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ABSTRACT. Let G be a simple Lie group of real rank one, and SZ, the ideal
boundary of the corresponding hyperbolic symmetric space of noncompact type
(HZ, HZ, HE or H2). We show the finiteness of the possible values of the
secondary characteristic classes of transversely homogeneous foliations on a
fixed manifold whose transverse structures are modeled on the G-action on
S% . except the case of transversely conformally flat foliations of even codi-
mension ¢. For this exceptional case, we construct examples of foliations on a
manifold which break the finiteness and show a weaker form of the finiteness
result. These are generalizations of a finiteness theorem of secondary char-
acteristic classes of transversely projective foliations on a fixed manifold by
Brooks-Goldman and Heitsch to other transverse structures. We also show
Bott-Thurston-Heitsch type formulas to compute the secondary characteristic
classes of certain foliated bundles, and then obtain a rigidity result on trans-
versely homogeneous foliations on the unit tangent sphere bundles of hyperbolic
manifolds.
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1.1. Secondary characteristic classes of foliations and a theorem of
Brooks-Goldman-Heitsch. For a codimension ¢ smooth foliation F of a
smooth manifold M, we have the characteristic homomorphism Ax: H*(WO,) —
H*(M;R) (see Section 2.1). The cohomology classes in the image of Ax are
called the secondary characteristic classes of F. These are cobordism invari-
ants of foliations, which come from the continuous cohomology of the Hae-
fliger’s classifying space BT'? [Hae79]. The relation between the dynamics or
geometry of foliations and secondary characteristic classes has been one of the
main themes in the study of foliations (see the review article [Hur02] by Hur-
der or [CCO03, Chapter 7] by Candel-Conlon). Main examples of foliations with
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nontrivial secondary characteristic classes are quotient of homogeneous folia-
tions on homogeneous spaces by lattices, which have been extensively stud-
ied [KT75b, Yam75, Bak78, Hei78, Pit79, Pel83, Asul0]. Transversely homo-
geneous foliations are generalizations of these foliations, whose secondary charac-
teristic classes can be computed in a similar way. These foliations were used in the
construction of families of foliations whose characteristic classes nontrivially and
continuously vary by Thurston [Thu72b, Bot78] and Rasmussen [Ras80]. Other
families with this property, constructed by Heitsch [Hei78]|, are quotient of homo-
geneous foliations on homogeneous spaces by lattices. Their constructions imply
that there are uncountably many foliations which are not mutually cobordant,
and certain homology groups with integer coefficients of the classifying space BI'?
are uncountable [Hei78, Section 6].

In spite of the role played by transversely homogeneous foliations in the con-
struction of these examples, Brooks-Goldman and Heitsch showed that trans-
versely projective foliations, a class of transversely homogeneous foliations, sat-
isfy the following remarkable finiteness property of the secondary characteristic
classes. Let G be a Lie group and P a closed subgroup of G. A (G, G/P)-foliation
is a foliation whose transverse structure is modeled on the G-action on G/ P (see
Definition 3.1). When G = SL(q¢ + 1;R) and G/P = 5%, a (G, G/P)-foliation is
called a transversely projective foliation. Fix a smooth manifold M with finitely
presented fundamental group. Let Fol(G,G/P) be the set of (G, G/P)-foliations
on M, and let

(G, G/P) =3{Ar | F € Fol(G,G/P) },
where ¢ = dim G/ P.

Theorem 1.1 (Brooks-Goldman [BG84] in the case of ¢ = 1 and Heitsch [Hei86]
for ¢ > 1). X(SL(¢ + 1;R), 57) < oc.

In this article, we will generalize Theorem 1.1 for other cases of (G,G/P). We
also prove Bott-Thurston-Heitsch type formulas to compute secondary character-
istic classes and apply such formulas to obtain certain rigidity of foliations.

1.2. A sufficient condition for the finiteness of secondary characteristic
classes. We assume that G is linear algebraic and semisimple. Let G¢ be a
complex semisimple Lie group such that Lie(G¢) = Lie(G) ® C as a Lie algebra
over R. Our first result is the following.

Theorem 1.2. If H*(G¢/P;R) — H*(G/P;R) is trivial on positive degrees,
then ¥(G,G/P) < oo.

When (G,G/P) = (SL(¢+1;R), S9) for odd ¢, the assumption of Theorem 1.2
on (G, P) is satisfied (see Section 6.2). So Theorem 1.2 implies Theorem 1.1 for
odd ¢. The following cases are our examples of (G,G/P):

(SO(n+1,1),8") , (SU(n+1,1),82+")
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where S, §2nF1 0 §4nt3 and SI5 are the ideal boundaries of the corresponding
noncompact symmetric spaces Hy, HZ, H? and HZ, respectively. According to
the case of manifolds, (SO (n+ 1,1),S% )-foliations are called transversely con-
formally flat foliations and (SU (n + 1, 1), S2*1)-foliations are called transversely
spherical C'R foliations. The unit tangent sphere bundles of hyperbolic manifolds
have typical examples of these (G, G/ P)-foliations (see Example 2.3). The map
H*(G¢/P;R) — H*(G/P;R) is trivial on positive degrees except in the case of
transversely conformally flat foliations of even codimension (see Section 6). Thus
we get the following.

Corollary 1.3. If (G,G/P) is (SO(n+1,1),5™) for oddn, (SU(n+1,1), S?7+1),
(Sp(n+1,1),S23) or (Fy—20), S%2), then (G, G/P) < co.

Remark 1.4. Since SU(1,1)=SL(2; R) and SO¢(2, 1) =PSL(2; R), where SOy(2, 1)
is the identity component of SO(2, 1), Corollary 1.3 for (G, G/P) = (SU(1,1),SL)
or (SO(2,1),SL) is essentially contained in Theorem 1.1. Hantout [Han88| also
investigated this type of finiteness results, but his result does not imply this
corollary.

Remark 1.5. Note that the actions of SU(n + 1,1) and Sp(n + 1,1) on spheres
may not be effective, depending on n, because their stabilizers are equal to the
centers. But, by a slight modification of the proof of Theorem 1.2, we can
show the finiteness for the case where (G,G/P) is (PSU(n + 1,1),52"%1) or
(PSp(n + 1,1), S23) (see Section 6.7).

Remark 1.6. It is not difficult to see that every nontrivial secondary characteristic
class of (G, G/ P)-foliations is a multiple of the Godbillon-Vey class for these cases
(see Proposition 7.4).

Theorem 1.2 will be proved in Section 5 by using the complexification of char-
acteristic classes and an observation on certain spectral sequences.

1.3. Bott-Thurston-Heitsch type formulas. The Godbillon-Vey class GV (F)
of a foliation F is the secondary characteristic class first discovered in [GVT71],
and it is specially important for transversely homogeneous foliations as suggested
by results of Pittie [Pit79]. In the standard notation, GV(F) = (2m)7™ Az (hycl)
for a codimension ¢ foliation [KT75a, Theorem 7.20]. A typical example of trans-
versely projective foliations is suspension foliations; namely, for a manifold N and
a homomorphism m N — SL(q + 1;R), we get an S%bundle p: N X,y S?— N
foliated by a transversely projective foliation transverse to the fibers of p (Ex-
ample 3.4). The Bott-Thurston-Heitsch formula for the Godbillon-Vey class of
transversely projective foliations computes the Godbillon-Vey class of such folia-
tions.
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Theorem 1.7 ([Thu72b] and [Bot78, Appendix by Brooks| for ¢ = 1 and Heitsch
[Hei78, Theorem 4.2] and [Hei83, Theorem 2.3] for ¢ > 1). Let N be a manifold
and hol: ;N — SL(q + 1;R) a homomorphism. Let pyy: M — N be the S9-
bundle over N with the suspension foliation F obtained from hol. Then, for any
orientation on the fibers of pyr, we have

G ] GV = elo)

pm

(1)

in HT™Y(N;R), where e(par) is the Euler class of the ST-bundle py;.

Remark 1.8. The case of ¢ = 1 is special because there are different choices of
SL(2; R)-actions on S*. To get (1), the SL(2; R)-action on the homogeneous space
SL(2;R)/ Aff(1;R) ~ S* should be used in the construction of the suspension
foliation F, where

Aﬁ(l;R):{(g 1?@) ‘QGRX, beR} .

This formula is important as one of few methods to calculate the Godbillon-Vey
class explicitly. Heitsch obtained a similar formula for other secondary character-
istic classes of transversely projective foliations ([Hei78, Theorem 4.2] and [Hei83,
Theorem 2.3]).

We generalize this formula. Note that, for a manifold N and a homomorphism
m N — G, we have a suspension foliation of the total space of a G/P-bundle over
N, which naturally admits a structure of a (G, G/ P)-foliation (Example 3.4). Let
SOp(n + 1,1) be the identity component of SO(n + 1,1).

Theorem 1.9. Let (G,G/P) denote one of (SO¢(n + 1,1),S%) for odd n > 1,
(SU(n + 1,1), 820 for n > 0, (Sp(n + 1,1),S3%3) or (Fy_20),5%). Let
q = dim G/P (the codimension of (G,G/P)-foliations), N a manifold and hol:

m N —G a homomorphism. Let pyr: M — N be the G/ P-bundle over N with the
suspension foliation F obtained from hol. Then, for any orientation on the fibers
of pv, we have

1

@) F GV = racon)

pm

in HI(N;R), where e(par) is the Euler class of the ST-bundle py, and rg is the
constant, depending on (G,G/P), given in the following table:
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(G,G/P) ra

(SOg(n +1,1),8™) n"tt

2(n+ 1)+ (2n+1)!
n+2  nlln+1)
23/2(2n 4 3)4n+3 (4n + 3)!
(n+2)(n+ 3" (2n+ 1)1(2n + 2)!

(SU(n +1,1), 5%+

(Sp(n + 1, 1), Sin+3)

F4 —90 ’815 219 X 369/2 X 74 X 1116 .13
(—20)5 Poo

Remark 1.10. Rasmussen [Ras80, Theorem 5.1] also obtained a similar formula
for the case of (SOy(3,1),52%). The codimension one case excluded from The-
orem 1.9, where (G,G/P) is either of (SOy(2,1),SL) or (SU(1,1),SL), corre-
sponds to the original Bott-Thurston formula (Theorem 1.7 for ¢ = 1).

We will prove Theorem 1.9 by a direct calculation on Lie algebra cohomology
with the application of the Hirzebruch’s proportionality principle in Section 7.
Note that it is not difficult to see that both sides of (2) are equal up to a nonzero
constant factor like in the case of the original Bott-Thurston formula for codi-
mension one case (see [BG84, Section 3]). This relation was already pointed out
in the case of (SO(n + 1,1),S%) by Reznikov [Rez96, Section 5.16].

Remark 1.11. Note that, in the case of (SOg(n + 1,1),S%) for even n, the Euler
classes of S™-bundles are trivial with real coefficients. So this type of formulas is
not true in that case. But we will show a similar formula with the volume of the
holonomy homomorphism (see Proposition 7.14).

Remark 1.12. Theorem 1.7 for ¢ = 1 was used by Brooks-Goldman [BG84] to
prove Theorem 1.1 for ¢ = 1. Heitsch [Hei86] used Theorem 1.7 and its gener-
alization to other secondary characteristic classes to prove Theorem 1.1. Based
on a calculation similar to the proof of Theorem 1.9, we can give an alternative
proof of Theorem 1.1 for even ¢ (see Remarks 8.5 and 8.7). This alternative proof
is slightly simpler than the original proof due to Heitsch [Hei86].

1.4. The case of G/P = S? for even q. In this case, it is easy to see that
the assumption of Theorem 1.2 on the triviality of H*(G¢/P;R) — H*(G/P;R)
for positive degrees is never satisfied (see Proposition 6.1). In fact, by using a
Bott-Thurston-Heitsch type formula in Proposition 7.14 for the Godbillon-Vey
class of transversely conformally flat foliation of even codimension, we get the
following infiniteness result.
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Theorem 1.13. For each even q, there exists a connected noncompact smooth
manifold X with finitely presented fundamental group and a family {F,, }mez of
codimension q transversely conformally flat foliations of X such that GV (F,,) #
GV(Fu) if m #m'.

As far as we know, this is the first example of a family of transversely confor-
mal foliations on a connected manifold whose Godbillon-Vey classes take infin-
itely many different values. We do not know compact examples. Asuke [Asul0]
constructed finite families of transversely holomorphic foliations on compact ho-
mogeneous spaces whose Godbillon-Vey classes take different values. (Note that
complex codimension one transversely holomorphic foliations are real codimen-
sion two transversely conformal foliations.)

Remark 1.14. Asuke [Asul0] proved that the Godbillon-Vey class does not change
nontrivially for smooth families of transversely holomorphic foliations. As pointed
out by Morita [Mor79], it is not known if there exist a smooth family of trans-
versely conformal foliations of codimension greater than two whose Godbillon-Vey
classes continuously and nontrivially vary.

We will show the finiteness of secondary characteristic classes in a weaker
form in this case. Let x(vF) be the Euler class of the normal bundle vF of
F. Let ¥(G,G/P;R/Z) denote the number of homomorphisms H*(WO,) —
H*(M;R/Z) induced by the homomorphisms Az with F € Fol(G,G/P), and let

Y(G,G/P,z) =#{Ar | F € FOl(G,G/P), x(vF) ==z}
for any fixed z € H1(M;R). We get the following.
Theorem 1.15. If G/P = S for even q, then
(3) Y(G,G/P;R/Z) < o0,
(4) Y(G,G/P,z) < 0,
for each z € HI(M;R).

The proof of Theorem 1.15 is based on simple arguments with Lie algebra
cohomology. Theorems 1.13 and 1.15 will be proved in Section 8.

1.5. Transversely conformal foliations. In this section, we assume that the
fixed manifold M is compact. By a theorem of Tarquini [Tar04, Théoreme 0.0.1], a
transversely real analytic conformal foliation of codimension ¢ > 2 is Riemannian
or (PSO(q+1,1),5%) on each connected component of M. Let FolZ* be the set
of codimension ¢ transversely real analytic conformal foliations on M. Let

Y =#{Ar | FeFoll¥},
Yi(z) =#{Ar | F € Foll®, z=x(vF)}

for z in HIY(M;R), and let X{(R/Z) be the number of homomorphisms
H*(WO,) — H*(M;R/Z) induced by the homomorphisms Az with F € Fol#“.
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Since the secondary characteristic classes of Riemannian foliations are trivial
(see [KT75a, Section 4.48 and Theorem 4.52]), we get the following corollary.

Corollary 1.16. (i) ¢ < oo for odd g > 1.
(ii) 3E(R/Z) < 00 and Ei(z) < oo for each z € HIY(M;R) and even q > 2.

1.6. Rigidity of transversely homogeneous foliations with nontrivial sec-
ondary invariants. Let (G, G/P) be (SOg(n+1,1),8%), (SU(n+1,1), 521,
(Sp(n + 1,1),523) or (Fy_a20),S%). Let Fr be the standard homogeneous
(G, G/ P)-foliation on M = I'\G/Kp, where I is a torsion-free uniform lattice of
G and Kp is a maximal compact subgroup of P (Example 2.3). Here GV (Fr) is
nontrivial as computed in Corollary 7.12. Note that dim M = deg GV(Fr). Fix
an orientation of M so that [,, GV(Fr) > 0. Then we show the following.

Theorem 1.17. (i) If (G,G/P) is one of (SO¢(n+1,1),S%) for oddn > 1,
(SU(n+1,1), 82241 forn > 1, (Sp(n+1,1),S%) or (Fy—20), S2), then
F is smoothly conjugate to Fr.
(i) If (G, G/P) is (SOg(n+1,1),S%) for even n, then any (G, G/ P)-foliation
F of M satisfies [,, GV(F) < [,; GV(Fr). Moreover the equality holds
if and only of F is smoothly conjugate to Fr.

