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PITT’S AND BOAS’ INEQUALITIES FOR FOURIER AND
HANKEL TRANSFORMS

L. DE CARLI, D. GORBACHEV, AND S. TIKHONOV

Abstract. We prove Pitt and Boas’ type inequalities for products of radial
functions and spherical harmonics in Rn. In the process, we obtain upper
and lower estimates of the operator norm of the Hankel transform with power
weights. Our inequalities are sharp in some specific cases.

1. Introduction

Weighted norm inequalities for the Fourier transform provide a natural way
to describe the balance between the relative size of a function and its Fourier
transform at infinity. A classical example is Pitt’s inequality with special radial
weights

(1.1) ‖ |y|−sF̂‖Lq(Rn) ≤ C‖ |x|tF‖Lp(Rn), F ∈ S(Rn).

Here 1 < p ≤ q < ∞, F̂ (y) =
∫
Rn F (x)e−ixydx denotes the Fourier transform of

F , and

(1.2) 0 ≤ s <
n

q
, 0 ≤ t <

n

p′
, and s = t+ n

(
1

q
− 1

p′

)
.

p′ denotes the dual exponent of p, i.e., 1
p

+ 1
p′

= 1. A proof of this inequality is in

[Be3, BH]. See also [Be4] and [Be2].
It is worth mentioning that, when q = 2, Pitt’s inequality has been charac-

terized as a Hardy-Rellich inequality in recent literature, with alternative proofs
and extensions. See, e.g., [Ei], [BT], and [TZ].

The range of the parameters in (1.2) cannot be improved in general (see, e.g.,
[SaWh]), but we can greatly extend this range, and also show that inequality
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2 L. DE CARLI, D. GORBACHEV, AND S. TIKHONOV

(1.1) can be reverted, i.e,

(1.3) A‖ |y|−sF̂‖Lq(Rn) ≤ ‖ |x|tF‖Lp(Rn) ≤ B‖ |y|−sF̂‖Lq(Rn)

for the case p = q, if we restrict F to certain subspaces of S(Rn).
When n = 1 and 1 < p = q < ∞, and f is even and non increasing in (0,∞)

and vanishes at infinity, the Hardy–Littlewood theorem states that there exist
constants A, B > 0 for which

(1.4) A‖f̂‖p ≤ ‖ |x|1−
2
pf‖p ≤ B‖f̂‖p,

see, e.g., [Ti, Ch. IV]. Here and in the rest of the paper, we let ‖ · ‖p = ‖ · ‖Lp(0,∞)

for the sake of simplicity.
Boas conjectured in [Bo] that weighted versions of (1.4) are also true, i.e.,

under the same assumptions on f and p,

(1.5) A‖ |y|−sf̂‖p ≤ ‖ |x|s+1− 2
pf‖p ≤ B‖ |y|−sf̂‖p.

provided that s ∈
(
− 1
p′
, 1
p

)
, 1 < p < ∞. This conjecture has been proved by

Y. Sagher in [Sa].
More recently, a subclass of the class of functions of bounded variation on

[ε,∞), for any ε > 0, that strictly includes the class of monotonic functions was
introduced in [LT1] (see also [LT2]). These functions vanish at infinity, and there
exist C > 0 and c > 1 so that, for every r > 0,∫ ∞

r

|df(u)| ≤ C

∫ ∞
r/c

|f(u)| du
u
,

where
∫ b
a
g(u) |df(u)| is the Riemann–Stieltjes integral. These functions are called

General Monotonic (GM).
In [GLT], the authors proved that inequality (1.5) is valid for GM functions

and for s ∈
(
− 1
p′
, 1
p

)
, thus improving Sagher’s theorem considerably. Boas-type

inequalities with general weights (i.e., not necessarily power) are proved in [LT3].
In this paper we consider functions in Rn that are products of radial functions

and spherical harmonics. We prove a sharp version of Pitt’s inequality (1.1), and
we prove Boas’ inequality (1.3) when the radial components are GM functions.

1.1. Pitt’s inequality and spherical harmonics. Here and throughout the
paper, x = (x1, . . . , xn), r = |x|, and ω = x/|x|. We let f(|x|) = f(r). Following,
e.g., [StWe], Ch. IV, we say that a solid harmonic of degree k in Rn is a homoge-
neous harmonic polynomial Hk(x) of degree k. We can write Hk(x) = rkYk(ω),
where Yk is a spherical harmonic of degree k. We denote by Σk the set of the
spherical harmonics of degree k. By Bochner’s identity,

(1.6) f̂Yk(ρσ) = (2π)n/2ikYk(σ)ρ1−n
2

∫ ∞
0

r
n
2 Jn/2+k−1(rρ)f(r) dr,

where ρ = |y|, σ = y/|y| and Js(r) is the standard Bessel function of the first
kind.
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We prove the following

Theorem 1.1. For every Yk ∈ Σk, and every radial f ∈ S(Rn), Pitt’s inequality

(1.7) ‖ |y|−sf̂Yk‖Lq(Rn) ≤ C‖ |x|tfYk‖Lp(Rn)

holds with 1 ≤ p ≤ q ≤ ∞, and if and only if
(1.8)

s = t+ n

(
1

q
− 1

p′

)
and (n− 1)

(
1

2
− 1

p

)
+ max

{
1

p′
− 1

q
, 0

}
≤ t <

n

p′
+ k.

