/KP → XG(F)/KG be the canonical projection.

Proposition 8.6. In the case where (G,G/P ) is equal to one of (SO(n+1, 1), Sn∞)
for odd n, (SU(n + 1, 1), S2n+1

∞ ), (Sp(n + 1, 1), S4n+3
∞ ) or

(
F4(−20), S

15
∞
)
, we haveffl

ϕ
GV(p∗Ehol(F)) = 0 in H•(M) for any (G,G/P )-foliation F of M .

Proof. The sphere bundle ϕ has a section because it is homotopic to the Haefliger
structure XG(F)/P →M , which has a section (see Section 3.2.2). Thus its Euler
class e(ϕ) is zero. Since ϕ is a sphere bundle with a (G,G/P )-foliation transverse
to fibers, we get

ffl
GV(p∗Ehol(F)) = rG e(ϕ) = 0 by the Bott-Thurston-Heitsch

type formulas in Theorem 1.9. �

Remark 8.7. Note that the Godbillon-Vey class is essentially the unique nontriv-
ial secondary class in this case by Proposition 7.4. Thus Lemma 8.2 gives us
another proof of Proposition 5.1 for these (G,G/P ), and therefore another proof
of Theorem 1.2.

On the other hand, the situation is different for transversely conformally flat
foliations of even codimension. Let (G,G/P ) be (SO(n + 1, 1), Sn∞) for even n.
Consider an Sn-bundle M → N and a (G,G/P )-foliation F of M transverse to
the fibers with a nontrivial volume vol(hol(F)). For example, we can take the
fiber bundle Γ\G/KP → Γ\G/KG foliated by the homogeneous foliation for a
torsion-free uniform lattice Γ of G. Recall that ϕ is the Sq-bundle XG(F)/KP →
XG(F)/KG associated to F with the (G,G/P )-foliation p∗Ehol(F) transverse to
the fibers. We get the following.

Proposition 8.8.
ffl
ϕ

GV(p∗Ehol(F)) is nonzero.

Proof. The volume of p∗Ehol(F) is equal to p∗KG vol(hol(F)), which is nontrivial by

assumption. On the other hand,
ffl
ϕ

GV(p∗Ehol(F)) is a nonzero constant multiple

of the volume p∗KG vol(hol(F)) by Proposition 7.14. �

8.2. Finiteness with fixed Euler class. Consider the case where G/P = Sq

for even q. In this section, we will show (4) in Theorem 1.15 (half of the weaker
finiteness theorem for transversely conformally flat foliations). In this section, the
coefficient ring of cohomology is R. Since the Euler classes of even dimensional
sphere bundles are trivial with real coefficients, the assumption of Theorem 1.2 is
never satisfied by Proposition 6.1. Thus the Gysin sequence of the sphere bundle
φC : GC/KP → GC/KG splits to give the exact sequence

(60) 0 // H•(GC/KG)
(φC)∗

// H•(GC/KP )

ffl
φC

// H•−q(GC/KG) // 0 .

Let χ(νFP ) be the Euler class of the normal bundle of the P/KP -coset foliation
FP on G/KP , which is of degree q.

Proposition 8.9.
ffl
φC χ(νFP ) = 2.
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Proof. Let φP : G/KP → G/P = Sq be the canonical projection. Consider the
composite

KG/KP
// G/KP

φP // G/P .

Since φ∗PTS
q = νFP , we getˆ

KG/KP

χ(νF) =

ˆ
Sq
χ(TSq) = 2 ,

which implies the equality of the statement. �

From (56), (57), (60) and Proposition 8.9, we get the following.

Proposition 8.10. We have

H•(g, KP ) ∼= H•(g, KG)⊗ R[χ]/(χ2)

as an H•(g, KG)-module, where χ is the Euler class of the normal bundle of F .

Consider the characteristic homomorphism Ξhol(F) :H•(g, KG)→H•(M), which
depends only on hol(F) : π1M → G (Section 7.4.1).