The essential part of the proof is to generalize the Bott-Thurston-Heitsch type
formulas to foliations which may not be transverse to fibers (Lemma 9.1). It
allows us to apply the rigidity theory of representations of lattices; in particular,
the generalized Mostow rigidity [Cor91, Dun99, FKO06] for lattices of PSO(n+1,1)
or PSU(n+1,1) and the superrigidity [Cor92] of lattices of Sp(n+1,1) or Fy_ag).

In the codimension one case, we will show the following.

Theorem 1.18. If (G,G/P) is one of (SOy(2,1),SL) or (SU(1,1),SL), then
any (G,G/P)-foliation F of M satisfies GV(F) = GV(Fr) or GV(F) = 0.
Moreover the former case holds if and only if F is smoothly conjugate to Fr.

To prove Theorem 1.18, we will apply a minimality theorem of Chihi-ben Ram-
dane [CbRO8] and theorems of Thurston [Thu72a] and Levitt [Lev78] to isotope
(G, G/ P)-foliations with nontrivial Godbillon-Vey classes so that they are trans-
verse to the fibers of I'\G/Kp — I'\G/Kq, where K¢ is a maximal compact
subgroup of G. Then we can apply generalized Mostow rigidity [Gol88] for sur-
face group representations.

Theorems 1.17 and 1.18 will be proved in Section 9.

Remark 1.19. Theorem 1.18 improves a result of Brooks-Goldman [BG84, Theo-
rem 5]. Theorem 1.18 is also related to Mitsumatsu defect formula [Mit85] for the
C? stable foliations of the geodesic flows of hyperbolic surfaces, and its generaliza-
tion with weaker regularity assumption by Hurder-Katok [HK90, Theorem 3.11].

Organization of the article. Sections 2 and 3 are devoted to recall fundamental
notions in this article, as indicated in the table of the contents. In Section 4, the
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complexification of secondary characteristic classes of transversely homogeneous
foliations is explained, which will be used in Section 5 to prove Theorem 1.2.
Section 6 is devoted to present the examples of the application of Theorem 1.2.
In Section 7, first, the characteristic classes of homogeneous foliations on homo-
geneous spaces are calculated in terms of Lie algebra cohomology, and then the
Bott-Thurston-Heitsch type formulas of Theorem 1.9 are deduced. Theorems 1.15
and 1.13 are proved in Section 8. (Note that the computation in Section 7 is used
in Section 8, but it is not necessary for the proof of Theorems 1.15 and 1.13.)
In Section 9, Theorems 1.17 and 1.18 are proved by applying the modification of
the Bott-Thurston-Heitsch type formulas of Theorem 1.9.

Acknowledgment. We thank Juan Francisco Torres Lopera, Takashi Tsuboi,
Bertrand Deroin, and MathOverFlow users Tilman and André Henriques for
helpful discussions about the contents of this paper. We are grateful to Michelle
Bucher because she taught the second author the application of the Hirzebruch
proportionality principle and the proof of the generalized Milnor-Wood inequality.

2. SECONDARY CHARACTERISTIC CLASSES OF FOLIATIONS

2.1. Fundamentals of secondary characteristic classes. Consider the Weil
algebra W(gl(¢;R)) = Agll¢;R)* @ Sgl(¢;R)* of gl(g;R), and its O(q)-basic
subalgebra,

W(gl(g;R))o(q)

={BeW(gllg;R)) [ txf =0VX € 0(q), Ad(g)"f =5 Vg€ O(q)}.
For a principal GL(¢;R)-bundle E over a smooth manifold M with a GL(¢;R)-
connection V¥, the CAhern—Weil construction yields a homomorphism of differen-
tial graded algebras, Ag: W (gl(q; R)) — Q°*(F). Since the image of W (gl(g; R))O(q)l
under Ay is contained in the image of the pull-back map *: Q*(E/O(q)) —
Q*(E) by the O(q)-basicness, we get a differential map
Ap: W(gl(g;R))oq) — Q°(E/O(q)) -

By the contractibility of the fibers of E/O(q) — M, there exists a section s:
M — E/O(q). Thus we get a differential map given by the composite

Ap ° s* °
W(gl(g; R))og) — Q*(E/O(q)) — Q*(M) .
It is known that
W(Q[<Q7 R))O(q) = /\[hh h37 R h[q}] ® R[Clv Coy .. 7cq]

as a differential graded algebra, where [g] is the maximal odd number less than
q + 1. Tts grading is given by degh; = 2i — 1 and deg¢; = 2i, and its differential
map is determined by dh; = ¢; and dc; = 0. Here, ¢; is the +-th Chern polynomial
given by det (I, +5-A) = 1_ ¢;(A)t [KT75a, p. 138 and 139]. (Note that these
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Chern polynomials differ from the usual one by v/—1-factors.) This construction
yields nothing for a general GL(g; R)-connection because H*(W (gl(q;R))o(y)) =
0. The normal bundle vF = TM/TF of a foliated manifold (M, F) has a special
gl(g; R)-connection called a Bott connection [Bot72]. For a Bott connection V on
vF, the frame bundle P(vF) with the principal GL(g; R)-connection associated
to V satisfies Ap(,7)(c;) = 0 for i > ¢ by Bott vanishing theorem. Thus, letting

qu = /\[h17h37 .o ,h[q]] ®R[017027 ce ch]/zq )

where Z, is the ideal of R[cq, ¢o, . . ., ¢,] generated by the elements of degree greater
than 2¢, we get a differential map Ar: WO, — Q°*(M). The map induced on
cohomology,

Ap: HY(WO,) — H*(M;R) |

depends only on F and is denoted with the same symbol. The cohomology
H*(WO,) is nontrivial, Az is called the characteristic homomorphism of F, and
the elements of its image are the secondary characteristic classes of F. For

I = {iy,...,ip € A{1,3,---,[q]} and J = {j1,..., 751}, where 1 < j,, < g, let
hrcy = hi, -~ h;.c;, -~ - ¢j. Vey showed that the union of

(5) {cj|jisevenVje J}

and

(6) {hics v +[J] > q¢+1, iy <jforany odd j € J }

is a basis of H*(WO,) as an R-vector space, where ¢; = min/ [Hei73, Theo-
rem 2]. The characteristic classes in (5) are the Pontryagin classes of vF. The
characteristic classes in (6) are called ezotic.

Example 2.1. Let F be a codimention ¢ foliation on M defined by the kernel
of a g-form w. By the Frobenius theorem, we have dw=nAw for some 1-form 7.
Then nA(dn)?is a closed (2q+1)-form on M, which is equal to (27)7" Az (h;cl)]
[KT75a, Theorem 7.20]. This characteristic class (27)% [Az(hc)] is called the
Godbillon-Vey class of F [GV71]. The notation GV(F) = (27)" A z(hicl)] is
standard.

2.2. Examples of foliations with nontrivial characteristic classes. Quo-
tient of homogeneous foliations on homogeneous spaces by lattices are the main
examples of foliations with nontrivial secondary characteristic classes.

Example 2.2 (Roussarie’s example [GVT71]). Let I be a torsion-free uniform
lattice of SL(2;R). Let m: SL(2;R) — SL(2;R)/ Aff(1;R) be the canonical pro-
jection, where Aff(1;R) is the subgroup of SL(2;R) given in Remark 1.8. Then
the fibers of 7 induce a codimension one foliation on M = I'\ SL(2;R). Let
{w,n, 8} be a basis of s[(2; R)* so that the fibers of 7 are defined by kerw and

dv=nNANw, dp=wAl, dd=-nN0.
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By their left invariance, the 1-forms w, n and 6 on SL(2; R) induce 1-forms on M,
which are denoted with the same symbols. Let F be the foliation on M defined
by the kernel of w. By the definition of GV (F), we get

GV(F)=[nNdn=nANwAb].

Since n A w A 6 is a volume form on M, it follows that GV(F) # 0. In fact, by
the Bott-Thurston formula (Theorem 1. 9 for g = 1) we get

| evir
where e is the Euler number of the surface I'\ SL(2;R)/SO(2).

Example 2.3. The following example is a generalization of the last example to
higher dimensions. Let G be SO(n+1,1), SU(n+1,1), Sp(n+1,1) or Fy_s0), and
consider GG/ P as the ideal boundary of the corresponding hyperbolic symmetnc
space G/Kg:

Hg =SO(n+1,1)/S(O(n+ 1) x {£1}),

H{ =SU(n+1,1)/S(U(n+1)U(1)),

Hy =Sp(n+1,1)/Sp(n+1)Sp(1) ,

H% = F4(,20)/ Spln(9) .
Let Kg be a maximal compact subgroup of GG, and take a maximal compact
subgroup Kp of P as Kp = Kg N P. The ideal boundary of G/K¢g is a sphere
of real dimension n, 2n + 1, 4n + 3 and 15, respectively. T'\G/Kp admits a
foliation Fr whose lift to G/Kp is defined by the fibers of G/Kp — G/P.
Here, I'\G/K¢ is a real, complex, quaternionic or octonionic hyperbolic man-
ifold, and '\G/Kp — I'\G/Kg is the total space of its unit tangent sphere
bundle (see Section 6), depending on the choice of G. Later, we will compute
GV(Fr) (Proposition 7.9), and this Godbillon-Vey class is essentially the unique
nontrivial secondary characteristic class for these foliations (Section 7.3). Yam-

ato [Yam?75] studied the secondary characteristic classes of Fr in the case where
G =8S0(n+1,1).

Example 2.4. The following example is a further generalization of the last ex-
ample. Let G be a Lie group and P a closed subgroup of GG. Let K be a closed
subgroup of P. Let I' be a torsion-free uniform lattice of G. Then the fibers of
the canonical projection G/K — G/P define a foliation Fr on a closed manifold
['\G/K. The characteristic classes of this type of foliations were extensively stud-
ied and calculated by Kamber-Tondeur [KT75b], Baker [Bak78|, Heitsch [Hei78],
Pittie [Pit79], Pelletier [Pel83] and Asuke [Asul0].

3. TRANSVERSELY HOMOGENEOUS FOLIATIONS

3.1. Definition of (G, G/P)-foliations. Let (M, F) be a foliated manifold. Let
G be a Lie group and P a closed subgroup of G. When the group G is endowed
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with the discrete topology, it is denoted by G°. We denote the G-action on G /P
by (g, 2P) + g-xP.

Definition 3.1. A (Haefliger) cocycle with values in (G, G/P), defining F, is a
triple ({U;}, {m:}, {i;}), where:
(1) {U;} is an open covering of M,
(2) each m; is a submersion U; — G/P such that the leaves of F|y, are the
fibers of m;, and
(3) each v;; is a continuous map U; NU; — G such that m;(z) = v;(z) -7 ()
for any x € U; N U;.
Two cocycles with values in (G, G/ P), defining F, are called equivalent when their
union is contained in some cocycle with values in (G, G/P), defining F. When F

is endowed with an equivalence class of cocycles with values in (G, G/ P), defining
F, it is called a (G, G/P)-foliation.

Cocycles valued in (G,G/P) are examples of 1-cocycles valued in groupoids
defined by Haefliger [Haeb8]. Transversely homogeneous foliations are natural
generalizations of quotient of homogeneous foliations on homogeneous spaces in
terms of 1-cocycles valued in groupoids.

Remark 3.2. When G preserves a metric on G/P, any (G, G/ P)-foliation is Rie-
mannian. In this case, the secondary characteristic classes are well known to be
trivial (for example, see [KT75a, Section 4.48 and Theorem 4.52]).

Example 3.3. Example 2.2 is an (SL(2;R), S')-foliation, and Example 2.4 a
(G, G/ P)-foliation. Example 2.3 is a special case of Example 2.4, where (G, G/P)
is (SO(n+1,1), S), (SU(n+1,1), 5201), (Sp(n+ 1, 1), %) or (Fy_ary, S5,
and where S7 , §2nF1 G4n+3 or S15 are the ideal boundaries of the corresponding
hyperbolic symmetric spaces.

Example 3.4 (Suspension foliations). Let N be a smooth manifold and h:
m N — G a homomorphism. A 7 N-action on G/P is defined by m N — G —
Diff(G/P), where the second homomorphism is the G-action on G/P. Then
the quotient space N X,y G/P of the diagonal m N-action on N x G/P has
a foliation F induced by the horizontal foliation N x G/P = Ueea/p N x {z}.
Here, it is easy to see that F naturally admits a structure of (G, G/P)-foliation
by deﬁnition. (One can also apply Proposition 3.8 below.)

Example 3.5. Let (M;, F;) be a smooth manifold with a (G, G/P)-foliation for
i € {0,1}. Assume that we have a closed transversal S; of (M, F;) such that
So is diffeomorphic to Sy as (G,G/P)-manifolds. Let U; be an open tubular
neighborhood of S; such that the leaves of F;|y, are the fibers of a normal bundle
of S;. We can paste Uy \ Sy and U; \ S; to construct another manifold with
a (G,G/P)-foliation. Chihi and ben Ramdane [CbRO8] used this method to
construct manifolds with (SL(2;R), S*)-foliations with nontrivial Godbillon-Vey
classes and dense holonomy groups in SL(2;R).
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Example 3.6. Let (M, F) be a smooth manifold with a (G, G/P)-foliation. If
we have a smooth map f: M’ — M which is transverse to F, we can pull back
F to M as a (G, G/P)-foliation. This construction can be used when f is a
branched covering whose branch locus is transverse to F.

Example 3.7. Thurston [Thu72b] constructed examples of codimension one fo-
liations on Seifert fibered 3-manifolds whose Godbillon-Vey class varies nontriv-
ially by making surgery to Example 2.2. Rasmussen [Ras80] generalized this
construction to the case of codimension two. Thurston also constructed families
of suspension foliations on the total spaces of S'-bundles over closed surfaces
of genus two whose characteristic classes vary nontrivially. These examples are
constructed by pasting two transversely projective foliations of the total space of
S'-bundles over punctured tori [Bot78, Section 4]. Heitsch [Hei78| constructed
families of (Hf:1 SL(n;; R), S&im)=1)_foliations whose characteristic classes vary

by deforming Hle SL(n,; R)-actions on S(=im)=1,
3.2. Haefliger type description of transversely homogeneous foliations.

3.2.1. Flat principal G-bundle associated to F and the holonomy homomorphism.
Let (M, F) be a (G, G/ P)-foliation defined by a cocycle ({U;}, {m}, {:;}) valued
in (G,G/P). The condition m; = ~;; - m; implies the 1-cocycle condition v;, =
Yij - Vjk- Thus {7;;} is a l-cocycle valued in G°, which defines a flat principal
G-bundle mg: Xg(F) — M. Recall that

X6(F) = (Ui x @) [@y) ~ @) ).

and the projection 7 is induced by the first factor projections U; x G — U;. The
holonomy homomorphism 7 M — G of this flat G-bundle is called the holonomy
homomorphism of F and denoted by hol(F).

3.2.2. The Haefliger structure of F. We recall the description of (G, G/P)-foli-
ations in terms of a G/ P-bundle over M, which is a special case of the Haefliger
structures of general foliations. It was studied by Blumenthal [Blu79] and used
by Brooks-Goldman [BG84] and Heitsch [Hei86] to prove Theorem 1.1.

Proposition 3.8. A (G,G/P)-foliation F on M is determined by one of the
following data:

(i) A flat principal G-bundle X — M and a section s of Xg/P — M
such that s is transverse to the foliation £ of Xg/P defined by the flat
G-connection. .

(ii) A homomorphism hol: ;M — G and a submersion dev: M — G/P

such that dev(y - z) = hol(7) - dev(z) for any x € M and any v € m M.

Let 7;;(z): G/P — G/P be the diffeomorphism induced by the left prod-
uct of v;;(x). Here, {7} is a l-cocycle valued in Diff(G/P)°, which defines
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a G/P-bundle mg/p: Xg/p(F) — M with a flat G-connection whose holonomy
homomorphism is equal to hol(F). Recall that

Xoyp(F) = ||V x G/P) [(@.) ~ (2.7,(@)w)) = Xe(F)/ P,

and the projection 7g,/p is induced by the first factor projections U; x G/P — U;.
The graphs of the maps m;,

Graph(m;) = { (z,m(z)) |z € Ui} CU; x G/ P,
define a subset of X;/p(F), which gives a global section s of Xg/p(F) — M.
By construction, F is obtained as the pull-back by s of the foliation of X¢/p(F)
defined by the flat connection. Summarizing, F determines a flat G/ P-bundle
mg/p: Xg/p(F) — M with a section s, which in turn determines F.