If p ≤ 2 and q = p′, and s = t = (n− 1)
(

1
2
− 1

p

)
, (1.7) holds with

(1.9) C = (2π)
n
2Ck,p sup

Yk∈Σk

‖Yk‖Lq(Sn−1)

‖Yk‖Lp(Sn−1)

where

(1.10) Ck,p = 2
1
2
− 1
p′
p

(2k+n−1)p+2
4p Γ

(
(2k+n−1)p′+2

4

) 1
p′

(p′)
(2k+n−1)p′+2

4p′ Γ
(

(2k+n−1)p+2
4

) 1
p

.

The constant C cannot be replaced by any smaller constant.

We also show that when C is as in (1.9), the equality is attained in (1.7).

To the best of our knowledge, the supremum of the ratio of the norms of spher-
ical harmonics in (1.9) is not known. Reverse Hölder inequalities for spherical
harmonics have been discussed in [So] and [Du]. In [Du], it is proved that

‖Yk‖Lp′ (Sn−1)

‖Yk‖Lp(Sn−1)

≤
(
p′

p

)k/2 Γ
(
kp+n

2

)1/p
Γ
(
n
2

)1/p′

Γ
(
kp′+n

2

)1/p′
Γ
(
n
2

)1/p
= O(k(n−1)(1/p−1/2))

whenever 1 < p ≤ 2.

1.2. Best constants in Pitt’s inequalities. To the best of our knowledge, the
sharp constant in Pitt’s inequality (1.1) has been evaluated only when p ≤ 2,
q = p′ and s = t = 0 (i.e., when it reduces to the Hausdorff–Young inequality)
and also when p = q = 2 and s = t < n

2
. See [Be1], [Ya] and [Ei].

The best constant in inequality (1.7) is known only in the aforementioned cases,
and when p, q, t and s are as in Theorem 1.1. When p = q = 2 and s = t < n

2
, it

is proved in [Ya] that

(1.11) ‖ |y|−tf̂Yk‖L2(Rn) < ck(t)‖ |x|tfYk‖L2(Rn)

with

(1.12) ck(t) = (2π)
n
2 2−t

Γ
(

1
2

(
n
2
− t+ k

))
Γ
(

1
2

(
n
2

+ t+ k
)) .
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Inequality (1.11) is sharp, and equality cannot be attained when t > 0 (see [Ya,
L. 3.8]).

The author also observes (see [Ya, L. 2.1]) that the best constant in inequality
(1.1) is c0(t) = supk ck(t). That means that when p = q = 2, the best constant
in (1.1) is attained in the space of radial functions. This fact easily follows from
the orthogonality of the spherical harmonics in L2(Sn−1).

We use (1.11), the sharp inequality proved in Theorem 1.1, and a sharp in-
equality in [Be3], to estimate the constant in (1.7) when q = p′ and t > t =

(n− 1)
(

1
2
− 1

p

)
.

Theorem 1.2. Let 1 < p ≤ 2 and let 0 ≤ d < n
2

+ 1
2
− 1

p
. Pitt’s inequality

‖ |y|−t−df̂Yk‖Lp′ (Rn) ≤ C‖ |x|t+dfYk‖Lp(Rn)

holds with C = BCk,p sup
Yk∈Σk

‖Yk‖Lp′ (Sn−1)

‖Yk‖Lp(Sn−1)

, where Ck,p is as in (1.10), and

(1.13) B = (2π)
n
2

2−dΓ
(

(n−1)p+2
4p

)
Γ
(

(−2d+n+1)p−2
4p

)
Γ
(

(n+1)p−2
4p

)
Γ
(

(2d+n−1)p+2
4p

) .

The constant on the right hand side of(1.13) may not be sharp for all values of
p and d, but it is easy to verify that it equals ck(t) = ck(0) in (1.11) when p = 2,
and it reduces to Ck,p in Theorem 1.1 when d = 0.

1.3. Boas’ conjecture and the Hankel transform. The Hankel transform
is a natural generalization of the Fourier transform of radial functions. There
are several definitions of Hankel transform in the literature, which are roughly
equivalent to one another (see, e.g., [CCTV] and also [De]).

In this paper we use the following definition: for every α ≥ −1
2

and for every
k ≥ 0, we let

(1.14) f̃k(ρ) = f̃k,α(ρ) = ρ−α
∫ ∞

0

rα+1Jα+k(ρr)f(r) dr, f ∈ S(0,∞)

be the Fourier–Hankel transform of order k of f .
Then, by Bochner’s identity (1.6), the Fourier transform of the product of a

radial function f(r) and a spherical harmonic Yk(ω) can be written as

(1.15) f̂Yk(ρσ) = (2π)n/2ikYk(σ)f̃k,n
2
−1(ρ).

In polar coordinates,∥∥ |x|tfYk∥∥Lp(Rn)
= ‖Yk‖Lp(Sn−1)

∥∥rt+(n−1)/pf
∥∥
p
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and Pitt’s inequality (1.7), with C = c (2π)
n
2 sup
Yk∈Σk

‖Yk‖Lq(Sn−1)

‖Yk‖Lp(Sn−1)

for some c > 0,

follows from

(1.16)
∥∥∥ρ−s+(n−1)/qf̃k

∥∥∥
q
≤ c

∥∥rt+(n−1)/pf
∥∥
p
, α =

n

2
− 1, f ∈ S(0,∞).