Proposition 8.11. Let F0 and F1 be two (G,G/P )-foliations of M with the
same holonomy homomorphism. If χ(νF0) = χ(νF1), then ∆F0(σ) = ∆F1(σ) for
any σ ∈ H•(WOq).

Proof. By Theorem 4.3, it is sufficient to prove that ∆F0(σ) = ∆F1(σ) for any σ ∈
H•(g, KP ). For σ ∈ H•(g, KG), we get ∆F0(σ) = ∆F1(σ) because ∆Fi(σ) is deter-
mined only by the holonomy homomorphism according to Proposition 8.1. Since
H•(g, KP ) is generated by χ and 1 as an H•(g, KG)-module, we get ∆F0(σ) =
∆F1(σ) for any σ ∈ H•(g, KP ). �

Since π0(Hom(π1M,G)) is finite (see Remark 5.2), Theorem 4.4 and Proposi-
tion 8.11 imply (4) in Theorem 1.15.

8.3. Finiteness over R/Z. In this section, we will show (3) in Theorem 1.15
(the other half of the weaker finiteness theorem for transversely conformally flat
foliations). Any σ ∈ H•(WOq) is said to be divisible by the Euler class χ if
there exists some τ ∈ H•(g, KP ) such that ∆FP (σ) = τ · χ. Note that such
τ belongs to H•(g, KG) for any nontrivial divisible class σ by Proposition 8.10.
Proposition 8.10 also implies the following.

Lemma 8.12. If σ ∈ H•(WOq) is not divisible by the Euler class, then
ffl
σ = 0.

Thus Proposition 8.2 implies that there is a finite number of possibilities for
∆F(σ) when σ is not divisible by the Euler class.

On the other hand, we have the following.

Lemma 8.13. If σ ∈ H•(WOq) is divisible by the Euler class, then ∆F(σ) = 0
in H•(M ; R/Z).
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Proof. Since χ(νF) belongs to the image of H•(M ; Z) → H•(M ; R), we get
∆F(σ) = Ξhol(F)(τ) · χ(νF) = 0 in H•(M ; R/Z). �

Since π0(Hom(π1M,G)) is finite (see Remark 5.2), Theorem 4.4 and
Lemma 8.13 imply (3) in Theorem 1.15.

8.4. Infiniteness of divisible classes. In this section, we will show Theo-
rem 1.13, an infiniteness result. Let σ ∈ H•(WOq) be a class divisible by the
Euler class. More generally, we show the following result.

Theorem 8.14. Assume that the restriction map H•(g)→ H•(kG) is surjective.
Then there exists a connected manifold X with finitely presented fundamental
group and an infinite family {Fm}m∈Z of (G,G/P )-foliations on X such that
∆Fm(σ) 6= ∆Fm′ (σ) if m 6= m′.

To prove Theorem 8.14, we note the following fact.

Lemma 8.15. Let X → Y be an Sq-bundle with a section. Then, for any m ∈ Z,
there exists a smooth bundle map fm : X → X whose restriction to each Sq-fiber
is of degree m.

Proof. We fix a smooth fiberwise metric on X → Y so that each Sq-fiber is the
standard round sphere. Let L be the image of a section of X → Y . We can
assume that L is a smooth submanifold of X. For x ∈ X, let Fx be the Sq-fiber
of X → Y containing x, let {x0} = Fx ∩ L, and let cx be a great circle of F
through x and x0. Under the identity cx ≡ R/2πZ with x0 ≡ 0 given by the
length parametrization, let fm(x) = mx for m ∈ Z. This defines a smooth map
fm : X → X whose restriction to each fiber is of degree m. �

Proof of Theorem 8.14. Let Γ be a torsion-free uniform lattice of G. Note that
Γ is finitely presented because it is the fundamental group of the closed manifold
Γ\G/KP . Since q is even, the Euler class of the Sq-bundle Γ\G/KP → Γ\G/KG

is zero. Hence it has a section. Then, by Lemma 8.15, we take a smooth map

fm : Γ\G/KP → Γ\G/KP of degree m for any m ∈ Z. Let f̃m : G/KP → G/KP

be the lift of fm to the universal cover. Define Φm : G × G/KP → G/KP by

Φm(g, x) = gf̃m(x). Since f̃m is Γ-equivariant, we get

Φm(g1g2, x) = g1g2f̃m(x) = g1f̃m(g2x) = Φm(g1, g2x)

for g1 ∈ G, g2 ∈ Γ and x ∈ G/KP . Then Φm induces a smooth map Ψm : X →
Γ\G/KP , where X is the quotient of G × G/KP by the Γ-action given by g2 ·
(g1, x) = (g1g

−1
2 , g2x). This Ψm is a flat principal G-bundle over Γ\G/KP by

construction. Since π1G is a finite group, π1X is also finitely presented.
Let chm : H•(g)→ H•(X) be the characteristic homomorphism of Ψm as a flat

principal G-bundle over Γ\G/KP . Let F be a fiber of Ψm, which is homotopy
equivalent to KG. By the assumption, the composite of

H•(g)
chm // H•(X) // H•(F ) ∼= H•(kG)
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is surjective, where the second arrow is the restriction map to F . Thus Ψ∗m :
H•(Γ\G/KP )→ H•(X) is injective by the Leray-Hirsch theorem.

Consider the (G,G/P )-foliation Fm = Ψ∗mFΓ on X, where FΓ is the foliation
of Γ\G/KP whose lift to the universal cover G/KP is the P/KP -coset foliation
FP . By assumption, there exists some τ ∈ H•(g, KG) such that

(61) ∆FP (σ) = Ξhol(FP )(τ) · χ(νFP ) .

Since the map π1X → π1(Γ\G/KP ) induced by Ψm is independent of m, we get

(62) Ξhol(Fm)(τ) = Ξhol(F1)(τ)

for any m. On the other hand, since χ(νFΓ) is represented by the Poincaré dual
of any Sq-fiber of Γ\G/KP → Γ\G/KG, we get

(63) χ(νFm) = Ψ∗mχ(νFΓ) = mΨ∗1χ(νFΓ) = mχ(νF1)

by construction. By (61), (62) and (63), we get ∆Fm(σ) = m∆F1(σ). By the
injectivity of Ψ∗1, ∆F1(σ) is nontrivial of infinite order. Hence we get ∆Fm(σ) 6=
∆Fm′ (σ) for m 6= m′. �

Note that the manifolds X are noncompact in our construction. We get The-
orem 1.13 as a corollary of Theorem 8.14 as follows.

Proof of Theorem 1.13. By Propositions 7.9, 8.1 and 8.10, there is some constant
c so that GV(F) = c χ(νF) vol(hol(F)) for transversely conformally flat foliations
F of even codimension. So the Godbillon-Vey class is divisible in this case.
Moreover, the surjectivity of the restriction map H•(so(n+1, 1))→ H•(so(n+1))
follows from H•(so(n + 1, 1)) ⊗ C ∼= H•(so(n + 2); C) and the surjectivity of
H•(so(n+2))→ H•(so(n+1)) (see, for example, [GHV76, Theorems VI and VII
in Section 6.23]). Thus the assumption of Theorem 8.14 is satisfied, which implies
Theorem 1.13. �

9. Rigidity of foliations on homogeneous spaces

9.1. Generalization of Bott-Thurston-Heitsch type formulas. Let
(G,G/P ) be (SO0(n + 1, 1), Sn∞), (SU(n + 1, 1), S2n+1

∞ ), (Sp(n + 1, 1), S4n+3
∞ ) or

(F4(−20), S
15
∞). Let q = dimG/P . Consider the case of codimension q > 1;

namely, all cases except (SO0(2, 1), S1
∞) and (SU(1, 1), S1

∞). Let M = Γ\G/KP

and N = Γ\G/KG. Let F be a (G,G/P )-foliation of Γ\G/KP whose holo-
nomy homomorphism is hol(F) : π1M → G. Since π1M ∼= π1N , we regard
hol(F) : π1N → G. We orient M and N with the orientation of G/KP and the
fibers of φKG : G/KP → G/KG in Proposition 7.9. The volume vol(hol(F)) is de-
fined in Hq+1(N ; R) with the orientation of G/KG as mentioned in Section 7.4.1.

Lemma 9.1. If (G,G/P ) is (SO0(n+ 1, 1), Sn∞) for n odd, (SU(n+ 1, 1), S2n+1
∞ ),

(Sp(n+ 1, 1), S4n+3
∞ ) or (F4(−20), S

15
∞), then

1

(2π)q+1

ˆ
M

GV(F) = cG

ˆ
N

vol(hol(F)) ,(64)
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1

(2π)q+1

ˆ
M

GV(F) = rG

ˆ
N

e(pM) ,(65)

where e(pM) is the Euler class of pM : M → N , and rG and cG are the func-
tions of (G,G/P ) mentioned in Theorem 1.9 and Proposition 7.9, respectively.
If (G,G/P ) is (SO0(n+ 1, 1), Sn∞) for n even, then (64) is true.

Proof. First, we will prove (64) for all cases of (G,G/P ). The first part of this

proof is like the proof of Proposition 7.14. Take a π1N -equivariant map s : Ñ →
G/KG so that s is submersive at a point x. Let pM̃ : M̃ → Ñ denote the canonical

projection M̃ → Ñ . We get a π1M -equivariant map s = s ◦ pM̃ : M̃ → G/KG.

By Lemma 7.13, we obtain a π1M -equivariant map d̂ev : M̃ → G/KP which is
submersive on p−1

M̃
(x) and makes the following diagram commutative:

M̃
d̂ev //

p
M̃

��

G/KP

φKG
��

Ñ s
// G/KG ,

where φKG : G/KP → G/KG is the canonical projection. Let pZ̃ : Z̃ → N be the
pull-back of the fiber bundle φKG : G/KP → G/KG by s. We get the commutative
diagram:

(66) M̃
ψ̃ //

p
M̃ ��?

??
??

??
Z̃

ξZ̃ //

pZ̃
��

G/KP

φKG
��

Ñ s
// G/KG ,

where ξZ̃ is the canonical map and ψ̃ is the map induced by the universality of
the pull-back. By taking the quotient of the left triangle of (66) by Γ, we get the
following diagram:

(67) M
ψ //

pM !!CC
CC

CC
CC

Z
pZ

��
N ,

where Z is the quotient of Z̃ by the induced Γ-action and ψ is the map induced

by ψ̃.

Let FZ be the foliation on Z whose lift to the universal cover Z̃ is ξ∗Z̃FP . By
applying Proposition 7.9 like in the proof of Proposition 7.14, we get

(68)
1

(2π)q+1

 
pZ

GV(FZ) = cG vol(hol(F))
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52 JESÚS A. ÁLVAREZ LÓPEZ AND HIRAKU NOZAWA

in Hq+1(N ; R). Since F = ψ∗FZ , we obtain GV(F) = ψ∗GV(FZ). Hence

(69)
1

(2π)q+1

ˆ
M

GV(F) =
degψ

(2π)q+1

ˆ
Z
ψ∗GV(FZ)

= (cG degψ)

ˆ
N

vol(hol(F)) ,

where degψ is the degree of ψ as a continuous map. Since ψ is a bundle map
that covers the identity map on N , we get

(70) degψ = deg
(
ψ|p−1

M (x)

)
.