Let M be the universal cover of M. The pull-back of Xg(F)/P — M to M
is a trivial flat G/P-bundle. A section s of X (F)/P — M yields a section s
of this trivial G/ P-bundle over M by pull-back. In an obvious way, giving s is
equivalent to giving a submersion dev: M — G /P that is w3 M-equivariant with
respect to hol(F): mM — G i.c., dev(y - z) = hol(F)(7) - dev(x) for # € M and
A 7T1M.

3.2.3. Enlargement of the Haefliger structure of F. We will use a bundle larger
than the one described in the last section, which was used by Benson-Ellis [BES5].
Let Kp be a maximal compact subgroup of P. We consider a G/Kp-bundle
Ta/kp: Xa(F)/Kp — M with a flat G-connection constructed by a 1-cocycle
valued in Diff (G/Kp)® in a way analogous to mg/p in the last section. There is
also a P/Kp-bundle p: Xg(F)/Kp — Xg(F)/P. Since P/Kp is contractible,
there is a section s’ of p, which is unique up to homotopy. We get a section § of
Ta/Kkp defined by the composite

M~ Xg(F) /P —> Xo(F) | Kp .

Clearly, 5 is transverse to the foliation p*&ner) of Xo(F)/Kp, where Eyo 7 is
the foliation of X (F)/P defined by the flat G-connection. Thus we get the
following.

Proposition 3.9. A (G,G/P)-foliation F on M 1is determined by one of the
following data:

(i) A flat principal G-bundle Xg — M and a section § of Xg/Kp — M such
that § is transverse to the foliation p*E of Xg/Kp, where p: Xg/Kp —
Xg/P is the canonical projection and £ is the foliation of Xg/P defined
by the flat G-connection.

(ii) A homomorphism hol: mM — G and a smooth map dev: M — G/Kp
such that dev is transverse to the foliation defined by the fibers of G/ Kp—
G/P and dev(y - z) = hol(~) - dev(x) for any x € M and v € m M.
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4. CHARACTERISTIC CLASSES OF TRANSVERSELY HOMOGENEOUS FOLIATIONS

4.1. Bott connections on the P/Kp-coset foliation of G/Kp. Assume that
G is semisimple and P is a closed subgroup of G. Recall that Kp is a maximal
compact subgroup of P. In this section, we will recall the well known construction
of a left invariant Bott connection on the normal bundle of the right P/K p-coset
foliation Fp on G/ K p, originally due to Kamber-Tondeur [KT75b, Theorem 3.7]
(announced in [KT74]).

Let o: g/p — g be a splitting of the exact sequence

™

0 P g g/p 0.

Then consider the connection V on the normal bundle vGp of the right P-coset
foliation Gp on G determined by

VxY = 7([(idg —om) X, o(Y)))

for X € gand Y € g/p. Observe that V is left invariant. For X € p, we get
VxY = ad(X)(Y). This fact implies that V is a Bott connection on vGp. If
we take an ad Kp-equivariant section o, then V induces a left invariant Bott

connection V on vFp.
Let (A ¢*)k, be the Kp-basic subalgebra of A g*; namely,

(Ae), =17

which is identified to the algebra of left invariant differential forms on G/Kp. By
the left invariance of V, we get Ar,: WO, — (A g")g,. Let g¢ = Home(g ®
C,C). Let Pc be the connected Lie subgroup of G¢ such that Lie(Pc) = Lie(P)®
C. By complexifying V, we get a complex connection V® on the complexified
normal bundle of the right Pc-coset foliation Fp. on G¢/(Kp)c, obtaining the
characteristic homomorphism Ay, : WO, ® C — (A 67) k.- Thus we get that
the following diagram commutes:

(7) (A 82)p)e

e

(Ag)k, @C,

wﬂ:OVXEImuQ%zm@Yﬁ:ﬁVgeK}},

W0, ®C

Az,

where the vertical arrow is canonical.

4.2. Complexification of the enlargement of Haefliger structures. Let F
be a (G,G/P)-foliation of a manifold M. Let G¢ be the connected and simply
connected complex Lie group with Lie(G¢) = Lie(G)®C. Let Kp be the maximal
compact subgroup of P. Let 7g/k, : Xo(F)/Kp — M be the enlargement of the
Haefliger structure considered in Proposition 3.9.
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We construct the fiberwise complexification of 7/, as follows. Let hol(F)c
denote the composite
hol(F
s 1M 4(>)G —— G(C .

Let Xg.(F) be the quotient of M x G by the diagonal action of m; M, obtaining
a flat principal G¢-bundle 7. : Xg.(F) — M whose holonomy homomorphism
is hol(F)c. Then we get a canonical map Xq(F)/Kp — X (F)/(Kp)c, which
is a complexification map G/Kp — G¢/(Kp)c on each fiber. Thus a section s of
Xa(F)/Kp — M gives a section s¢ of X (F)/(Kp)c — M.

The universal covers of Xg(F)/Kp and Xg.(F)/(Kp)c are the products M x
G/Kp and M x G¢/(Kp)c, respectively. Consider the diagram

(A 88) (xp)e O*(M x Ge/(Kp)c; C)

| |

(ANg" )k, ®C O (M x G/Kp;C) ,

where the horizontal arrows are the pull-back by the second projections and the
vertical arrows are the canonical maps defined by complexification. Since m M
acts on G/Kp and G¢/(Kp)c by the left product of G, left invariant forms on
G/Kp and G¢/(Kp)c descend to Xg(F)/Kp and X (F)/(Kp)c. Thus we get

the commutative diagram

(8) (A 8t)p)e Q% (Xoo (F)/(Kp)c; C)

| |

(Ag" )k, ®C Q*(Xe(F)/Kp;C) .

Recall that Pc is the connected Lie subgroup of G¢ with Lie(P¢) = Lie(P)®C.
Combining the diagrams (7) and (8), we get the following.

Proposition 4.1. The following diagram is commutative:

H*(Xg.(F)/(Kp)c; C)

s

H* (WO, ®C) H*(Xe(F)/Kp; C)

where € is the pull-back of the (G, G/P)-foliation of Xe(F)/P by the projection

Xo(F)/Kp — Xg(F)/P, and Ec is the pull-back of the (Gc, G/ Pc)-foliation of
Xeo(F)/Pc by the projection Xe.(F)/(Kp)c — Xao(F)/Pe.

The following simple observation is the unique new idea in our proof of Theo-
rem 1.2.
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Proposition 4.2. Assume that H*(G¢/P;R) — H*(G/P;R) is trivial on pos-
itive degrees. Then the image of Ag, .+ H*(WO,) — H*(Xg(F)/Kp;R) is
contained in the image of nfy ., H*(M;R) — H*(Xg(F)/Kp;R).

Proof. By Proposition 4.1, the image of Aghol( # is contained in the image of
H*(Xeo (F)/(Kp)c; R) — H* (X (F)/Kp;R) .
Consider the Leray-Serre spectral sequences associated to the fiber bundles
XGC(f)/(Kp)(CHM, Xg(f)/Kp%M

Since (Kp)c and Kp are homotopically equivalent to P, it follows that

Xeo(F)/(Kp)c and Xg(F)/Kp are homotopically equivalent to Xg.(F)/P and

Xa(F)/ P, respectively. Thus the restriction map between Es-terms is given by
r: H*(M,H*(Gc/P)) — H*(M,H*(G/P)),

where H*(G¢/P) and H*(G/P) are the corresponding local systems associated
to Xg.(F)/P and Xg(F)/P, respectively. By the assumption of the triviality of
H*(G¢/P;R) — H*(G/P;R) on positive degrees, it follows that the image of r
is contained in H*(M;R). O

4.3. Two results of Benson-Ellis. Let H*(g, Kp) = H*((\¢")k,). Let F be
a (G, G/ P)-foliation of a manifold M. Assume that G is semisimple.

Theorem 4.3 (Benson-Ellis [BE85]). The following diagram commutes:
H*(g, Kp)

2N

H*(WO,) H*(M;R),

Ar

Note that the argument in the last section gives an alternative proof of Theo-
rem 4.3.
Let U be an open subset of R’.

Theorem 4.4 (Benson-Ellis [BE85], see also Haefliger [Hei86, Theorem in Sec-
tion 6]). For a smooth family {Fihev of (G,G/P)-foliations of M, the family
{Ax }iev is locally constant in Hom(H*(WO,), H*(M;R)).

This rigidity comes from the vanishing results of cohomology of representations
of semisimple Lie algebras.

5. PROOF OF THEOREM 1.2

Like in the proof of Theorem 1.1 by Brooks-Goldman and Heitsch, the unique
essential part of the proof of Theorem 1.2 is the following proposition.

Proposition 5.1. If the holonomy homomorphisms of two (G, G/ P)-foliations,
Fo and Fy, on M are homotopic, then Ar, = Ag,.
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Now, Theorem 1.2 follows from Proposition 5.1 with the arguments of Brooks-
Goldman [BG84, Lemma 2].

Proof of Theorem 1.2 by using Proposition 5.1. Recall that we assume that m M
is finitely presented. It is well known that mo(Hom(m M, G)) is finite (see Re-
mark 5.2 at the end of this section). Thus there exist a finite number of (G, G/ P)-
foliations Fi,...,F,, of M such that, for any (G,G/P)-foliation F of M, its
holonomy homomorphism is in the same connected component of Hom(m; M, G)
as the holonomy homomorphism of some F;. Thus Proposition 5.1 implies The-
orem 1.2. 0

Proposition 5.1 directly follows from Theorem 4.4 and Proposition 4.2.

Proof of Proposition 5.1. Let Xg(F;)/Kp — M be the enlargement of the Hae-
fliger structure of F; considered in Proposition 3.9 for i € {0,1}. Recall that
a section s;: M — Xg(F;)/Kp is associated to F;. Consider the foliation
g,- = pi&nolr,) of Xg(F;)/Kp, where p;: Xg(F;)/Kp — Xq(F;)/P is the canon-
ical projection and &z, is the foliation of X (F;)/P defined by the flat G-
connection. R

The homotopy class of (X (F;)/Kp, &) as a (G, G/ P)-foliation is determined
by the homotopy class of the holonomy homomorphism of F;. Thus, by assump-
tion and Theorem 4.4, we get Ag = Ag .

By Proposition 4.2, the image of Ag is contained in the image of p*: H *(M;R)

— H*(Xa(Fo)/Kp;R). Thus (s°)*Ag = (s')*Ag, on H*(WO,), and therefore

Ag, = (") DNg, = (s')Ag, = (s") Ag, = A, . 0

Remark 5.2. For a finitely presented group S with k generators, we can give
Hom(S, GL(n; R)) the structure of a real algebraic variety via a tautological em-
bedding j: Hom(S,GL(n;R)) — GL(n;R)* (this is an observation of Lusztig as
written in [Sul76, Footnote of p. 186]). For an algebraic group G of GL(n;R), we
see that

Hom(S, ) = j( Hom (S, GL(n: R)) ) N G*

is also a real algebraic variety. Thus m( Hom(S,G)) is finite by a theorem of
Whitney [Whi57].

Remark 5.3. We indicate an alternative way to prove the finiteness of the
Godbillon-Vey class by using the complexification of the Haefliger structure of
F under the assumption of the triviality of H*(G¢/FPc;R) — H*(G/P;R) on
positive degrees. Note that this assumption is weaker than the assumption of the
triviality of H*(G¢/P;R) — H*(G/P;R) on positive degrees. Consider a G¢/ Pc-
bundle X¢.(F)/Pc — M, which is regarded as the complexification of the Hae-
fliger structure Xg(F)/P — M of F. Assume that 01(5flcol(f)) is trivial if dim G/ P
is even. By results of Asuke [Asu03, Corollary 1.9 and Proposition 2.2], the
Godbillon-Vey class extends to Xg.(F)/Pc. So, if H*(G¢/Pc;R) — H*(G/P;R)
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is trivial on positive degrees, then we get the finiteness of the Godbillon-Vey class
like in the above proof of Theorem 1.2.

Remark 5.4. We can show the triviality of H*(G¢/FPc;R) — H*(G/P;R) on
positive degrees by using the Schubert cell decomposition of G¢/FPc if Ge/ P is a
generalized Bott tower; namely, the total space of consecutive complex projective
space bundles and G/P is the total space of the corresponding consecutive real
projective space bundles. The Schubert cell decomposition of G¢/F¢ is a cell
decomposition whose cells are orbits of the action of a Borel subgroup of G¢.
This cell decomposition induces a cell decomposition of G/P. In the case of
generalized Bott towers, we can contract the inclusion G/P — G¢/ P cell by cell
to a constant map.

6. EXAMPLES

6.1. The Euler class of the bundle G¢/P — G¢/G. Let us consider the case
of G/P = S9. We characterize the assumption of Theorem 1.2 by the nontriviality
of the Euler class of the sphere bundle

G/P ——Gc/P —G¢/G
which is homotopy equivalent to
(9) Ko/Kp — Kg./Kp —> K¢/ Ke .

Proposition 6.1. H*(G¢/P;R) — H*(G/P;R) is trivial on positive degrees if
and only if the Euler class e of ¢ is nontrivial in H1(Gc/G; R).

Proof. From the Gysin sequence of ¢, we get an exact sequence

1 e
HY(G¢/P;R) —> H°(G¢/G; R) -2 HIY(Ge /G;R) .

Thus e is nontrivial if and only if the image of fs@ is nontrivial. In turn, the image
of fso is nontrivial if and only if the restriction map HY(G¢/P) — HY(G/P) is
nontrivial. 0

6.2. The case of transversely projective foliations of odd codimension.
In this case, (G,G/P) = (SL(q + 1;R),S9) for odd ¢q. Let ¢ = 2k — 1 and
Y, = SU(¢)/ SO(¢). Now, the sphere bundle (9) is

(10) SO(2k)/SO(2k — 1) —= SU(2k)/ SO(2k — 1) —=> Yoy .

We show that the nontriviality of the Euler class of (10) follows from the Borel’s
computation of the Betti numbers of homogeneous spaces [Bor53].

Lemma 6.2. The Euler class of (10) is nontrivial in H**(Yay,).
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Proof. According to the computation of H*(Yy) by Borel [Bor53, Proposition 31.4] ]
we get that

(11) H* (Yor) — H*(Yap—1)
is surjective and
(12) dim H* (Yor) = 2 dim H* (Yo 1) -
Consider also the fibration
Yap—1 ——= SU(2k)/ SO(2k — 1) —= SU(2k)/SU(2k — 1) = S*-1
Assume that the Euler class of py is trivial. Then
(13) dim H*(SU(2k)/SO(2k — 1)) = dim H*(S?*) - dim H*(Yay,) ;

in particular, pj: H®(Yar) — H*(SU(2k)/SO(2k — 1)) is injective. By the surjec-
tivity of (11), we get the surjectivity of t*: H*(SU(2k)/SO(2k—1)) — H*(Yar_1).
Thus, by the Leray-Hirsch theorem, we obtain

(14)  dim H*(SU(2k)/ SO(2k — 1)) = dim H*(Yo_1) - dim H*(S*') .
But (13) and (14) contradict (12). Thus the Euler class of py, is nontrivial. [

So H*(K¢./Kp;R) — H*(Kg/Kp;R) is trivial on positive degrees. Thus
Theorem 1.2 gives an alternative proof of Theorem 1.1 for the case of odd codi-
mension.

6.3. The case of transversely conformally flat foliations. Now, (G,G/P) =
(SO(n+1,1),5%). So Gc = SO(n + 2;C), and

Kg. =50(n+2), Kg=5(0(n+1)x{+1}), Kp=5(0(n)x{£1}).
Thus the sphere bundle (9) is

S(O(n+1) x {£1})/S(O(n) x {£1})

SO(n+2)/S(0O(n) x {£1})

l(so

SO(n+2)/S(O(n+1) x {£1}) .