Similarly, Boas’ inequality (1.3), with F = Yk(ω)f(r), follows from

(1.17) a
∥∥∥ρ−s+(n−1)/qf̃k

∥∥∥
q
≤
∥∥rt+(n−1)/pf

∥∥
p
≤ b

∥∥∥ρ−s+(n−1)/qf̃k

∥∥∥
q
,

where p = q and a, b > 0.
The proof of Theorem 1.1 (see also Remark 2.1) shows that when s, t and k are

as in (1.8), inequality (1.16) holds for every f ∈ S(0, ∞). We show that, when
f is a GM function, (1.16) is valid for a wider range of parameters than (1.8),
and (1.17) holds. Our results improve a result in [GLT], where the authors have
proved inequalities (1.16) and (1.17) for radial functions in GM (i.e., for k = 0).

Let f be a GM function such that

(1.18) I :=

∫ 1

0

r2α+k+1|f(r)| dr +

∫ ∞
1

rα+1/2|df(r)| <∞.

Then Lemma 3.1 below implies that its Fourier–Hankel transform is defined in

the improper sense (i.e., as lim
a→0
b→∞

∫ b
a
) and f̃k ∈ C(0,∞).

We prove the following

Theorem 1.3. Let 1 < p ≤ q <∞ and f ∈ GM . Then, inequality (1.16) holds
if and only if

(1.19) s = t+ n

(
1

q
− 1

p′

)
and

(1.20) (n− 1)

(
1

2
− 1

p

)
− 1

p
< t <

n

p′
+ k.

Clearly, (1.20) is less restrictive than the right hand side inequality in (1.8).
Note that condition (1.18) follows automatically from the finiteness of the right
hand side of (1.16) (see Remark 3.1) which is satisfied when p, t and k are as in
(1.19) and (1.20).

The next theorem reverses Theorem 1.3.

Theorem 1.4. Let 1 < q ≤ p < ∞, and let f be GM; assume that f ≥ 0 and
also that (1.18) is satisfied. If (1.19) and

−n− 1

p
− 1

p
< t <∞,
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6 L. DE CARLI, D. GORBACHEV, AND S. TIKHONOV

hold, then the reverse Pitt’s inequality∥∥∥ρ−s+(n−1)/qf̃k

∥∥∥
q
&
∥∥rt+(n−1)/pf

∥∥
p

holds.

Here and in the sequel the expressions f . g, f & g, f � g mean the in-
equalities f ≤ Cg, f ≥ Cg, Cg ≤ f ≤ C ′g, respectively, where C,C ′, . . . denote
positive constants.

Taking p = q in Theorems 1.3 and 1.4, we get

Corollary 1.1. Let 1 < p <∞. If f ∈ GM , f ≥ 0 and (1.18) holds, then∥∥∥ρ−s+(n−1)/pf̃k

∥∥∥
p
�
∥∥rt+(n−1)/pf

∥∥
p

if and only if
n

p′
− n+ 1

2
< t <

n

p′
+ k.

Remark 1.1. Theorems 1.3 and 1.4 and Corollary 1.1 hold for any n = 2α+2 ≥ 1
and k ≥ 0, not necessarily integers.

We prove these theorems in Section 3.

2. Proof of Theorems 1.1 and 1.2

In [De], the author considered the Lp(0,∞)–Lq(0,∞) mapping properties of
operators in the class

L =

{
Lην, µ : Lην, µf(ρ) = ρµ

∫ ∞
0

(rρ)νJη(rρ)f(r) dr, η ≥ −1

2
and µ, ν ∈ R

}
and proved the following

Theorem 2.1. (i) Lην, µ is bounded from Lp(0, ∞) to Lq(0, ∞) whenever η ≥ −1

2
,

1 ≤ p ≤ q ≤ ∞, and if and only if

(2.1) µ =
1

p′
− 1

q
and − η − 1

p′
< ν ≤ 1

2
−max

{
1

p′
− 1

q
, 0

}
.

(ii) When q = p′ and ν = 1
2
, the following inequality holds for every 1 < p ≤ 2,

η ≥ −1
2

and f ∈ S(0, ∞):

(2.2)
‖Lη1

2
, 0
f‖Lp′ (0,∞)

‖f‖Lp(0,∞)

≤ 2
1
p
− 1

2
p

1
2(η+ 1

2
+ 1
p)

(p′)
1
2

(
η+ 1

2
+ 1
p′

) Γ
(

(η + 1
2
)p
′

2
+ 1

2

) 1
p′

Γ
(
(η + 1

2
)p

2
+ 1

2

) 1
p

.

The constant on the right-hand side of (2.2) is best possible and is attained by

the functions fλ(x) = xη+ 1
2 e−λx

2
, λ > 0.
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We show that proving Theorem 1.1 is equivalent to estimating the Lp(0,∞)–
Lq(0,∞) norm of an operator in the class L.