Here, ψ|p−1
M (x) : p−1

M (x) → p−1
Z (x) is a covering map because ψ is submersive on

p−1
M (x). Since π1(p−1

M (x)) ∼= π1(p−1
Z (x)) ∼= π1(Sq) = 1 because q > 1, we obtain

(71) deg
(
ψ|p−1

M (x)

)
= 1 .

By (69), (70) and (71), we get (64).
We get (65) by using Theorem 1.9 at (68) instead of Proposition 7.9. Note

that e(pM) = e(pZ), because ψ is a bundle map of degree one on each fiber. �

We obtain the following direct consequences.

Corollary 9.2. (i) If (G,G/P ) is equal to (SO0(n + 1, 1), Sn∞) for n odd,
(SU(n + 1, 1), S2n+1

∞ ), (Sp(n + 1, 1), S4n+3
∞ ) or (F4(−20), S

15
∞), then any

(G,G/P )-foliation F of M satisfies GV(F) = GV(FΓ) and hol(F) =
hol(FΓ).

(ii) If (G,G/P ) is (SO0(n+ 1, 1), Sn∞) for n even, then GV(F) = GV(FΓ) if
and only if vol(hol(F)) = vol(Γ), where vol(Γ) is the volume of Γ ↪→ G
(see Example 7.7).

Combining Lemma 9.1 with well known properties of the volume, we get the
following consequences.

Proposition 9.3. If GV(F) is nontrivial, then the image of the holonomy ho-
momorphism π1M → G is Zariski dense in G.

Proof. If GV(F) is nontrivial, then vol(hol(F)) is also nontrivial by (64). Then
the image of hol(F) is Zariski dense in G by [Cor91, Proposition 2.1]. �

Proposition 9.4. If (G,G/P )=(SO0(n+1, 1), Sn∞) for even n, then
´
M

GV(F)≤´
M

GV(FΓ).

Proof. This is a consequence of (64) and the following generalized version of
the Milnor-Wood inequality (see [FK06, Theorem 1.1]): For any homomorphism
h : Γ→ G, we have

(72)

ˆ
N

vol(h) ≤
ˆ
N

vol(Γ) . �
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Remark 9.5. The inequality (72) is true also for any other simple Lie group G.
In fact, it is a consequence of the positivity of the simplicial volume of locally
symmetric spaces due to Lafont-Schmidt [LS06] (one applies the Hahn-Banach
theorem [Gro82, Corollary in page 225] with [Buc08, Corollary 7]). But here
we need only the case of (G,G/P ) = (SO0(n + 1, 1), Sn∞) for even n, where
Corollary 9.2.i does not work.

9.2. Rigidity of (G,G/P )-foliations of Γ\G/KP of higher codimensions.
To prove Theorem 1.17-(i), we will apply the following generalized version of
Mostow rigidity.

Theorem 9.6 (Goldman [Gol88] for the case where G = PSO(2, 1), Dun-
field [Dun99] for G = PSO(n+1, 1), and Corlette [Cor91] for G = PSU(n+1, 1)).
Let G denote PSO(n+ 1, 1) or PSU(n+ 1, 1) and Γ a torsion-free uniform lattice
of G. Any homomorphism h : Γ → G with vol(h) = vol(Γ) is conjugate to the
canonical inclusion Γ→ G by an inner automorphism of G.

Remark 9.7. Francaviglia-Klaff [FK06] and Bucher-Burger-Iozzi [BBI12] gener-
alized the definition of the volume of representations of uniform lattices to non-
uniform lattices. (These two definitions do not coincide with each other.) It
allows them to prove Theorem 9.6 in a way similar to [Dun99], including the case
where Γ is a nonuniform lattice of SO(n+ 1, 1).

Remark 9.8. Note that the assumption of the above theorem of Goldman is the
equality e(h) = e(Γ) for the Euler classes. But, because of the proportionality of
the Euler class and the volume, it is equivalent to the equality on the volume.