The isotropy group of the SO(n + 2)-action on the unit tangent sphere bundle of
SO(n +2)/S(0O(n+ 1) x {£1}) is S(O(n) x {£1}). So (so is the unit tangent
sphere bundle of SO(n + 2)/S(O(n + 1) x {+1}) = RP"". Hence the Euler
class of (so is equal to the fundamental class of RP"*! if n is odd. Thus, by
Proposition 6.1, the assumption of Theorem 1.2 is satisfied in this case.
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6.4. The case of transversely spherical CR foliations. Now, (G,G/P) =
(SU(n + 1,1), 8?"*1) where the codimension ¢ = 2n + 1 is odd. In this case,
G¢ =SL(n +2;C) and

Ke.=SU(n+2), Ke=SUMm+1)U(1)), Kp=SU(n)U)).
Thus the sphere bundle (9) is
S(U(n +1)U(1))/S(U(n) U(1))

SU(n +2)/S(U(n) U(1))

\LCSU

SU(n+2)/S(U(n+1)U(1)) .
The isotropy group of the SU(n + 2)-action on the unit tangent sphere bundle of
SU(n+2)/S(U(n+1)U(1)) is S(U(n) U(1)). So (sy is the unit tangent sphere
bundle of SU(n +2)/S(U(n + 1) U(1)) =& CP™"'. Thus the Euler class of (sy is

equal to n + 2 times the fundamental class of CP"*!. By Proposition 6.1, the
assumption of Theorem 1.2 is satisfied in this case.

6.5. The case (G,G/P) = (Sp(n + 1,1),S%3). Note that the codimension is
always odd in this case. We get G¢ = Sp(n + 2;C) and

Kg. =Sp(n+2), Kg=Sp(n+1)Sp(l), Kp==Sp(n)Sp(l).
Thus the sphere bundle (9) is

Sp(n + 1) Sp(1)/Sp(n) Sp(1) ——— Sp(n + 2)/Sp(n) Sp(1)

\L CSp

Sp(n+2)/Sp(n+1)Sp(1) .

The isotropy group of the Sp(n + 2)-action on the unit tangent sphere bundle of
Sp(n +2)/Sp(n+1)Sp(1) is Sp(n). Thus (s is the unit tangent sphere bundle
of Sp(n +2)/Sp(n + 1) Sp(1) = HP"™'. Hence the Euler class of (g, is equal to
n+ 2 times the fundamental class of HP"*!. By Proposition 6.1, the assumption
of Theorem 1.2 is satisfied in this case.

6.6. The case (G,G/P) = (Fy_a0),55). We recall the explicit presentation of
Fy—20), Fy and F| 'C as automorphism groups of Jordan algebras due to Freuden-

thal [Fre85] and Yokota [Yok75]. We follow Yokota [Yok09]. Let O be the Cayley
algebra over R. Let M(3;0) be the 3 x 3 matrix group with coefficients in O.

Let X* =*X, where the bar denotes conjugation in Q. Let I} = <_§ g ((E),
J(1,2) ={X € M(3;0)| [X"I{ = X} ,
J={XeM@3,0)|X" =X},
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and J® = J ® C. A product o is defined on these R-vector spaces by X oY =
(XY +YX). Endowed with this product, J(1,2), J and J€ are called Jordan
algebras. J can be written as follows:

§1 T3 To
J = T3 52 Ty EM(3,@) fiGR, 5137;6@
To T1 &3

Here, Fy_s0), Fy and F, ' are defined as the automorphism groups of these Jordan
algebras:

Fya0) ={0 € Autp(J(1,2)) [o(zoy) =0o(x)oo(y) },
Fy={oecAutg(J) |o(zxoy)=o(x)oa(y)},
Ff={oeAutc(J) |o(zoy) =0c(x)oo(y)}.

It is well known that G¢ = Ff and Kg, = Fy. We will get an explicit form of
the parabolic subgroup P.
Lemma 6.3 (Announced by Borel [Bor50] and proved by Matsushima [Mat52]).
The isotropy group of the Fy-action on J at Fy3 = <é § §) is Spin(9). Thus
the orbit of E11 under the Fy-action is the octonionic projective plane QP? =
F,/Spin(9).
Here, OP? is given by the following formula [Yok75]:
OPP={XecMB;0)|X*=X, tr X=1}.
There is a left G-action on QP? defined by (g, X) %. The orbit of E1y
under this G-action is the octonionic hyperbolic plane HZ = Fj_s)/ Spin(9),
and the boundary 0HZ of HZ in QP? is given by
OHE = {X e OP* [tr(X o [} X) =0} .
Since QP? consists of the matrices

§1 T3 T
X=|73 & 1] eJ
To T1 &3
such that
§olz = |951|2 ;o &&= |9U2|2 , &&= |953|2 )
Toxg = §1T1, X3T1= §aTa, T1T2 = E373
Si+&+8G=1,

a simple calculation shows that tr(X o I{X) = 0 is equivalent to & = 5 for points
X € OP? as above, obtaining a diffeomorphism

OHg ~ { (w2,23) € O | [wof” + |asf* = 1/4} 5
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in particular, 9HZ ~ S'. Then P is the isotropy group of the G-action on 9H3
1/20 1/2
at Xy = < 000 )

1/201/2
We determine the sphere bundle (9) in this case. Let K¢ denote the isotropy

group of the Fy-action at Foy = <§ ([1; §> , which is a maximal compact subgroup of

G isomorphic to Spin(9) by Lemma 6.3. A maximal compact subgroup Kp of P is
given by Kp = KgNP. Since the Fy-action on J fixes the identity matrix [Yok09,
Lemma 2.2.4] or [Yok75, Lemma 2.3-(1)], Kp is equal to the isotropy group

of the Spin(9)-action on J at <§ § é), which is isomorphic to Spin(7) [Yok09,
Theorem 2.7.5] or [Yok75, Remark 6.3]. Thus the sphere bundle (9) is
Cry :
S5 2 Spin(9)/ Spin(7) —= Fy/ Spin(7) —— F;/ Spin(9) .
We will show the following.
Lemma 6.4. (g, is diffeomorphic to the unit tangent sphere bundle of Fy/ Spin(9).}

The orbit K of Fy; under the Fj-action on J is OP? = F,/Spin(9) by
Lemma 6.3. Let us describe the tangent space T, K of K at Ej;.

Lemma 6.5. We have

0 T3 fg
(15) TEUIC = z3 0 O c M(3, @) Lo, T3 € O
) 0 0

Proof. Let f, = Lie(F)). Consider the infinitesimal f;-action p: {4 — Tg, K at
Ey1. We get p(f4) = Tg, K by definition. Let o = (é %1 §1>. Since ¢? = 1,

we obtain an involution o: f4 — f4 given by o(X) = 0Xo. Then we get a
decomposition f4 = (f4)s @ (f4)—o, Where (f4), is the o-invariant part and (f4)_,
is the o-antiinvariant part. By [Yok09, Theorem 2.9.1] or [Yok90, Theorem 2.4.4],
we get Spin(9) = (F,)?. By Lemma 6.3, it follows that p((f4)s) = 0. On the other
hand, for X € (f4),g, we get O'(X)Ell = O'XO'Ell = _Ell- Thus IO(f4) = TE11’C
is contained in the c-antiinvariant part (J)_, of J. Since it is easy to see that
(J)-o is equal to the right hand side of (15) and dim(J)_, = dim KC, we get the

equality (15). O
We saw that Kp is the isotropy group of the adjoint Kg-action on
0 XT3 To
(j>*a = T3 0 0 o, 13 € O
T2 0 0
at <§ § é). Thus Lemma 6.5 implies that Kp is the isotropy group of the K¢-
action on Tg,, K. This proves Lemma 6.4. Hence, according to [Hir49] or [Yok55],
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the Euler class of (p, is equal to 3 times the fundamental class of QP? by the
cell decomposition of @P?. So the assumption of Theorem 1.2 is satisfied in this
case.

6.7. A remark on the center. The G-actions on G/P are not effective for
some of the pairs (G, G/P) considered in Corollary 1.3. In fact, in the case where
G is either (SU(n+1,1), 5% ) or (Sp(n+1,1), S&+3) for even n, the stabilizers
of the G-action on G/P are given by {cl,o | c € C*, "2 = 1} and {*1,,»},
respectively, where they are equal to the centers Z(G) of G. In the other cases
considered in Corollary 1.3, the G-actions on G/P are effective. The quotient of
SU(n + 1,1) and Sp(n + 1,1) by the centers are denoted by PSU(n + 1,1) and
PSp(n +1,1).

The finiteness of 2(PSU(n+1,1), %) and (PSp(n+1, 1), S27%3) is proved
like in the cases X(SU(n+1,1), S2"*1) and X(Sp(n+1,1), S2*3) of Theorem 1.2.
We only need to notice the following two facts. By the discreteness of Z(G), there
is no difference when we consider their Lie algebras. Since Z(G) is contained in
Z(G¢) and Kp in both cases, the canonical embedding G/Kp — G¢/(Kp)c is
not changed by taking quotient by Z(G).

7. BOTT-THURSTON-HEITSCH TYPE FORMULAS

7.1. Pittie’s Bott connections. The purpose of Section 7 is to prove Bott-
Thurston-Heitsch type formulas (Theorem 1.9). Section 7.1 is devoted to recall
the Pittie’s construction of a Bott connection for the P/ K p-coset foliation Fp of
G/Kp, where GG is semisimple and P is parabolic. It will be used to caluculate
the Godbillon-Vey class of Fp in Lie algebra cohomology in Section 7.2. Since
(G, G/ P)-foliations are classified by Fp in the sense of Proposition 3.9-(ii), this
computation can be applied to (G, G/P)-foliations (Section 7.4). By using the
computation in Section 7.2, we will also show that the Godbillon-Vey class is the
essentially unique nontrivial secondary characteristic class for (G, G/ P)-foliations
in Section 7.3.

First we recall the decompositions of the semisimple g¢ and parabolic p¢. Let
h be a Cartan subalgebra of gc¢ contained in pc. Let

gc =he Plac)a

aeY

be the root-space decomposition of gc, where T is the set of roots. Fix a set
IT of simple roots which additively generate T, and let YT be the set of corre-
sponding positive roots. Since a Borel subalgebra contained in p¢ is conjugate
to the standard Borel subalgebra ®aer+ (gc)a, we can assume that pc contains
B.cr+(gc)a. Then there exists a subset ® of T such that

(16) pe=EP (9c)a ®b® EP (a0)a -

ac—® aeYTt+
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Thus, with

t= @ (g(C)a@b7 u= @ (g(C)Oca b= @ (g(C)—oc7

acdU(—d) Q€Y H\® €Y\
we get a decomposition
(17) gc=pcto=t+u+ov.
Here, v is a reductive subalgebra of g¢ called the Levi part of pe. Note that u
and v are ad v-invariant and nilpotent.
Let Fp. the right Pc-coset foliation of G¢. Left invariant complex connections

on the normal bundle vF p. of F p. are in one-to-one correspondence with C-linear
maps gc — gl(gc/pc; C). Let o: gc — pc be the projection with respect to the
decomposition (17). Consider the connection V on vFp, determined by

(18) VxY = 7([(idg —om) X, o(Y)))

for X € gc and Y € g¢/pc. The connection form © of Ve is regarded as an
element of g& ® gl(gc/pc; C). Pittie observed that, if we identify gc/pc to v
via the canonical projection, then the connection form © of the connection given
by (18) is the Maurer-Cartan form of the adjoint action of pc on v, which is given
by

(19) 0i;(X) = ni([X, Yj])

for 1 <i<gq,1<j<gq, where {Y;} is a basis of v and {n;} is the basis of v*
dual to {Y;}. Let pynp- denote the composite

Agr = N2pe@pi Ao @ A2o" —=PL A0 ——= ¥ Ap*
of the projections with respect to the decompositions (16) and (17). Let us denote
the composite
Pu*no*

(20) g: —5 A2ge P A

by d. The curvature form Q of © is the element of A g¢ @ gl(gc/pc; C) given by
Q) =dO — O ANBO. We will use the following observation of Pittie.

Proposition 7.1 ([Pit79, Proposition 2.1]). d© = Q.

This formula is a consequence of the (ad t)-invariance of u and v.
Let YT\ ® = {a;}1<i<q. We will use the following observation of Pittie, which
is a direct consequence of the formula (19).

Proposition 7.2 ([Pit79, Theorem 2.3]). Ag,(h1) = —5= > 1, ;.

Pittie observed that —Az,(c1) is a Kéhler form of G¢/Pc under the identifi-
cation of Au* ® A v* with the left invariant de Rham complex of G¢/Pc in a
standard way. By using the Lefschetz decomposition of cohomology of Kéhler
manifolds, Pittie showed the following.
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Theorem 7.3 ([Pit79, Theorem 3.1]). Ag, (H*(WO,)) is linearly spanned by
the Pontryagin classes and {Ag,(hihicl) | I C{3,5,...,[q]}}, where [q] is the
mazimal odd number less than q + 1.

7.2. Computation in Lie algebra cohomology.

7.2.1. The case (G,G/P) = (SL(¢ + 1;R), S%). Let ¢ = ¢+ 1. In this case, pc
and v are the subalgebras of gc = sl(¢’; C) consisting of the matrices of the form

* %k 00 --- 0
0 =* *x 0 --- 0
: . : and oo : ’
0 * --- % * 0 -+ 0

respectively. Let E;; be the element of gc with 1 at the (¢,7)-th entry and 0
at the other entries. Let E}; be the dual of E;;. In this case, {E;}acj<y is a
basis of v. Let © = (;;)2<; j<¢ be the matrix presentation of © with respect to
{Elj}nggq’- From [Ekha Elj] = (ShlEkj — jk:Elh and Ej\/l<Ekh> = jk5iha we get

0:5(Exn) = EY;([Ekn, Evj]) = 0n10110i5 — 010 -

Then
v v v %
E22 - En E32 e Eq’2
v v v v
E23 E33 - En e Eq/3
O = (0ij)2cij<g = : : - :
% v v v
E2q’ E3q’ T Eq’q’ - B

By observing that Zf/zl EY =0 on g§, we get

!

1 q
Arp () = 2—tr@ =5- > (B —EY) = —%Eﬁ ;
=2
A]:P(Cl) = dA]:P hl ZE A El\c/l .