2.1. Proof of Theorem 1.1. We have observed in Section 1.3 that when F =
f(r)Yk(ω), where f is radial and Yk is a spherical harmonic of degree k, Pitt’s

inequality (1.1), with C = c (2π)
n
2 sup
Yk∈Σk

‖Yk‖Lq(Sn−1)

‖Yk‖Lp(Sn−1)

, follows if we prove∥∥∥x−s+(n−1)/qf̃k

∥∥∥
q
≤ c

∥∥yt+(n−1)/pf
∥∥
p
, f ∈ S(0,∞),

where f̃k is given by (1.14) and α = n
2
− 1.

We let rt+(n−1)/pf = g; thus, ‖rt+(n−1)/pf‖p = ‖g‖p, and∥∥∥ρ−s+(n−1)/qf̃k

∥∥∥q
q

=

∫ ∞
0

ρq(−s+(n−1)/q−α)

∣∣∣∣∫ ∞
0

rα+1Jα+k(ρr)f(r) dr

∣∣∣∣q dρ
=

∫ ∞
0

ρq(−s+(n−1)/q−α)

∣∣∣∣∫ ∞
0

Jα+k(ρr)r
−t−(n−1)/p+α+1g(r) dr

∣∣∣∣q dρ
=

∫ ∞
0

ρq(−s+(n−1)/q−2α+t+(n−1)/p−1)

∣∣∣∣∫ ∞
0

Jα+k(ρr)(ρr)
−t−(n−1)/p+α+1g(r) dr

∣∣∣∣q dρ
and recalling that α = n

2
− 1, we obtain∥∥∥ρ−s+(n−1)/qf̃k

∥∥∥q
q

=

=

∫ ∞
0

ρq(t−s+(n−1)(1/q−1/p′)

∣∣∣∣∫ ∞
0

Jα+k(ρr)(ρr)
−t−(n−1)/p+α+1g(r) dr

∣∣∣∣q dρ
= ‖Lα+k

ν,µ g‖qq
where µ = t− s+ (n− 1) (1/q − 1/p′) and ν = α + 1− t− n−1

p
= n

2
− t− n−1

p
.

Let us show that condition (1.8) is equivalent to condition (2.1).

First, note that by (2.1), µ = 1
p′
− 1

q
, which implies t − s = n

(
1
p′
− 1

q

)
as in

(1.2). Also, the condition −k−α− 1
p′
< ν = α+1− t− n−1

p
yields that t < n

p′
+k.

We also need ν ≤ 1
2
−max

{
1
p′
− 1

q
, 0
}

; assume that max
{

1
p′
− 1

q
, 0
}

= 0, since

the other case is similar. So, ν = α + 1− t− n−1
p

= n
2
− t− n−1

p
≤ 1

2
implies

t ≥ t = (n− 1)

(
1

2
− 1

p

)
.

This concludes the first part of the theorem.

By Theorem 2.1, the Lp–Lq norm of Lα+k
ν,µ can be explicitly evaluated, and is

as in (2.2), if 1 < p ≤ 2, q = p′, ν = 1
2

and µ = 0. In particular we can take,
s = t = t. Then Ck,p in (1.9) equals the right-hand side of (2.2) with η = k+ n

2
−1,

which is (1.10). �
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The proof of Theorem 1.1 yields the following

Remark 2.1. Under the assumptions of Theorem 1.1, and with the notation of
Theorem 2.1, Pitt’s inequality (1.16) holds whenever s, t and k are as in (2.1),
with the sharp constant

c = ‖Lα+k
ν,µ ‖Lp→Lq ,

where µ = t− s+ (n− 1)
(

1
q
− 1

p′

)
and ν = n

2
− t− n−1

p
.

Remark 2.2. In [De] it is conjectured that the Lp–Lq norm of Lην,µ is

C = Cη
ν, p, q = 2ν−

1
q
p

1
2

(1+η−ν+ 1
p

)

q
1
2

(η+ν+ 1
p′ )

Γ
(
η+ν+mu

2
q + 1

2

) 1
q

Γ
(

1+η−ν
2

p+ 1
2

) 1
p

for all admissible values of the parameters, but unfortunately the conjecture does
not hold in general.

We have observed in Section 1.2 that when q = p = 2 and t = s < n
2
, the

best constant in Pitt’s inequality (1.7) is ck(t) in (1.12); by Remark 2.1 and the

discussion in Section 1.3, ck(t) = (2π)
n
2 ||Lk+n

2
−1

1
2
−t,0 ||L2→L2 . If the conjecture was

true, ck(t) would then equal (2π)
n
2C

k+n
2
−1

1
2
−t, 2,2 = (2π)

n
2

√
Γ(k+n

2
−t)√

Γ(k+n
2

+t)
, but it is not too

difficult to see that when k, t > 0, this constant is strictly smaller than the one
in (1.12).

2.2. Proof of Theorem 1.2. We use the well-known formula

π
n+z
2

Γ
(
n+z

2

) |̂x|z = (2π)n+z π
−z
2

Γ
(−z

2

) |x|−n−z, −n < z < 0,

and, by letting z = −n+d, we can see at once that |x|−d is the Fourier transform
of cd|x|−n+d, with

(2.3) cd = 2−dπ−
n
2

Γ
(
n−d

2

)
Γ
(
d
2

) .