Remark 9.9. To prove Theorem 1.17 for the case where G is Sp(n+1, 1) or F4(−20),
we will apply the superrigidity theorem of Corlette [Cor92], which asserts that
any homomorphism Γ → G from a uniform lattice Γ of G is conjugate to the
canonical inclusion if its image is Zariski dense. This rigidity is stronger than the
case of Theorem 9.6, so we do not need the equality on the volumes.

Proof of Theorem 1.17-(i) in the case q > 1. If (G,G/P ) is (SO0(n + 1, 1), Sn∞)
for n odd or (SU(n+ 1, 1), S2n+1

∞ ), Corollary 9.2-(i) implies vol(hol(F)) = vol(Γ).
If (G,G/P ) is (SO0(n+1, 1), Sn∞) for n even, then we get vol(hol(F)) = vol(Γ) by
the assumption and Corollary 9.2-(ii). Thus Theorem 9.6 implies that hol(F) :
π1N → G is conjugate to π1N = Γ ↪→ G by an inner automorphism of G. Hence
the standard map φKG : G/KP → G/KG is conjugate to a π1M -equivariant map
s : G/KP → G/KG, which is a submersion. Then we get a π1M -equivariant

submersion d̂ev : G/KP → G/KP by Lemma 7.13. It induces a covering map
dev : Γ\G/KP → Γ\G/KP , which must be a diffeomorphism because GV(F) =
GV(FΓ). �

Proof of Theorem 1.17-(ii). Corollary 9.2-(i) and Proposition 9.3-(i) imply that
the image of hol(F) : π1M → G is Zariski dense in G. Thus Corlette’s super-
rigidity theorem [Cor92] for uniform lattices in Sp(n+1, 1) or F4(−20) implies that
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hol(F) : π1N → G is conjugate to π1N = Γ ↪→ G. The rest of the proof is the
same as in the case (i). �

9.3. Codimension one case. In the case where (G,G/P ) is (SO0(2, 1), S1
∞) or

(SU(1, 1), S1
∞), Lemma 9.1 is not true in general because of π1S

1 ∼= Z. But
the theory of codimension one foliations, due to Thurston and Levitt, resolves
this problem. Note that, in this case, KG is isomorphic to SO(2) or U(1), P is
isomorphic to Aff+(1; R) or Aff(1; R), and KP is trivial or {±1}. Let F be a
(G,G/P )-foliation on M = Γ\G/KP . Here, N = Γ\G/KG is a closed Riemann
surface and the projection p : Γ\G/KP → Γ\G/KG is a principal S1-bundle.

Theorem 1.17-(i) in the case where q = 1 will be deduced from the following
two results:

Theorem 9.10 (Chihi-ben Ramdane [CbR08]). If GV(F) is nontrivial, then
the image of the holonomy homomorphism of F is a uniform lattice or a dense
subgroup of G. In particular, F is minimal.

Theorem 9.11 (Thurston [Thu72a] and Levitt [Lev78]). A codimension one
foliation F on M without compact leaves is isotopic to a foliation transverse to
the fibers of p.

Proof of Theorem 1.18. Assume that GV(F) is nontrivial. Then F is minimal
by Theorem 9.10. By Theorem 9.11, we can isotope F to a foliation transverse
to the fibers of p. Since the Euler number of p is equal to the Euler number
of N by construction and the Euler class is propotional to the volume, we get
vol(hol(F)) = vol(Γ), where hol(F) is the holonomy homomorphism of F . Ac-
cording to Theorem 9.6, hol(F) is conjugate to hol(FΓ), which is the canonical
inclusion Γ ↪→ G. Since the conjugation class of suspension foliations are deter-
mined by the conjugation class of the holonomy homomorphisms, the proof is
concluded. �
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R. Acad. Sci. Paris 230 (1950), 1378–1380.

[Bor53] , Sur la cohomologie des espaces fibrés principaux et des espaces homogènes
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