Note that © equals the Maurer-Cartan form @Mc = (B}})2<ij<¢ of 5l(g; C) mod-
ulo Ag,(hy). Thus

(21) Az, (hicl) = —LHQI'Ev A /\ EY. NE)
Fp\lt1tq (2 )q+1 11 I k1 »
2
(22) Agp(hihict) = Az, (hacf) hi(Onc) -

We will use these formulas to give an alternative proof of Theorem 1.1. Heitsch
obtained more general formulas of this type for secondary characteristic classes
of the form hrc; by the application of his residues formulas ([Hei78, Theorem 4.2]
and [Hei83, Theorem 2.3]).
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7.2.2. The case (G,G/P) = (SO(n+1,1),S%). Note that Yamato [Yam75] also
made computation of characteristic classes of this case in a different way. Let
n=n+1and n” =n+ 2. Let

0 0 -1

0 I, 0 |egl(n;R),

-1 0 0

(23) [’:L” -

where [,, is the n x n identity matrix. We use the following description of g =
so(n+1,1):

g={Xegl(n;R)|'XI, +1,X=0}

a u 0
= v A tuw | egl(n”;R)|aeR, Ae€so(n;R), u,v e R"
0 v —a

a u 0
(0 A tu ] egl(n”;R)|aeR, Aeso(n;R), ueR"

{ 0 0 —a
Then

a u 0

gc = v A tu | eglin”;C)laeC, Ae€so(n;C), u,veC"”} ,
0 v —a
a u 0

pc = 0 A 'w|egln;C)laeC, A€so(n;C), ueC", ,
0 0 —a
0 00

0= v 0 0] egl(n;C)lveC
0 v O

Let

a=Fy—FEyn , vij=Ej+Ew;, Aw=FEwp— Ey .
Then we get a basis
(24) {vi}acion U{a} U {0} ocjcn U {Apntashanscn

of dc- Here {Uj}QSan/ is a basis of v and {CL} U {tUj}QSan/ U {Akh}2§k<h§n’ is a
basis of pc. We get

[a, ’Uj] = —Uj s [t?]i, ’Uj] = 5Z'jCL s [Akh,vj] = (thvk — 5jkvh .
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For z € g, let 2V € g§ denote the dual of z with respect to the basis (24). Since
0,;(X) = v/ ([X,v;]) for X € pc, it follows that

Oi5(a) = —dij eij(tvl) =0, 0;(Arn) = 60 — 010 -

Thus
_a\/ Ag/z ... AX'Q
A, _qY
=0y =|"7
: AL
A;/n/ R Axn/ —CLV

Since d(a”) = — S0, 'Y A v and dAY, = 0 (see (20) for the definition of d),
Proposition 7.1 implies

S A 0 0
0 — 0 ZZ;Q oy Ay '
f : 0
0 e 0 Zk o oy Ay
We get
nn_H n+1
(25) Az, (hich) = @y a’ A /\ vl Ay

The Godbillon-Vey class of Fp is given by this formula and the well known
relation GV(Fp) = (2m)" " Ag, (hic}) [KT75a, Theorem 7.20]. Later, in Propo-
sition 7.4, we will show that any other nontrivial secondary characteristic class
is a multiple of the Godbillon-Vey class by using (25). To be used later in the
proof of Theorem 1.9, we state also the following equation:

n v v v vtV
(26) Agp(hicy) = 22”+17r"+1 -a” A /\( U ) A /\(Uk —up)
k=2 k=2

To derive (26) from (25), we note that

(27> sion 1 2 3 m m+1 m+2 -+ 2m—1 2m
M1 35 ... 2m—1 2 4 . 2m—2 2m
m(m — 1)

2

7.2.3. The case (G,G/P) = (SU(n+1,1),52*). Let n' =n+1and n” =n+2.
Let I/, be the matrix given by (23). We use the following description of g =
su(n/,1):

g = {X c 5[(71”; C) | tYIrIL// + [;L"X = 0}
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a u —lc
= A 'w | esl(n”;C)
v—1lg v —a

a€C, c,geR,
Aecu(n), u,veCr

1
0
Since e; = <: ) is a vector in the light cone, we get
0
={X €g|dae€Csothat Xe; =ae; }

a u —lc
= { 0 A ‘'u | esl(n;C)
0 0 —-a

Ae€u(n), ueCr

a€C, ceR, }

Then g¢ = sl(n”; C), and

a1 Uy C
ay,as,c € C, up,up € C?
p(c — 0 A tu2 c 5[(71//; (C) ) ) ) ‘7 ) ;
0 0 a A € gl(n; C)
0 0 O
b= v, 0 0 esl(n”;C)|geC, v,v0€C”
g vy 0

We can compute © and (2 like in the last case. But here we compute only the
Godbillon-Vey class of Fp. By using the computation, we will see that any
other nontrivial secondary characteristic classes are multiples of the Godbillon-
Vey class (Proposition 7.4). We will apply Proposition 7.2 to compute Az, (hy).
As a Cartan subalgebra h, we take the subalgebra of gc consisting of diagonal
matrices. As a basis of v consisting of root vectors, we can take {Ej; focp<n U
{Ewn} U{Ewi}o<k<n. For a root vector z € gc, let z¥ € g¢ be the element
such that zY(z) = 1 and 2Y(2') = 0 for any 2/ € h and any root vector z’
which is linearly independent of z. The root of Ej; is given by Ejj — EY;. Thus
Proposition 7.2 implies

1
A]-‘P(hl) — %(ET\L/" 1" EYI + Z Ek:k EYI + Z // Ekk >

!/

n
= (Bl = Eg)

So

A]—‘P<Cl) = d(A}—P hl = (ZE A El:jl ZE]\C/TL” ANFE ”k) .

Thus we get the following formula:

2(n')2"+2(2n + 1)!
(27T)2n+2

(28) Az, (hici"th) =
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" n/

< (B = ) A N (B A EL) A\ (B A Bl

k=2 k=2
The Godbillon-Vey class of Fp is given by this formula and the well known
relation GV(Fp) = (27)2"*2Ax, (hic]"™) [KT75a, Theorem 7.20]. Later, in
Proposition 7.4, we will show that any other nontrivial secondary characteristic
class of transversely spherical CR foliations is a multiple of the Godbillon-Vey
class by using (28). To use later for the proof of Theorem 1.9, we state also the
following direct consequence of (28) and (27):

2(n/)*+2(2n 4+ 1)!
92n+1 (27r)2n+2

" n/

X (EYy = Epr) A [\ (Blk + B A N\ (Bl + Eying)
k=2 k=2

n// n/

A N B = B A Nyl — B -

k=2 k=2

(20) Agp (™) = (1)

7.2.4. The case (G,G/P) = (Sp(n+1,1),84"3) Let n’ =n+1and n” =n+2.

Let
;7 0 I’;L"
/= (—I;,, 0) !

where I/, is the matrix given by (23). We use the following description of g =

sp(n/,1):
. (L Zy "
g_{X_<Z3 Z4>Eg[(2n,@)

p={X e€g|3s,teCsothat Xe; = se; +te,i1},

Zy=274, Zy=—Z3

X+ X =0, }
Here,

where e; is the i-th standard unit vector of C**". Thus p consists of the matrices
of the form:

a b —lc d f g
0 A % 0 B —lf
0 O —a 0 0 d
—d —f —-g @ b —/—1¢|’
0 -B 'f 0 A %
0 0 —-d 00 -a
where c € R, a, e € C, b, d € C", A € 5l(n;C) with A ="A, and B € u(n). We

get
dc = 5p(n”;(C) = {X € g[(2n";(C) \ IXJ +TX = O} ,
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which consists of the matrices of the form

_ Zl ZZ ",
X = (23 Z4> € gl(2n”; C)

such that
tZ1[T/L// + [7/11124 - —tZ3I;L// + [7/11123 - —tZQI;L// + [;//ZQ - 0 .
Then pc is the subalgebra of g¢ consisting of the matrices

ar by c d; J1 ()1
0 A ' 0 B -'f
0 O a9 0 0 dy
dy fo g2 —ay by —tc
0 B, —'f, 0 —tA ‘b
0 0 dQ 0 0 —ay

where ay,as, ¢, fi, fo, 91,92 € C, by, by, d1,dy € C*", A € sl(n;C) and By, B, €
u(n). Let h be a Cartan subalgebra of gc with the following basis:

(30) {Ell - EZTL” 2n”} U {Ekk - En”+kn”+k}2§k§n’ U {En” n' — En”Jrl n”+1} .

Thus v consists of the matrices

0 0O 0 O 0 0
tul 0 0 —tfl 0 O
v us 0 y1 1 O

0 0O 0 O 0 0"~
~'Z5 0 0 ‘up 0 O
Yo T2 0 —v wup O

where v, y1, 12 € C and uq, us, x1, 29 € C".

Here, we compute the Godbillon-Vey class like in the last example by using
Proposition 7.2. Later, by using the computation, we will see any other non-
trivial secondary characteristic class is a multiple of the Godbillon-Vey class (see
Proposition 7.4). As a basis of v consisting of root vectors, take

Uty = Eyp1 + Eoprprgge 2<k<n,

Ug g = Epr g + By, 2< k<,
v=FEu1— Eyprprgr,

L1k = —Ekn”+1 + En”n”+k s 2<k< n' )

Yy = En”n”—H 5
Top = —Eprip1 + Eopri 2<k<n,
Y2 = Eopry .
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Let {7;}1<i<n be the basis of h* dual to (30). The roots corresponding to these
vectors are given as follows:

U,k U2,k v L1,k Y1 T2k Y2
Y+ | Vet Vo | TV Ve | Ve W | 2 | 1 — Yk | 21

Here, 2 < k < n'. Thus, by Proposition 7.2,
2n +3
(31) App(hn) =2

For a root vector z € gc, let z¥ € g& be determined by zV(z) = 1 and z¥(2') =0
for any 2’ € h and any root vector 2z’ which is linearly independent of z. We have

(71 - %’L”) .

/ /

dn :_Z(tqu/\ul k) — (UVAUV)_Z(txgkAka) (s A 3)
k=2 k=2

d’yn//— ’U /\U +Z UQk/\UQk yl/\yl +Z ajlk‘/\xlk

(see (20) for the definition of d). Let ¢ be the standard symplectic form on u @ v
defined by

¢= Z uiy Auyy) +2("Y AvY) +Z (g Nasy) + vy Ays)

+Z uy e A ) + "y Ay) +Z T ATy y) -

Then
2n +3
(32) Arpler) = d(Arp () = —— (.
By (31) and (32), we obtain the following formula of the Godbillon-Vey class:
" (2n +3)"+ "
(33) AJ’-‘p(thil +3) = _W (71 - %L//) A C4 +3

This formula gives the Godbillon-Vey class of Fp by the well known relation
GV(Fp) = 2m) " Ax, (hici"™®) [KT75a, Theorem 7.20]. Later, in Proposi-
tion 7.4, we will show that any other nontrivial secondary characteristic class
of (Sp(n +1,1), 84 *F3)foliations is a multiple of the Godbillon-Vey class by us-
ing (33). To use later for the proof of Theorem 1.9, we also state the following
direct consequence of (33) and (27):

(34) Az, (hic]™™)

S ) AAC A NG

28n+67r4n+4
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where z runs in

{ur e yo<kans U {uk fo<k<n U{T1kto<kan U {Tok fo<kan U {1, y2, v}

in this order.

7.2.5. The case (G, G/P) = (Fy_ap),S2). Here, we refer to [Yok09, Section 2.6]
for the structure of {§ = Lie(Fy). The Dynkin diagram of the Lie algebra f5 is:

oO—o——">0——0 ,
(35) Qq Qg a3 Qg

where the roots {a;}i<i<4, for a standard choice of a Cartan subalgebra h =
@5):0 CH;, are given by
1
am=XA—A, aw=A—-X, a3=>A, a4:§(—)\0—)\1—)\2+)\3),

where \; = B(-, H;) with respect to the Killing form B of f$. The list of positive
roots of {§ for this simple root system is given by

A= a1+ ax+ az, A = Qs+ ag,

Ay = Qs , A3 = aq + 209 + 3az + 2ay
A—A= ap, A—l=a1+ a,
-+ A3 = as + 2a + 201 Al — A= Qs ,
“M+N= a1+ as+2a3+204, —Ay+ A3=a1+ 205+ 203+ 20y,
Ao+ A= ai+2a + 203, Ao+ A =ar+ ay+2as,
Ao + A3 = 201 + 3ag + das + 2ay AL+ A = ag + 203
M+ A3 = a1+ 3as + 4daz + 2ay , Ao+ A3 =y + 200 + dag + 4ay

%()\04—)\14—)\24‘)\3):Oél+2042+3063+044,
%(—)\0—)\1—/\24‘/\3) +Oé4,
%()\0+)\1—)\2+)\3) a1+2a2+2a3—|—a4,
%()\0—)\1—1-)\2—1-)\3) CY1+ 062+2043+Oé4
)

)

)

(Ao — A1+ A+ A3 a3+ ay
(= X+ A1 — Ao+ A3
T — A — A+ A
T+ A+ A+ Ag) = Qg + 203 + ay

As mentioned in Section 6.6, the semisimple part of the Levi part of pc¢ is
50(7; C), whose Dynkin diagram is:

Qo + Q3+ 0y

N= N

ar+ as+ aztay

oO——0o——>0 .

According to the Dynkin diagram (35) of 5, the unique possibility of ® N II
in (16) is {ay, a2, a3}. Then v is spanned by the 15 negative roots that are not
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generated by {—ay, —as, —as}, whose sum is —11)3, as can be computed by using
the above list of positive roots. By Proposition 7.2, we get Az, (hi) = —%)\3.
Take root vectors {E,}taey so that B(E,, E_,) = 1 for the Killing form B of
f$. For a € T, let H, be the element of b such that B(H, H,) = a(H) for any
H € h. By Proposition 7.1 and since

dX3(Ey, E_) = —B(Eq, E_o) A3(Hy) = —X3(Ha)

we get
11
Agp(er) = dAr,(h) = o > Ns(Ho) EYNEY, .
aeYTT\®
By using B(Z?Zl NH;, Zj:l N:Hj) = 18 Z?Zl AiN;, we can compute A\3(H,) in

terms of the above list of positive roots of §5. Then we get the following formula
of the Godbillon-Vey class:

1116 1815 15!
924,16

(36) Az, (hyc®) = A N\ EIANEY,.

aeTH\®
This formula gives GV(Fp) by the well known relation GV (Fp)=(27)Ax, (hici?)]
[KT75a, Theorem 7.20]. In Proposition 7.4, we will show that any other nontriv-
ial secondary characteristic class of (Fy—a0), S15)-foliations is a multiple of the
Godbillon-Vey class by using (36). To be used later in the proof of Theorem 1.9,
we also state the following direct consequence of (36) and (27):

(37) Az, (hicy”)
1116 330 151
T 924,16 Az A\ /\ (By +EX,) A /\ (EY, —Ey) .

YT\ aeYTH\P

7.3. The Godbillon-Vey class spans the secondary characteristic classes.
We assume that (G,G/P) is equal to (SO(n +1,1),5%), (SU(n + 1,1), S+,
(Sp(n + 1,1),8%3) or (Fi-20),5%). In the last section, we saw that the
Godbillon-Vey class of Fp is nontrivial, being given by a volume form on G/Kp.
By using the computation, we will prove the following result in this section.

Proposition 7.4. Az(H*(WO,)) is spanned by the Godbillon-Vey class Ax(hic))]
for any (G, G/ P)-foliation F of M.

Recall that the secondary characteristic classes of the form Ax,(hsc;) with
nonempty I are called exotic. First, we observe the following.

Lemma 7.5. Fvery nontrivial exotic secondary characteristic class of Fp is a
multiple of the Godbillon-Vey class Az, (hicl) in H*(g, Kp).

Proof. Note that deg hrc; > 2q+ 1 for any hrc; in WO, with nonempty I. Since
(G,G/P) is (SO(n + 1,1),8%), (SU(n + 1,1),S2), (Sp(n + 1,1), ST*°) or
(Fy(—20), 522), we have G/Kp = 1+ 2dimG/P. Then Ag,(hsc;) = 0 for any
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hrcy in WO, with deghre; > 2g + 1, and Ag(hscy) is a multiple of a volume
form on G/Kp for any hrc; in WO, with deg hyc; = 2g+1. Since the Godbillon-
Vey class is represented by a volume form on G/Kp by (25), (28), (33) and (36),
the proof is concluded. 0

For the Pontryagin classes, an argument similar to Heitsch [Hei86, Section 4]
for transversely projective foliations implies the following.

Lemma 7.6. For any (G, G/P)-foliation F of M, the Pontryagin classes of vJF
are zero in H*(M).

Proof. Let To(G/Kg) be the complement of the zero section of the total space
of the tangent bundle of G/K¢. Since G/Kp is G-equivariantly diffeomorphic to
the total space of the unit tangent bundle of G/K¢ in these cases as mentioned
in Section 6, we identify G/Kp as a submanifold of Ty(G/Kg). We have a G-
equivariant contraction v: To(G/K¢g) — G/Kp. Let p: To(G/Kg) — G/Kg be
the projection. Consider the vector bundle [ker p, on Ty(G/K¢) consisting of
vertical vectors. Let ' = (ker p,)|q/k,. We have vFp ® R, = E, where R, is the
trivial vector bundle of rank one over GG/Kp spanned by vectors tangent to the
fibers of v. Here, E has a G-invariant flat connection V' induced from the vector
bundle structure of ker p,. Thus, the total Pontryagin form p(E, V') of (E, V')
Is zero. P

Let M be the universal cover of M and dev: M — G/Kp be a m; M-equivariant
map such that F= d/e;*}"p, where F is the lift of F to M (see Proposition 3.9).