We recall that t = (n − 1)
(

1
2
− 1

p

)
. Thus, if we let f = g|x|−d and we denote

with F the Fourier transform for ease of notation, we obtain

‖ |x|−t−dF(Ykg|x|−d)‖Lp′ (Rn) = cd‖ |x|−tF(|x|−n+d)F(Ykg|x|−d)‖Lp′ (Rn)

= cd‖ |x|−tF
(
|x|−n+d ∗ Ykg|x|−d

)
‖Lp′ (Rn).

The function |x|−n+d ∗ (Ykg|x|−d) is a product of a radial function times Yk. By
Theorem 1.1,

‖ |x|−t−dF(Ykg|x|−d)‖Lp′ (Rn) = cd‖ |x|−tF
(
|x|−n+d ∗ Ykg|x|−d

)
‖Lp′ (Rn)

≤ (2π)
n
2Ck,p cd‖ |x|t

(
|x|−n+d ∗ (Ykg|x|−d)

)
‖Lp(Rn).
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where Ck,p is as in (1.9).
To conclude the proof of the Theorem, we apply the following Lemma (see

Theorem 2 in [Be3]).

Lemma 2.1. For every a < n/p and b < n/p′, a+ b > 0, and for c = n− a− b,
the following sharp inequality holds

(2.4) ‖ |x|−a
(
|x|−c ∗ (|x|−bh)

)
‖Lp(Rn) ≤ Da,b‖h‖Lp(Rn)

with

Da,b =
πn/2Γ

(
a+b

2

)
Γ
(
n
2p
− a

2

)
Γ
(

n
2p′
− b

2

)
Γ
(

1
2
(−a− b+ n)

)
Γ
(
a
2

+ n
2p′

)
Γ
(
b
2

+ n
2p

) .
So, the inequality

(2.5) ‖ |x|t
(
|x|−n+d ∗ (g|x|−dYk)

)
‖Lp(Rn) ≤ B‖ |x|tgYk‖Lp(Rn)

is equivalent to (2.4) if h = g|x|tYk, a = −t, b = d+ t and c = n− d.
For these values of the parameters, the constant in (2.5) is then

D−t,d+t =
πn/2Γ

(
d
2

)
Γ
(

(n−1)p+2
4p

)
Γ
(

(−2d+n+1)p−2
4p

)
Γ
(
n−d

2

)
Γ
(

(n+1)p−2
4p

)
Γ
(

(2d+n−1)p+2
4p

)
and Pitt’s inequality in Theorem 1.2 holds with C = (2π)

n
2D−t,d+t cdCk,p. But

D−t,d+t cd =
2−dΓ

(
(n−1)p+2

4p

)
Γ
(

(−2d+n+1)p−2
4p

)
Γ
(

(n+1)p−2
4p

)
Γ
(

(2d+n−1)p+2
4p

)
which is the same as B in (1.13). �

3. Proof of Theorems 1.3 and 1.4

We call a function admissible if it is of bounded variation on (ε,∞), for every
ε > 0, and vanishes at infinity. Before proving the theorems, we need to prove
two technical Lemmas.

Lemma 3.1. For an admissible function f such that (1.18) holds, we have f̃k ∈
C(0,∞) and for ρ > 0

(3.1) |f̃k(ρ)| . ρk
∫ 1/ρ

0

r2α+k+1|f(r)| dr + ρ−α−3/2

∫ ∞
1/ρ

rα+1/2 |df(r)|.

Proof. Define

(3.2) ψ(t) =

∫ t

0

uα+1Jα+k(u) du.
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Let us estimate |ψ(t)| for t > 1, α ≥ −1
2

and k ≥ 0. We have ψ(t) =
∫ 1

0
+
∫ t

1
.

Since Js(u) � uα+k for small values of u, then∫ 1

0

�
∫ 1

0

u2α+k+1 du � 1.

It is well known that u1/2Jα+k(u) = C1 cos(u− c) +C2
sin(u−c)

u
+O(u−2) for u > 1.

Therefore,∫ t

1

=

∫ t

1

uα+1/2

(
C1 cos(u− c) + C2

sin(u− c)
u

+O(u−2)

)
du.

Using second mean value theorem, for some τ ∈ (1, t) we have∫ t

1

=

∫ τ

1

(
C1 cos(u− c) + C2

sin(u− c)
u

)
du

+ tα+1/2

∫ t

τ

(
C1 cos(u− c) + C1

sin(u− c)
u

)
du+ tα+1/2O

(∫ t

1

u−2 du

)
.

Here all integrals are bounded and therefore,

|ψ(t)| . tα+1/2, t > 1.

To get (3.1), we first use (1.14):

f̃k(ρ) = ρ−α

(∫ 1/ρ

0

rα+1Jα+k(ρr)f(r) dr +

∫ ∞
1/ρ

rα+1Jα+k(ρr)f(r) dr

)
=: I1 + I2.

Let us estimate I1. Since Jα+k(t) � tα+k when 0 < t < 1, then

ρ−α

∣∣∣∣∣
∫ 1/ρ

0

rα+1Jα+k(ρr)f(r) dr

∣∣∣∣∣ . ρk
∫ 1/ρ

0

r2α+k+1|f(r)| dr.

which is the first integral in (3.1).
Estimating I2 is more complicated. Using (3.2) we have

[ψ(ρr)]′r = ρ(ρr)α+1Jα+k(ρr),

and hence

I2 = ρ−2α−2

∫ ∞
1/ρ

[ψ(ρr)]′r f(r) dr.