By the m M-equivariance of d/e\v, the vector bundles d/e\v*]RV and dev E over M
descend to vector bundles over M, which are denoted by R, and E),, respectively.
Since E),; admits a flat connection by construction, the total Pontryagin class
p(Ey) of Eyis 0. By vF@Ry, = Ejyy and the product formula of total Pontryagin
classes, we get p(vF) = p(Ey) = 0. O

Proposition 7.4 is a consequence of Lemmas 7.5 and 7.6 and Theorem 4.3.
7.4. Proof of Bott-Thurston-Heitsch type formulas.

7.4.1. The volume of flat G/Kg-bundles. Here, we recall the definition of the
characteristic classes of G/Kg-bundles with flat G-connections. For a G/K¢-
bundle pg: @ — N with a flat G-connection whose holonomy homomorphism is
h: m N — G, we have the Chern-Weil homomorphism H*(g, Kg) — H*(Q;R).
The sections s of pg are unique up to isotopy because of the contractibility of
G/Kg. By composing the pull-back by s with the Chern-Weil homomorphism,
we get a map H*(g, Kg) — H*(N;R). Since this map depends only on h, we
denote it by Zj,.

We fix an orientation on G/ K¢. Let wg/k, be the corresponding left invariant
volume form on G/K¢ of norm 1 with respect to the metric obtained from the
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Killing metric on g. Let volg/k, = [wa/k,] and
VOl(h) = Eh(Volg/KG) S Hm(N,R) ,

where m = dimG/Kg. The class vol(h) is called the wvolume of @ or of the
holonomy presentation h.

Example 7.7. For the case where N = I'\G// K for a torsion-free uniform lattice
I' of G, the volume of I' < G is denoted by vol(I'), which is represented by the
volume form on N induced from wg/k,; -

Remark 7.8. =), is called the Borel regulator map by algebraic geometers. For the
importance of the volume in algebraic geometry, see [Rez96] and the references
therein.

7.4.2. Bott-Thurston-Heitsch type formulas for homogeneous foliations. We ap-
ply the computation of the last section to calculate the Godbillon-Vey classes
of homogeneous foliations Fr in Example 2.3. We consider the K¢ /K p-bundle
¢k, I'\G/Kp — I'\G/K¢. In the next proposition, we will need orientations of
the fibers of ¢, and of G/K¢ to define the fiber integration along ¢, and to
determine a volume form we/x,, on '\G /K¢. In the proof, we will take these ori-
entations by using the decomposition of the volume form of G/Kp into a volume
form of G/ K¢ and a fiberwise volume form of ¢, .

Proposition 7.9. Let (G, G/P) be one of (SOg(n+1,1),57),(SU(n+1,1),S>+1) ]
(Sp(n+1,1),85%3) or (Fy—a0), 522). Let ¢ = dim G/P (the codimension of Fr).
We have

(38) Az.(hicl) = cowa/kg
Prg

in QY T\G/Kg) for some orientations of G/Kg and of the fibers of ¢r., where
cg 18 the constant depending on (G,G/P) given by the following table:

(G,G/P) ca
n(n—1) n+1
. (—=1) = T'n"2 nlvol(S™)
(SOo(n +1,1),5%) T

(_1)n+1(n + 1)2n+2(2n + 1)] v01(52n+1)
2n+1ﬂ-2n+2(n + 2)n+1
(2n + 3)1 T (4n + 3)! vol (S +3)
26n+%ﬂ-4n+4(n + 3)2n+2
3% 741116 151 vol(S19)
26716

(SU(n +1,1), 5%+

(Sp(n + 1, 1), Sin+3)

(Fia(—20), S%2)
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Here, vol(S9) is the volume of the unit sphere in RIT1 given by vol(S7) =

(QQZ(I—HW for odd q and vol(S?) = 1235272 q/l) for even q.

Proof. Consider the case where (G,G/P) = (SOg(n+1,1),5%). We will use the
notation of Sections 7.2.2. Let ¢ = £p & m be the orthogonal decomposition
with respect to the Killing metric. Regarding g as a subalgebra of gl(n + 2;R)
like in Section 7.2.2, &5 and m are realized as

(39) tg={Aecg|A=-A"},
(40) m:{(tgg—f—gx>eg[(n—l—Q;R)’xeR"} .

By (26), GV(Fp) is a wedge product of two components; the first component
is a wedge product of Hermitian matrices and the second is a wedge product
of skew-Hermitian matrices. By using (39), it is easy to see that the first part
a’ A NS (oY + v)) is Kg-basic; namely, it is the pull-back of a volume form
on G/K¢g by the projection ¢r.: G/Kp — G/Kg. We orient G/K¢ with this
volume form. Since the Killing metric By of g¢ is given by By(X,Y) = ntr(XY™),
the norm of v and *v) + v/ are \/LQ? and \/iﬁ, respectively. Thus, letting we/k,,
be the volume form on G/Kq defining the same orientation and of norm 1 with
respect to the Killing metric, we get

n+1
1

(41) a’ A /\ Uk +vk \/— /5, mit ¢KGWG/KG :

Recall that Ko = SO(n + 1). We consider the standard SO(n + 1)-action on
R™*! 5o that the orbit of the first fundamental vector e; is S™. We can identify m
with 7, S™ by the infinitesimal action. Under this identification, the second part

" () — v)) of the right hand side of (26) gives the invariant volume form
on S™ of norm 2™? with respect to the standard metric on R**!. We orient the

S"-fibers of ¢, with this volume form. Then, by (41), we get

S me 2" vol(S™)
(42) ][a A /\ (o + o) A N\ (ol =) = g Wa/Ka
k=2 2
Here, (38) in the case where (G,G/P) = (SOg(n + 1,1),S%) follows from (26)
and (42).

In the case where (G,G/P) = (SU(n + 1,1),S2%*1) or (Sp(n + 1,1), S50%3),
Equation (38) is proved in a way similar to the last case of (G, G/P) = (SO¢(n +
1,1),5%) by using (29) and (34). We will use the notation in Sections 7.2.3
and 7.2.4. The right hand sides of (29) and (34) are wedge products of two parts;
the first one is a wedge product of Hermitian matrices and the second one is
a wedge product of skew-Hermitian matrices. Regarding g as a subalgebra of
gl(n + 2;C) (resp., gl(2n + 4;C)) as in Section 7.2.3 (resp., 7.2.4), (39) is true.
Then, we can easily see that the first part is Kg-basic. So we orient G/Kg with
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the corresponding volume form on G/ K¢ like in the last case. The Killing metric
By of gc is given by By(X,Y) = 2(n+2) tr(XY™) (resp., 4(n+3) tr(XY™)) for the
case where (G,G/P) is (SU(n+1,1), 821 (resp., (Sp(n + 1,1), S*3)). Thus,
letting wq K, be the volume form on G /K¢g of compatible orientation and of
norm 1 with respect to the Killing metric of g, we get the equation corresponding

to (41):

,n// n/

(43) (EYy = EYup) A N\ (EYy + EL) A N\(E 0 + B
k=2 k=2
]' *
(TL + 2)n+1 QSKGWG/KG

for the case where (G, G/P) = (SU(n + 1,1), S?"*1) and

1
n + 3)2n+2

for the case where (G, G/P) = (Sp(n + 1,1), S2"*3) where z runs in

(45) {ur g yo<kan U {uok fo<k<n U {21k a<han U {2k bo<kan U {1, y2, v}

in this order. We embed Kg/Kp into C*™ (resp., H*™!) as the standard unit
sphere. The orthogonal complement m of £p in €4 is also described in a way similar
to (40). Like in the case of (G,G/P) = (SOy(n + 1,1), S2), the second part of
the right hand side of (29) (resp., (34)) is a volume form on S?"*! (resp., S4"3).
So we orient the fibers of G/K¢ with this volume form. Taking into account the
structure of the Hopf fibration S' — S?'*1 — CP™ (resp., S* — S4"3 — HP"),
we see that, under the identification of m and the tangent space of S***! (resp.,
S47+3) " the norm of the invariant multivector fields

nll TLI

N\ (B = E) A N\ (B — Euri)

k=2 k=2

(resp., A\,(*z — z), where z runs in (45)) with respect to the standard metric on
the standard unit sphere in C*™ (resp., H"™) is 2" (resp., 222). By using the
pairing of invariant volume forms on Kg/Kp with the above multivector fields,
we see that

nll n/

N ES — B AN (Er = Bly)
k=2 k=2
(resp., A\, (*z¥—2"), where z runs in (45)) is the invariant volume form on K¢ /Kp

with norm with respect to the standard metric is 23"*! (resp., 26"+%). Thus,
by (43) or (44), we get the equation corresponding to (41) in each case:
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,n// n/

k=2 k=2
n” n' 93n+1 vol( 52n+1)
V V Vv V _
A k/z\Q(Em — Epp) A ’!:\2(Ekn" —Eo) = (n 1 2)n WG/ Kg

for the case where (G, G/P) = (SU(n + 1,1), S?"*1) and

22n+% V01(84n+3)
47 ][(% =) A /\<th +2) A /\(tzV —2) = (n + 3)2+2 WG/Ka

for the case where (G,G/P) = (Sp(n + 1,1),S2%3) where z runs in (45) in
the given order. Then (38) for the case where (G,G/P) = (SU(n + 1,1), 52"1)
(resp., (Sp(n + 1,1), S4+3)) follows from (46) and (29) (resp., (47) and (34)).
In the case where (G, G/P) = (Fy_20), 532), GV(Fp) is divided into two parts
in a similar way to the other cases. We will use the notation of Section 7.2.5. We
orient G/ K¢ and the fibers of ¢k, in a way similar to the other cases using the
first and second components of (37). By By(Hs, H3) = V18 and By(E,, E,) = 1,
letting we/ k., be a volume form on G/ K¢ of compatible orientation and of norm
1 with respect to the Killing metric, we get the equation corresponding to (41):

27
(48) )\3 A\ /\ (E;/ + EXO) == 3 gb}GwG/KG .
aceTH\®

The computation of the norm of A,cyr\o(Ey — EY,) as an invariant volume
form on S is more complicated, reflecting the structure of the Kg-action on
S15. Recall that Kg = Spin(9) and Kp is a subgroup of Spin(9) isomorphic to
Spin(7) (Section 6.6). Let 50(9)c = s0(8)c ®m; (resp., 50(8)c = (Ep)c B my) be a
decompositions as an s0(8)c-module (resp., (8p)c-module). Here my &my, my and
m, are identified with the tangent space of Kg/Kp =~ S'°, Spin(9)/Spin(8) ~
S8 and Spin(8)/Kp ~ ST at a point, respectively. Here 50(9)c and s0(8)c are
spanned by the root vectors F, of f{ used in Section 7.2.5, because the Cartan
subalgebra h = @©% CH; of f$ used in Section 7.2.5 is contained in s0(9)¢ and
50(8)c. The Killing form Bgon). of so(n)c is given by Bsom).(X,Y) = (n —
2)tr(XY). Since

4 4 4
Bso(n)c (Z AiH;, Z /\;Hz> = 2(” - 2) Z )‘1)‘;
i=1 i=1 ., l=14 )
B (Z Nl A;Hz-)
=1 =1

and
Bso(n)c (Ea7 E,a) H(; = [Ea: E*OA] = B(Eaa E,a) Hoz 5
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where H, is the element of h determined by Biom).(Hp, H) = «(H) for any
H e b, we get

-2 -2
S5 BB B = "

(49) Bﬁﬂ(n)C(Em E*a) =

for n € {8,9}. Let YT\ ® = {a;};2, so that

By (49) and the fact that ¢p is conjugate to so(7) in O(8) [Yok09, Remark
after Theorem 2.7.5], it follows that (2)7/2 Al (Es, — EY,,) corresponds to the

Jj=1 —Qj
. . 15
invariant volume form on S7 of norm 27/2 and (%)8 N, Zs(Es, —EY,,) corresponds
to the invariant volume form of S® of norm 2*. Thus, by (48), we get

218 74 vol(S1?)
][Az NN EHE AN N\ (B -EY,) = — 3w Wo/Ke -
aeTH\® aETH\®
Thus, combining this equation with (37), we get (38) for this case. O

The same computation gives the following relation of the Godbillon-Vey class
and the volume in the level of Lie algebra cohomology.

Proposition 7.10. Let (G, G/P) be one of (SOg(n+1,1),S%), (SU(n+1,1),527+1) |
(Sp(n+1,1),S22%3) or (Fy—20), S32). Let ¢ = dim G/ P (the codimension of Fp).
We have

(50) ][ Az, (haicl) = coway ke
OKp

mn (/\q+1 g*)Kc for some orientations of G/Kq and the fibers of ¢k, G/Kp —
G /K¢, where cq is the constant depending on (G, G/P) given in Proposition 7.9.

Remark 7.11. By [KT75a, Theorem 7.83], the following diagram commutes:
(51) H*(g, Kp) — H*(I'\G/Kp)

| I

H*(g,K¢) —= H*(I'\G/Kg) .

The homomorphism & is well known to be injective. The commutativity describes
the relation between Propositions 7.9 and 7.10.

By the well known relation GV(Fp) = (2m)7™! [Ax,(hicl)] [KT75a, Theo-
rem 7.20], Proposition 7.9 or 7.10 implies the following.
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Corollary 7.12. Under the assumption of Proposition 7.9, we have

i
—_— GV(Fp) = cg vol(I'NG/Kp) ,
i 1 CVIFR) = o ol (NG K
where vol(I'\G/Kp) is the volume of I'\G/Kp with the metric induced from the
Killing metric of g.

7.4.3. Bott-Thurston-Heitsch type formulas for suspension foliations. The homo-
geneous foliations are suspension foliations over locally symmetric spaces whose
holonomy homomorphisms are the canonical embeddings of lattices. We will
show Bott-Thurston-Heitsch type formulas (Theorem 1.9) which can be applied
to more general suspension foliations.

Suspension foliations F in the statement of Theorem 1.9 are (G, G/ P)-foliations
on the total spaces of G/P-bundles over manifolds /N which are transverse to the
G/ P-fibers by construction. In the case where dim G/P > 1, it is easy to see
that, conversely, any (G, G/P)-foliation on the total space of a G/ P-bundle over
a manifold N which is transverse to G/P-fibers is a suspension foliation in the
statement of Theorem 1.9. In this section, we prove Theorem 1.9 for (G,G/P)-
foliations on the total spaces of G/P-bundles over manifolds N which are trans-
verse to the G/ P-fibers. Part of the argument will be used later in a more general
situation.

Let (G,G/P) be (SO¢(n+1,1),8%), (SU(n+1,1), 821, (Sp(n+1,1), Sin+3)

r (Fy—20),5%). Let ¢ = dimG/P (the codimension of (G,G/P)-foliations).
Consider the case of codimension ¢ > 1; namely, all cases except (SOg(2,1), SL)
and (SU(1,1),SL). Let N be a smooth manifold, and py: M — N an S%bundle
over N. Let F be a (G, G/ P)-foliation of M which is transverse to the fibers of
par- Since G preserves an orientation of G/ P, it follows that py, is orientable.

We have two G-equivariant fibrations on G/Kp:

G/P

G/Kp

i¢KC

G/Keg .

Now, it is easy to see that the fibers of ¢p and ¢k, are of complementary dimen-
sion and transverse to each other. This observation implies the following.

Lemma 7.13. Let dev: M — G/ P be the developing map of]: For any m M-
equivariant map S: M — G/Kg, there emsts a unique map dev: M — G/Kp
which is m M -equivariant, satisfies F=dev Fp and makes the following diagram
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commutative:
G/P—""  G/Kp
dev T (Te\v l ¢KG

M G/Kg .

Moreover, if s is submersive at a point x € M, then dev is submersive at x.

The equality F =dev F p is a trivial consequence of the construction like in
Proposition 3.9. To prove the latter part of Lemma 7.13, note that dev is a
submersion.