Integrating by parts,

I2 = ρ−2α−2

(
ψ(ρr)f(r)

∣∣∣∞
1/ρ
−
∫ ∞

1/ρ

ψ(ρr) df(r)

)
= ρ−2α−2

(
lim
r→∞

ψ(ρr)f(r)−ψ(1)f(1/ρ)−ρα+ 1
2

∫ ∞
1/ρ

[
(ρr)−α−

1
2ψ(ρr)

]
rα+ 1

2 df(r)

)
.

(3.3)
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We have shown that |ψ(t)| . tα+ 1
2 . So, (ρr)−α−

1
2 |ψ(ρr)| . 1, and the integral in

(3.3) is

(3.4) ρα+ 1
2

∣∣∣∣∫ ∞
1/ρ

[
(ρr)−α−

1
2ψ(ρr)

]
rα+ 1

2 df(r)

∣∣∣∣ . ρα+ 1
2

∫ ∞
1/ρ

rα+ 1
2 |df(r)|.

Also, when r is much larger that 1
ρ
,

|ψ(ρr)f(r)| . (ρr)α+ 1
2 |f(r)| . rα+ 1

2 |f(r)|.

By (1.18), rα+ 1
2 |f(r)| is integrable in [1, ∞), and so lim

r→∞
rα+ 1

2f(r) = 0. Clearly,

also lim
r→∞

f(r) = 0. On the other hand,

(3.5) |ψ(1)f(1/ρ)| =
∣∣∣∣ψ(1)

∫ ∞
1/ρ

df(t)

∣∣∣∣ . ρα+ 1
2

∫ ∞
1/ρ

tα+ 1
2 |df(t)|.

By (3.3), (3.4), and (3.5),

|I2| . ρ−α−
3
2

∫ ∞
1/ρ

tα+ 1
2 |df(t)|

as required. This concludes the proof of the Lemma. �

Remark 3.1. First let us recall the following inequality: for any f ∈ GM there is
c > 1 such that

(3.6)

∫ ∞
r

uσ|df(u)| .
∫ ∞
r/c

uσ−1|f(u)| du, σ ≥ 0,

which follows from the definition of GM functions, see also [GLT, p. 111]. Let
us show that I defined by (1.18) is bounded by

∥∥rt+(2α+1)/pf
∥∥
p

under conditions

of Theorem 1.3. Indeed, using (3.6),

I .
∫ 1

0

r2α+k+1|f(r)| dr +

∫ ∞
1

rα−1/2|f(r)| dr .
∫ 1

0

r2α+k+1

(1 + r)α+k+3/2
|f(r)| dr.

Then using Hölder’s inequality, we estimate

I .
∥∥rt+(2α+1)/pf

∥∥
p

∥∥∥∥r−t−(2α+1)/p r2α+k+1

(1 + r)α+k+3/2

∥∥∥∥
p′
.
∥∥rt+(2α+1)/pf

∥∥
p
,

provided that (n− 1)
(

1
2
− 1

p

)
− 1

p
< t < n

p′
+ k, i.e., (1.20). �

Lemma 3.2. For an admissible non-negative function f such that (1.18) holds
and ∫ 1

0

|f̃k(ρ)|ρ2α+k+1 dρ <∞;
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we have for any z > 0 and any 1 < b < 2π

(3.7) zk
∫ 1/z

0

|f̃k(ρ)|ρ2α+k+1 dρ &
∫ zb

z/b

f(r)

r
dr.

Proof. The proof is in two steps: first, we construct non-negative kernel with
finite support similar to K from [GLT]. Then, we use its properties.

To construct our kernel, we apply the Bessel–Hankel transform and the gener-
alized Bessel convolution; see, e.g., [Le].

Let jν(t) = 2νΓ(ν + 1)t−νJν(t) be the normalized Bessel function, with ν ≥
−1/2. Recall that jν(0) = 1. We let

Bνf(s) = B−1
ν f(s) =

1

2νΓ(ν + 1)

∫ ∞
0

f(t)jν(st)t
2ν+1 dt

be the Bessel–Hankel transform. The Bessel generalized translation operator is
given by

Tsf(t) =
f(t+ s) + f(|t− s|)

2
, ν = −1/2,

Tsf(t) =
1∫ π

0
sin2ν ξ dξ

∫ π

0

f(
√
t2 + s2 − 2ts cos ξ) sin2ν ξ dξ, ν > −1/2.

Using this, we define the generalized Bessel convolution as follows

(f ∗ g)ν(s) =
1

2νΓ(ν + 1)

∫ ∞
0

Tsf(t)g(t)t2ν+1 dt.

Note that the Fourier transform and convolution of radial functions are related
to the Bessel translation and convolution operators.

We recall some properties of the generalized Bessel convolution. Let

F (u) = (f ∗ f)ν(s), f ∈ L1
loc(R+), supp f ⊂ [0, a], a > 0.