Regard hol(F) as a homomorphism m N = m; M — G. Given an orientation of
G/Kg, the volume vol(hol(F)) of hol(F) is defined in H9™(N;R) as mentioned
in Section 7.4.1.

Proposition 7.14. We orient G/ K¢ and the fibers of ¢, like in Proposition 7.9.
Then we have
1

(52) G ]iM GV(F) = cgvol(holy)

in HITY(N;R) for an orientation of the fibers of par, where cg is the function of
(G,G/P) mentioned in Proposition 7.9.

Proof. Take a 7 N-equivariant map s: N =G /Kg. We get a m M-equivariant
map s = 5opy;: M — G/Kg, where p;;: M — N is the canonical projection.

By Lemma 7.13, we get a m M-equivariant map dev: M — G /Kp which makes
the following diagram commutative:

(53) M G K

o |

Since F is transverse to the fibers of py;, the restriction of dev to each fiber of
py; is a covering map onto a fiber of ¢g,. Since py; and ¢k, are S?%bundles

and ¢ > 1, the restriction of dev to each fiber of py; 1s a diffeomorphism. Thus
the diagram (53) is the pull-back of fiber bundles. We fix an orientation of the
fibers of pas so that it is compatible with the orientation of the fibers of ¢,

under dev . Then 1 dev B = 5 fs, B for any 5 € Q*(G/Kp). We have
M G ~

f¢KG Az, (hicl) = cowaig in (A @)k, by Proposition 7.10. Let F be the

lift of F to M. Since F = d/é;*fp by Lemma 7.13, we have



CRM Preprint Series number 1103

CHARACTERISTIC CLASSES OF TRANSVERSELY HOMOGENEOUS FOLIATIONS 43

][ Az(hic]) = f d/C;*A]-‘P(hlc({) = 5*7[ Ar,(hc]) = ca5'wa/ke
Pz Piz Pr

in Q*(N)™N. Eq. (52) follows from this equality and the well known relation
GV(F) = (2m)T [Axr(hyc?)] [KT75a, Theorem 7.20]. ]

Proof of Theorem 1.9. Since the sign of both sides of (2) change when the orien-
tation of the fibers of py; changes, it suffices to prove (2) for any fixed orientation
of the fibers of py;. We orient G/K¢ and the fibers of ¢ as in Proposition 7.9.
Then we choose the orientation of the fibers of pj, like in the statement of Propo-
sition 7.14.

By assumption, GG/K¢ is of even dimension ¢ + 1. Since G/Kg has a G-
invariant metric, the Euler form e of the oriented tangent bundle of G/K¢ is a
left invariant volume form on G/K¢. Thus there exists a constant p such that
e = p volg/ k., where volg/ k., is the left invariant form of compatible orientation
and of norm 1 with respect to the Killing metric on g. Let volr and er be the
volume forms on I'\G// K¢ such that py volp = volg/k, and pyer = e, where
pn: G/Kg — N is the universal covering of N. By the Hirzebruch proportion-
ality principle [CGW76, Theorem 3.3] (see also [KO90]), we can compute the
constant p by using the compact dual K¢./Kq of G/ K¢ as follows:

o= fF\G/Kc er = (-1 (g+1)/2 e(Ke./Kq)
fF\G/KG VO][‘ VOI(KGC/K(;)
where e(Kq./K¢) is the Euler number of K¢./K¢g and vol(K¢./Kg) is the vol-

ume of K¢./Kg with respect to the metric induced by the Killing form on gc.
The volume vol(K¢./K¢s) was computed in [AY97], obtaining:

K./ Kea e vol
RP! 1 2" " vol(S™+h)
CPn+1 - 5 2n+1(n + 2)n+17.rn+1
(n+1)!
26(n+1) (n 4 3)n+lﬂ.2(n+1)
HPn—H 2
n (2n + 3)!
72867°
opr? 3 _—
11!

Here, we also indicate the Euler number e(Kq./K¢) of Kg./Kg. Thus Theo-
rem 1.9 follows from Proposition 7.14, where the constant r¢ in (2) is obtained
from cq in Proposition 7.14 by rg = (—1)@)/2 ¢, O
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8. THE CASE WHERE G/P = S? FOR EVEN ¢

8.1. Integration along the fibers of Haefliger structures. For transversely
projective foliations, the integration of secondary invariants along the fibers of
the Haefliger structures was computed by Brooks-Goldman [BG84, Lemma 2]
and Heitsch [Hei86, Lemma in Section 5] to prove Proposition 5.1, which is an
essential part of the proof of Theorem 1.1. In this section, we will see that such
computation is reduced to a computation in Lie algebra cohomology in the case
where G/ P is a sphere. This observation enables us to state a sufficient condition,
that implies Proposition 5.1, in terms of Lie algebra cohomology. We will also
see that Proposition 5.1 is not true for transversely conformally flat foliations of
even codimensions. In this section, the coefficient ring of cohomology is C.

Let Xg(F) be the principal G-bundle over M associated to F. Consider the
diagram of bundle maps between fiber bundles over M,

(54) Xoo (F)/Kp ~—— Xo(F)/Kp

| |

Xo.(F)/Kg =— Xa(F)/Ke

where the horizontal maps are inclusions defined by fiberwise complexification
and the vertical maps are canonical projections. Let H*(G¢/Kp), H*(G/Kp)
and H*(Gc/K¢g) be the local systems over M associated to the fiber bundles
Xeo(F)/Kp, Xo(F)/Kp and Xg.(F)/Kg, respectively. Note that the local sys-
tem associated to Xg(F)/ K¢ is trivial because the fiber G/K¢ is contractible.
By using integration along fibers of the vertical maps of (54), we get the commu-
tative diagram

(55) H*(M; H*(Ge/Kp)) — H*(M;H*(G/Kp))

| I

H*(M; H*(Ge/Ka)) H*(M) .

Observe that we have natural isomorphisms

(56) H.(g,Kp) & C= H.(EG(C,KP) ® Cx H.(KGC/KP) = H.(Gc/Kp> s
(57) H.(97KG) ®C= H.<EGC7 KG) ®C= H.(KGC/KG) = H.<GC/KG) 5

where the first isomorphisms in the two equations are the well known isomorphism
in the Weyl’s trick [KO90, Section 3]. We get the commutative diagram

(58) H*(g, Kp) ® C — H*(Gc/Kp) — H*(M; H*(Gc/Kp))

| | |

H*(g,Kq) ® C—— H*(Gc/Kg) —= H*(M;H*(Ge/Kq)) -
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Recall that X (F)/Kp has a (G, G/P)-foliation p*Enei(r), which is obtained
by pulling back the foliation &oi(7) on Xe. (F)/P defined by the flat G-connection
by the canonical projection p : Xg.(F)/Kp — Xg.(F)/P. By combining Theo-
rem 4.3, diagrams (55) and (58), and the definition of the characteristic homo-
morphisms, we get the following.

Proposition 8.1. The following diagram is commutative:
(59) H*(WO,) )
H*(g, Kp) ® C — H*(M; H*(Gc/Kp)) — H*(M;H*(G/Kp))
| | |
H*(g, K¢) ® C — H*(M; H*(Gc/Ke)) H*(M) ,

\-’_’/

Ehol(F)

/
where Ap*ghol(f) P*Enoi(F)

of p*Enarr), and Zwor): H*(g, Kg) — H*(M) is the characteristic homomor-
phism of the flat G/ Kg-bundle X (F)/Kg — M mentioned in Section 7.4.1.

is the map induced by the characteristic homomorphism A

This proposition is specially useful when G/P is a sphere because of the fol-
lowing.

Lemma 8.2. Let o be a cohomology class of Xg(F)/Kp. Then o belongs to the
image of w5,y + H*(M) — H*(X(F)/Kp) if and only if fo=0.

Proof. Note that Xg(F)/Kp is homotopy equivalent to a sphere bundle X (F)/P
over M. Since X (F)/P has a section, the Gysin sequence splits to give the exact
sequence
0 —— H*(M) "2 Ho (X0 (F) K p) —> Ho (M) —> 0 . O
The composite of the upper horizontal maps of (59) is induced on the Es-terms
of the Leray-Hirsch spectral sequence of Xg(F)/Kp — M by the characteristic
homomorphism H*(g, Kp) — H*(Xa(F)/Kp) of the (G, G/ P)-foliation p*Eyeir)
on Xg(F)/Kp mentioned in Proposition 3.9. Thus, as a consequence of Propo-
sition 8.1 and Lemma 8.2, we get the following.

Proposition 8.3. If f Ar.(0) =0 for o € H*(g, Kp), then Apgy o (0) belongs
to the image of 7,y « H*(M) — H*(Xc(F)/Kp).
This proposition reduces the latter condition to the former condition, which

involves only Lie algebra cohomology. Thus the following proposition gives an
alternative proof of a consequence of the residue formulas of Heitsch.
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Proposition 8.4 (Heitsch [Hei78, Theorem 4.2] and [Hei83, Theorem 2.3]). In
the case where (G,G/P) = (SL(q + 1;R), S9) for even q, we have f Az, (o) =0
for any o € H*(WO,).

Proof. We will use the notation of Example 7.2.1. First, we show { Az, (hic]) =
0. By (21) and (27), we get

A h q\ _ (q/)q+1 q/' EV q E\/ E\/
P 1/ = 11 1k k1
Fp(Ic) (2m)att A /\ A
k=2

a(g—1) q q
()" ) g
- 24 (27 )+ ENA NEL+ EL) A N\ (EY - EY) -
k=2 k=2

Here, /\ZIZQ(EYk_EI\ﬁ) is a volume form of SO(¢")/ SO(q) ~ S?. Thus f Az, (hic})
is obtained by integrating E}] A /\ZIZQ(EIVk + E}) over S%. But, since ¢ is even,
EY, A /\Z/:Q(Elvk + E}}) is an odd function on S9; namely, we have
7 7
s (Eﬁ A /\(Ei/k + EZl)) = —E}) A /\(Elvk +E)
k=2 k=2
where s is the antipodal map of S?. So the integration of E}j A /\Z/ZQ(Elvk + EY))
over S?is zero. This implies that £ Az, (hic]) = 0.
Note that h;(Oy¢) is Kg-basic; namely, h;(0y¢) is the pull-back of a differ-
ential form on G¢/K¢. Thus, by (22),

][Afp(hlhfcﬁ) = h1(Onc) ][ Agp(hicf) =0.

Since other secondary characteristic classes are generated by the classes of the
form hyh;cf by Theorem 7.3, the result follows. O

Remark 8.5. Heitsch [Hei86] applied consequences of his residue formulas, The-
orem 1.7 and Proposition 8.4, to prove our Proposition 5.1 for the case where
(G,G/P) = (SL(¢q + 1;R), S?) for any ¢, and therefore Theorem 1.1. For even
q, our proof of Proposition 8.4 is slightly simpler than the original proof of
Heitsch [Hei86]. It is because we directly computed the map H*(g, Kp) —
H*(g, K¢) in Section 7, while Heitsch applied his residue formulas ([Hei78, The-
orem 4.2] and [Hei83, Theorem 2.3]). Thus we obtained a slightly simpler proof
of Theorem 1.1 for even ¢q. Note that we already gave an alternative proof of
Theorem 1.1 for odd ¢ in Section 6.2 by using Theorem 1.2.

In the case where (G, G/P) is (SO(n+1,1), S%) for odd n, (SU(n+1,1), S2+1),
(Sp(n + 1,1), S4m%3) or (Fy_20), 5%5), our Bott-Thurston-Heitsch type formulas
(Theorem 1.9) imply that the integration of GV (Fp) along the fibers of the sphere
bundle G/Kp — G/Kg is nonzero, but it is a constant multiple of the Euler
class of the tangent sphere bundle of G/ K. So we cannot apply Proposition 8.3
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in this case to show Proposition 5.1. Nevertheless we get the following. Let
p: Xo(F)/Kp — X(F)/Kg be the canonical projection.

Proposition 8.6. In the case where (G, G/ P) is equal to one of (SO(n+1,1), S%)
for odd n, (SU(n + 1,1),S2%Y), (Sp(n + 1,1), 52273 or (Fy_a0), S%), we have
1, GV (P Enar)) = 0 in H*(M) for any (G, G/ P)-foliation F of M.

Proof. The sphere bundle ¢ has a section because it is homotopic to the Haefliger
structure Xg(F)/P — M, which has a section (see Section 3.2.2). Thus its Euler
class e(yp) is zero. Since ¢ is a sphere bundle with a (G, G/ P)-foliation transverse
to fibers, we get f GV(p*Ena(r)) = rae(e) = 0 by the Bott-Thurston-Heitsch
type formulas in Theorem 1.9. U

Remark 8.7. Note that the Godbillon-Vey class is essentially the unique nontriv-
ial secondary class in this case by Proposition 7.4. Thus Lemma 8.2 gives us
another proof of Proposition 5.1 for these (G, G/P), and therefore another proof
of Theorem 1.2.

On the other hand, the situation is different for transversely conformally flat
foliations of even codimension. Let (G,G/P) be (SO(n + 1,1),S%) for even n.
Consider an S"-bundle M — N and a (G, G/P)-foliation F of M transverse to
the fibers with a nontrivial volume vol(hol(F)). For example, we can take the
fiber bundle '\G/Kp — I'\G/K¢ foliated by the homogeneous foliation for a
torsion-free uniform lattice I" of G. Recall that ¢ is the S%bundle Xo(F)/Kp —
Xa(F)/Kg associated to F with the (G, G/ P)-foliation p*&yer) transverse to
the fibers. We get the following.

Proposition 8.8. f@ GV (p*&noi(r)) is nonzero.

Proof. The volume of p*Enq () is equal to pj, vol(hol(F)), which is nontrivial by
assumption. On the other hand, wa GV (p*&Enoi(F)) is @ nonzero constant multiple
of the volume pj, . vol(hol(F)) by Proposition 7.14. O

8.2. Finiteness with fixed Euler class. Consider the case where G/P = S4
for even ¢. In this section, we will show (4) in Theorem 1.15 (half of the weaker
finiteness theorem for transversely conformally flat foliations). In this section, the
coefficient ring of cohomology is R. Since the Euler classes of even dimensional
sphere bundles are trivial with real coefficients, the assumption of Theorem 1.2 is
never satisfied by Proposition 6.1. Thus the Gysin sequence of the sphere bundle
#C: Ge/Kp — Ge/Kg splits to give the exact sequence

. (69 o foe e
(60) OHH (Gc/Kg)H-H (GC/KP)HH q(G@/K@)HO.
Let x(vFp) be the Euler class of the normal bundle of the P/ K p-coset foliation
Fp on G/Kp, which is of degree g.

Proposition 8.9. f . x(vFp) = 2.
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Proof. Let ¢p: G/Kp — G/P = S? be the canonical projection. Consider the
composite

Ko/Kp—G/Kp—2"G/P .
Since ¢pp1'S? = vFp, we get

/ )= /S (TS =2,

which implies the equality of the statement. U
From (56), (57), (60) and Proposition 8.9, we get the following.
Proposition 8.10. We have
H*(g, Kp) = H*(g, Kc) @ R[x]/(x°)
as an H*(g, Kg)-module, where x is the Euler class of the normal bundle of F.

Consider the characteristic homomorphism Zye () : H*(g, Kg) — H* (M), which
depends only on hol(F): mM — G (Section 7.4.1).

Proposition 8.11. Let Fy and F; be two (G,G/P)-foliations of M with the
same holonomy homomorphism. If x(vFo) = x(vF1), then Ag (o) = Ag (o) for
any o € H*(WO,).

Proof. By Theorem 4.3, it is sufficient to prove that Az (0) = Ax, (o) for any o €
H*(g,Kp). Foro € H*(g, K¢), we get Ax, (0) = Ax (o) because Ag, (o) is deter-
mined only by the holonomy homomorphism according to Proposition 8.1. Since
H*(g, Kp) is generated by y and 1 as an H*(g, Kg)-module, we get Ag (o) =
Ag, (o) for any o € H*(g, Kp). O

Since mo(Hom(m M, G)) is finite (see Remark 5.2), Theorem 4.4 and Proposi-
tion 8.11 imply (4) in Theorem 1.15.