Then

(i) F ∈ C(R+) and suppF ⊂ [0, 2a];
(ii) for every s > 0, 0 ≤ F (s) ≤ F (0) = (Bνf

2)(0);
(iii) BνF = (Bνf)2.

Let χa = χ[0,a]. Then

Bνχa(s) =

∫ a

0

Jν(st)

(st)ν
t2ν+1 dt =

aν+2

sν

∫ 1

0

Jν(ast)t
ν+1 dt.

Taking into account that∫ 1

0

Jν(ut)t
ν+1 dt = u−1Jν+1(u),

we get

Bνχa(s) = Cajν+1(as), with Ca =
a2ν+2

2ν+1Γ(ν + 2)
.
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Define K(ρ) = C−1
a (χa ∗ χa)ν(ρ). Using properties of convolution, we get the

following properties of K:

(i) K ∈ C(R+) and suppK ⊂ [0, 2a];
(ii) 0 ≤ K(ρ) ≤ K(0), ρ > 0, where

K(0) = C−1
a (χa ∗ χa)ν(0) =

C−1
a

2νΓ(ν + 1)

∫ a

0

t2ν+1 dt = 1;

(iii) BνK(r) = C−1
a (Bνχa(r))

2 = Caj
2
ν+1(ar).

We now let f be a non-negative function satisfying the assumptions of the
lemma. We recall that

f̃k(ρ) = ρ−α
∫ ∞

0

rα+1Jα+k(ρr)f(r) dr, ρ > 0.

Multiplying both sides by K(ρ)ρ2α+k+1 and integrating we get, on the left-hand
side

(3.8) I =

∫ 2a

0

f̃k(ρ)K(ρ)ρ2α+k+1 dρ ≤
∫ 2a

0

|f̃k(ρ)|ρ2α+k+1 dρ

by (ii). The left-hand side is

I =

∫ 2a

0

K(ρ)ρα+k+1

(∫ ∞
0

rα+1Jα+k(ρr)f(r) dr

)
dρ.

Changing the order of integration (we can justify this using(1.18) and the prop-
erties on K, as in [GLT]), we obtain

I =

∫ ∞
0

rα+1f(r)

(∫ 2a

0

K(ρ)ρα+k+1Jα+k(ρr) dρ

)
dr.

Here∫ 2a

0

K(ρ)ρα+k+1Jα+k(ρr) dρ = rα+kBα+kK(r) = Car
α+kj2

ν+1(ar), ν = α + k.

Thus,

I = Ca

∫ ∞
0

r2α+k+1f(r)j2
ν+1(ar) dr.

Let us show that t2α+k+2j2
ν+1(t) & 1 for (2b)−1 < t < b/2, 1 < b < 2π. Indeed,

2α + k + 2 > 0, therefore t2α+k+2 & 1 for t > (2b)−1. Moreover, the Bessel
function jν+1(t) is decreasing on [0, qν+1], where qν+1 is its first positive zero.
Then jν+1(t) & 1 for 0 < t < b/2, where

1 < b < 2 inf
ν+1≥1/2

qν+1 = 2π.
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Then using non-negativity of f and Ca � a2ν+2, the integral I can be rewritten
as follows:

(3.9) I � a2(α+k)+2

a2α+k+2

∫ ∞
0

f(r)

r
(ar)2α+k+2j2

ν+1(ar) dr & ak
∫ b/(2a)

1/(2ab)

f(r)

r
dr.

Combining estimates (3.8) and (3.9) and putting 2a = 1/z, we complete the
proof of the Lemma. �

We will also need the following weighted Hardy-type inequality (see [Br]).

Lemma 3.3. Let u, v be non-negative measurable functions which satisfy

(3.10) sup
a>0

(∫ ∞
a

u(t)q dt

) 1
q
(∫ a

0

v(t)−p
′
dt

) 1
p′

<∞

for some 1 ≤ p ≤ q ≤ ∞. Then, there exists a constant C > 0 such that for
every non-negative measurable F ,

(3.11)

(∫ ∞
0

(
u(t)

∫ t

0

F (s) ds

)q
dt

) 1
q

≤ C

(∫ ∞
0

(
v(t)F (t)

)p
dt

) 1
p

.

3.1. Proof of Theorem 1.3. We recall that inequality (1.16) is equivalent to∥∥∥ρ−s+ 2α+1
q f̃k

∥∥∥
q
.
∥∥∥rt+ 2α+1

p f
∥∥∥
p

where f̃k is defined by (1.14), α = n
2
− 1 ≥ −1

2
,

(3.12) s = t+ (2α + 2)

(
1

q
− 1

p′

)
,

and

(3.13) (2α + 1)

(
1

2
− 1

p

)
− 1

p
< t < k +

2α + 2

p′
.

By Lemma 3.1 and Remark 3.1,

|f̃k(ρ)| . ρk
∫ 1/ρ

0

r2α+k+1|f(r)| dr + ρ−α−3/2

∫ ∞
1/ρ

rα+1/2 |df(r)|

. ρk
∫ 1/ρ

0

r2α+k+1|f(r)| dr + ρ−α−3/2

∫ ∞
1/ρ

rα−1/2 |f(r)|dr =: I1 + I2.