8.3. Finiteness over R/Z. In this section, we will show (3) in Theorem 1.15
(the other half of the weaker finiteness theorem for transversely conformally flat
foliations). Any o € H*(WQO,) is said to be divisible by the Euler class x if
there exists some 7 € H*(g, Kp) such that Ag,(0) = 7 x. Note that such
7 belongs to H*(g, K¢) for any nontrivial divisible class o by Proposition 8.10.
Proposition 8.10 also implies the following.

Lemma 8.12. If o € H*(WO,) is not divisible by the Euler class, then f o = 0.

Thus Proposition 8.2 implies that there is a finite number of possibilities for
Ag(o) when o is not divisible by the Euler class.
On the other hand, we have the following.

Lemma 8.13. If o € H*(WO,) is divisible by the Euler class, then Ag(c) =0
in H*(M;R/Z).
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Proof. Since x(vF) belongs to the image of H*(M;Z) — H*(M;R), we get
Ar(0) = Ehoir)(7) - x(vF) =0 in H*(M;R/Z). O

Since mo(Hom(m M, G)) is finite (see Remark 5.2), Theorem 4.4 and
Lemma 8.13 imply (3) in Theorem 1.15.

8.4. Infiniteness of divisible classes. In this section, we will show Theo-
rem 1.13, an infiniteness result. Let 0 € H*(WO,) be a class divisible by the
Euler class. More generally, we show the following result.

Theorem 8.14. Assume that the restriction map H*(g) — H*(¥g) is surjective.
Then there exists a connected manifold X with finitely presented fundamental
group and an infinite family {F,,Ymez of (G,G/P)-foliations on X such that
Ar,(0) # Ar, () if m # .

To prove Theorem 8.14, we note the following fact.

Lemma 8.15. Let X — Y be an S9-bundle with a section. Then, for any m € 7Z,
there exists a smooth bundle map f,,: X — X whose restriction to each Si-fiber
is of degree m.

Proof. We fix a smooth fiberwise metric on X — Y so that each S9fiber is the
standard round sphere. Let L be the image of a section of X — Y. We can
assume that L is a smooth submanifold of X. For z € X, let F, be the S%fiber
of X — Y containing x, let {zo} = F, N L, and let ¢, be a great circle of F
through = and zy. Under the identity ¢, = R/27Z with zq = 0 given by the
length parametrization, let f,,(z) = ma for m € Z. This defines a smooth map
fm: X — X whose restriction to each fiber is of degree m. 0J

Proof of Theorem 8.14. Let I" be a torsion-free uniform lattice of G. Note that
' is finitely presented because it is the fundamental group of the closed manifold
['\G/Kp. Since q is even, the Euler class of the S%bundle I'\G/Kp — I'\G/K¢
is zero. Hence it has a section. Then, by Lemma 8.15, we take a smooth map
fm: T\G/Kp — I'\G/Kp of degree m for any m € Z. Let f,,: G/Kp — G/Kp
be the lift of f,, to the universal cover. Define ®,,: G x G/Kp — G/Kp by
®,,.(g,2) = gfm(z). Since f,, is I-equivariant, we get

D1 (9192: %) = g192fim (%) = g1fm(g27) = P91, g2)

for 3 € G, go € ' and x € G/Kp. Then @, induces a smooth map ¥,,: X —
I'\G/Kp, where X is the quotient of G x G/Kp by the ['-action given by gs -
(g1,7) = (9195, g2x). This W,, is a flat principal G-bundle over I'\G/Kp by
construction. Since m;G is a finite group, m X is also finitely presented.

Let ch,,: H*(g) — H*(X) be the characteristic homomorphism of ¥,, as a flat
principal G-bundle over I'\G/Kp. Let F be a fiber of ¥,,, which is homotopy
equivalent to K. By the assumption, the composite of

H*(g)

chm

— H*(X) — H*(F) = H*(tg)
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is surjective, where the second arrow is the restriction map to F. Thus U}, :
H*(I'\G/Kp) — H*(X) is injective by the Leray-Hirsch theorem.

Consider the (G, G/P)-foliation F,, = ¥} Fr on X, where Fr is the foliation
of I'\G/Kp whose lift to the universal cover G/Kp is the P/Kp-coset foliation
Fp. By assumption, there exists some 7 € H*(g, K¢) such that

(61) Arp(0) = Enoizp) (T) - X(VFP) -
Since the map m X — 7 (I'\G/Kp) induced by ¥,, is independent of m, we get
(62) Ehol(Fn) (T) = Enol(#)(T)

for any m. On the other hand, since x(vFr) is represented by the Poincaré dual
of any S9-fiber of I'\G/Kp — I'\G/ K¢, we get

(63) X(vFn) = Vo x(vFr) = m¥ix(vFr) = mx(vF1)

by construction. By (61), (62) and (63), we get Az, (0) = mAg (o). By the
injectivity of U3, Az (¢) is nontrivial of infinite order. Hence we get Ag, (o) #

Ag (o) for m # m/'. O

Note that the manifolds X are noncompact in our construction. We get The-
orem 1.13 as a corollary of Theorem 8.14 as follows.

Proof of Theorem 1.13. By Propositions 7.9, 8.1 and 8.10, there is some constant
c¢so that GV(F) = ¢ x(vF) vol(hol(F)) for transversely conformally flat foliations
F of even codimension. So the Godbillon-Vey class is divisible in this case.
Moreover, the surjectivity of the restriction map H®(so(n+1,1)) — H*(so(n+1))
follows from H*(so(n + 1,1)) ® C = H*(so(n + 2);C) and the surjectivity of
H*(so(n+2)) — H*(so(n+1)) (see, for example, [GHV76, Theorems VI and VII
in Section 6.23]). Thus the assumption of Theorem 8.14 is satisfied, which implies
Theorem 1.13. U

9. RIGIDITY OF FOLIATIONS ON HOMOGENEOUS SPACES

9.1. Generalization of Bott-Thurston-Heitsch type formulas. Let

(G,G/P) be (SOp(n + 1,1),5%), (SU(n + 1,1), 52, (Sp(n + 1,1), 53"3) or
(Fy(—20),522). Let ¢ = dimG/P. Consider the case of codimension ¢ > 1;
namely, all cases except (SOg(2,1),SL) and (SU(1,1),SL). Let M = I'\G/Kp
and N = I''G/Kg. Let F be a (G,G/P)-foliation of I'\G/Kp whose holo-
nomy homomorphism is hol(F): mM — G. Since mM = m N, we regard
hol(F): m N — G. We orient M and N with the orientation of G/Kp and the
fibers of ¢, : G/Kp — G/K¢ in Proposition 7.9. The volume vol(hol(F)) is de-
fined in H7™(N;R) with the orientation of G/ K¢ as mentioned in Section 7.4.1.

Lemma 9.1. If (G,G/P) is (SOy(n+1,1),8%) forn odd, (SU(n+1,1),S27+1),
(Sp(n+1,1),S3%3) or (Fi—20), Sa), then

1
(64) W/MGV(}') = caq / vol(hol(F)) ,

N
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1
(65) W/MGV(}—) =g /Ne(PM%

where e(pyr) is the Euler class of pyy: M — N, and rg and cg are the func-
tions of (G,G/P) mentioned in Theorem 1.9 and Proposition 7.9, respectively.
If (G,G/P) is (SO¢(n +1,1),S%) for n even, then (64) is true.

Proof. First, we will prove (64) for all cases of (G,G/P). The first part of this
proof is like the proof of Proposition 7.14. Take a m; N-equivariant map s: N —
G/ K¢ so that 5 is submersive at a point z. Let pg;: M — N denote the canonical
projection M — N. We get a m; M-equivariant map s = 5 Sopy: M — G/Kg.

By Lemma 7.13, we obtain a m M-equivariant map dev: M — G /Kp which is
submersive on p— (z !(x) and makes the following diagram commutative:

M dev G / KP

pﬂl i%

N?G/KGW

where ¢, : G/Kp — G/K¢ is the canonical projection. Let ps: Z — N be the
pull-back of the fiber bundle ¢, : G/Kp — G/K¢g by s. We get the commutative
diagram:

_ - &z
(66) Mz G/Kp
o\ 1 o
]\7 G/KG )

where {3z is the canonical map and {E is the map induced by the universality of
the pull-back. By taking the quotient of the left triangle of (66) by I', we get the
following diagram:

(67) Mz

N,

where Z is the quotient of zZ by the induced I'-action and 1) is the map induced
by . N

Let Fz be the foliation on Z whose lift to the universal cover Z is {ZFp. By
applying Proposition 7.9 like in the proof of Proposition 7.14, we get

(68) ][ GV(Fz) = cg vol(hol(F))

Q+1
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in H9"(N;R). Since F = ¢*Fz, we obtain GV (F) = ¢* GV(Fz). Hence
deg )
W/?GV(JE.)_ q+1/2/1GVfZ)

= (cg deg)) /Nvol(hol(]:)) ,

where deg ) is the degree of i) as a continuous map. Since 1 is a bundle map
that covers the identity map on N, we get

(70) deg = deg (V1)) -

Here, ¢| 10 : pa () — pz'(z) is a covering map because 1 is submersive on
pof(2). Smce 71 (pyf (7)) =2 7 (pz'(z)) = m(S9) = 1 because ¢ > 1, we obtain

(71) deg <¢|p;;(;p)> =1.

By (69), (70) and (71), we get (64).
We get (65) by using Theorem 1.9 at (68) instead of Proposition 7.9. Note
that e(py) = e(pz), because v is a bundle map of degree one on each fiber. [

We obtain the following direct consequences.

Corollary 9.2. (i) If (G,G/P) is equal to (SOg(n + 1,1),S%) for n odd,
(SU(n + 1,1), 82+, (Sp(n + 1,1), S33) or (Fy_a), SL2), then any
(G, G/ P)-foliation F of M satisfies GV(F) = GV(Fr) and hol(F) =
hOl(fr)
(i) If (G,G/P) is (SOg(n+1,1),5%) for n even, then GV(F) = GV(Fr) if
and only if vol(hol(F)) = vol(I"), where vol(I') is the volume of I' — G
(see Example 7.7).

Combining Lemma 9.1 with well known properties of the volume, we get the
following consequences.

Proposition 9.3. If GV(F) is nontrivial, then the image of the holonomy ho-
momorphism m M — G is Zariski dense in G.

Proof. If GV(F) is nontrivial, then vol(hol(F)) is also nontrivial by (64). Then

the image of hol(F) is Zariski dense in G by [Cor91, Proposition 2.1]. O
Proposition 9.4. If (G,G/P)=(SO¢(n+1,1),S%) for evenn, then [,, GV(F)<
[y GV (Fr).

Proof. This is a consequence of (64) and the following generalized version of
the Milnor-Wood inequality (see [FK06, Theorem 1.1]): For any homomorphism
h: ' — G, we have

(72) /N vol(h) < /N vol(T). O
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Remark 9.5. The inequality (72) is true also for any other simple Lie group G.
In fact, it is a consequence of the positivity of the simplicial volume of locally
symmetric spaces due to Lafont-Schmidt [LS06] (one applies the Hahn-Banach
theorem [Gro82, Corollary in page 225] with [Buc08, Corollary 7]). But here
we need only the case of (G,G/P) = (SOy(n + 1,1),S%) for even n, where
Corollary 9.2.i does not work.

9.2. Rigidity of (G,G/P)-foliations of I'\G/Kp of higher codimensions.
To prove Theorem 1.17-(i), we will apply the following generalized version of
Mostow rigidity.

Theorem 9.6 (Goldman [Gol88] for the case where G = PSO(2,1), Dun-
field [Dun99] for G = PSO(n+1,1), and Corlette [Cor91] for G = PSU(n+1,1)).
Let G denote PSO(n+1,1) or PSU(n+1,1) and I' a torsion-free uniform lattice
of G. Any homomorphism h: I' — G with vol(h) = vol(I') is conjugate to the
canonical inclusion I' — G by an inner automorphism of G.

Remark 9.7. Francaviglia-Klaff [FK06] and Bucher-Burger-lozzi [BBI12] gener-
alized the definition of the volume of representations of uniform lattices to non-
uniform lattices. (These two definitions do not coincide with each other.) It
allows them to prove Theorem 9.6 in a way similar to [Dun99], including the case
where I' is a nonuniform lattice of SO(n + 1, 1).

Remark 9.8. Note that the assumption of the above theorem of Goldman is the
equality e(h) = e(I") for the Euler classes. But, because of the proportionality of
the Euler class and the volume, it is equivalent to the equality on the volume.

Remark 9.9. To prove Theorem 1.17 for the case where G is Sp(n+1, 1) or Fy_ag),
we will apply the superrigidity theorem of Corlette [Cor92], which asserts that
any homomorphism I' — G from a uniform lattice I' of G is conjugate to the
canonical inclusion if its image is Zariski dense. This rigidity is stronger than the
case of Theorem 9.6, so we do not need the equality on the volumes.

Proof of Theorem 1.17-(i) in the case ¢ > 1. If (G,G/P) is (SOg(n + 1,1),S%)
for n odd or (SU(n+1,1), 5?1, Corollary 9.2-(i) implies vol(hol(F)) = vol(T").
If (G,G/P)is (SOg(n+1,1),S%) for n even, then we get vol(hol(F)) = vol(T") by
the assumption and Corollary 9.2-(ii). Thus Theorem 9.6 implies that hol(F):
m N — G is conjugate to m N = I' — G by an inner automorphism of G. Hence
the standard map ¢g.: G/Kp — G /K¢ is conjugate to a m M-equivariant map
s: G/Kp — G/Kg, which is a submersion. Then we get a m M-equivariant
submersion dev: G/Kp — G/Kp by Lemma 7.13. It induces a covering map
dev: I'\G/Kp — I'\G/Kp, which must be a diffeomorphism because GV (F) =
GV (Fr). O

Proof of Theorem 1.17-(ii). Corollary 9.2-(i) and Proposition 9.3-(i) imply that
the image of hol(F): m M — G is Zariski dense in G. Thus Corlette’s super-
rigidity theorem [Cor92] for uniform lattices in Sp(n+1,1) or Fy_s) implies that
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hol(F): m N — G is conjugate to m N = I' — G. The rest of the proof is the
same as in the case (i). O

9.3. Codimension one case. In the case where (G,G/P) is (SOy(2,1),SL) or
(SU(1,1),SL), Lemma 9.1 is not true in general because of mS!' = Z. But
the theory of codimension one foliations, due to Thurston and Levitt, resolves
this problem. Note that, in this case, K¢ is isomorphic to SO(2) or U(1), P is
isomorphic to Aff (1;R) or Aff(1;R), and Kp is trivial or {£1}. Let F be a
(G,G/P)-foliation on M = I'\G/Kp. Here, N = I'\G/K is a closed Riemann
surface and the projection p: T'\G/Kp — I'\G/K¢ is a principal S'-bundle.

Theorem 1.17-(i) in the case where ¢ = 1 will be deduced from the following
two results:

Theorem 9.10 (Chihi-ben Ramdane [CbRO8]). If GV(F) is nontrivial, then
the 1mage of the holonomy homomorphism of F is a uniform lattice or a dense
subgroup of G. In particular, F is minimal.

Theorem 9.11 (Thurston [Thu72a] and Levitt [Lev78]). A codimension one
foliation F on M without compact leaves is isotopic to a foliation transverse to
the fibers of p.

Proof of Theorem 1.18. Assume that GV(F) is nontrivial. Then F is minimal
by Theorem 9.10. By Theorem 9.11, we can isotope F to a foliation transverse
to the fibers of p. Since the Euler number of p is equal to the Euler number
of N by construction and the Euler class is propotional to the volume, we get
vol(hol(F)) = vol(I'), where hol(F) is the holonomy homomorphism of F. Ac-
cording to Theorem 9.6, hol(F) is conjugate to hol(Fr), which is the canonical
inclusion I" < G. Since the conjugation class of suspension foliations are deter-
mined by the conjugation class of the holonomy homomorphisms, the proof is
concluded. 0J
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