(3.14)

By (3.14), we can see at once that∥∥∥ρ−s+ 2α+1
q f̃k

∥∥∥
q
≤
∥∥∥r−s+ 2α+1

q I1

∥∥∥
q

+
∥∥∥r−s+ 2α+1

q I2

∥∥∥
q

= K1 +K2.
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So, with the change of variables r → r−1, and the substitution s = t +

(2α + 2)
(

1
q
− 1

p′

)

K1 =

(∫ ∞
0

r−sq+kq+2α+1

(∫ 1
r

0

z2α+k+1|f(z)| dz

)q

dr

) 1
q

=

(∫ ∞
0

rsq−kq−2α−3

(∫ r

0

z2α+k+1|f(z)| dz
)q

dr

) 1
q

=

(∫ ∞
0

(
r
t− 1

q
−k− 2α+2

p′

∫ r

0

z2α+k+1|f(z)| dz
)q

dr

) 1
q

.

We apply Hardy’s inequality (Lemma 3.3) with u(r) = r
t− 1

q
−k− 2α+2

p′ , F (z) =

z2α+k+1|f(z)|, and v(r) = r
− 2α+1

p′ −k+t
. By the assumptions on t in (3.13), t− 1

q
−

k− 2α+2
p′

< −1
q

and −2α+1
p′
− k+ t < 1

p′
, so that both integrals in (3.10) are finite,

and (∫ ∞
a

u(r)q dr

) 1
q
(∫ a

0

v(r)−p
′
dr

) 1
p′

=

=

(∫ ∞
a

(
r
t− 1

q
−k− 2α+2

p′
)q
dr

) 1
q
(∫ a

0

(
r
− 2α+1

p′ −k+t
)−p′

dr

) 1
p′

. a
t−k− 2α+2

p′ a
2α+2
p′ +k−t

= 1.

So, by (3.11),

K1 .

(∫ ∞
0

rtp+2α+1|f(r)|p dr
) 1

p

.

The norm K2 can be estimated similarly. We use again the change of variables

r → r−1, and the substitution s = t+ (2α + 2)
(

1
q
− 1

p′

)
:

K2 =

(∫ ∞
0

r−sq+2α+1−αq− 3
2
q

(∫ ∞
1
r

zα−
1
2 |f(z)| dz

)q

dr

) 1
q

=

(∫ ∞
0

(
r
t+ 3

2
+α− 2α+2

p′ −
1
q

∫ ∞
r

zα−
1
2 |f(z)| dz

)q
dr

) 1
q

.

To estimate the latter integral, we use the dual version of the Hardy’s inequality
(3.11) which is given as follows: if

(3.15) sup
a>0

(∫ a

0

u(t)q dt

) 1
q
(∫ ∞

a

v(t)−p
′
dt

) 1
p′

<∞
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for some 1 ≤ p ≤ q ≤ ∞, then

(3.16)

(∫ ∞
0

(
u(t)

∫ ∞
t

F (s) ds

)q
dt

) 1
q

≤ C

(∫ ∞
0

(
v(t)F (t)

)p
dt

) 1
p

.

We apply this with u(r) = r
t− 1

q
+ 3

2
+α− 2α+2

p′ , F (z) = zα−
1
2 |f(z)|, and v(r) =

r
− 2α+1

p′ +α+ 3
2

+t
. Then condition (3.15) holds provided (2α + 1)

(
1
2
− 1

p

)
− 1

p
< t

and we get

K2 ≤
(∫ ∞

0

rtp+2α+1|f(r)| dr
) 1

p

.

To summarize, we have proved that∥∥∥ρ−s+ 2α+1
q f̃k

∥∥∥
q
.
∥∥∥rt+ 2α+1

p f
∥∥∥
p

and since 2α + 1 = n− 1, Theorem 1.3 is proved.

3.2. Proof of Theorem 1.4. Let s = t+ (2α + 2)
(

1
q
− 1

p′

)
and

(3.17) t > −2α + 2

p
.

Note that this assumption is less restrictive than the one of Theorem 1.3. Let us
use (3.7) in Lemma 3.2∫ zb

z/b

f(r)

r
dr . zk

∫ 1/z

0

|f̃k(ρ)|ρ2α+k+1 dρ, z > 0,

and the following inequality, which is valid for a > 0 and b > 1

(3.18)

∫ ∞
a

|ψ(x)| dx .
∫ ∞
a/b

(∫ bz

z/b

|ψ(x)| dx
)
dz

z
.

Since f is GM and is non-negative, by (3.18)

f(r) .
∫ ∞
r

|df(x)| .
∫ ∞
r/c

f(x)

x
dx .

∫ ∞
r
bc

1

z

(∫ bz

z/b

f(x)

x
dx

)
dz.

By (3.7) in Lemma 3.2 and with the substitution z−1 → z,

f(r) .
∫ ∞
r
bc

zk−1

(∫ 1/z

0

|f̃k(ρ)|ρ2α+k+1 dρ

)
dz

=

∫ bc
r

0

z−k−1

(∫ z

0

|f̃k(ρ)|ρ2α+k+1 dρ

)
dz.
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We raise the left-hand side and the right-hand side of the last inequality to p-th
power, we multiply by rtp+2α+1 and we integrate. We obtain(∫ ∞

0

rtp+2α+1|f(r)|p dr
) 1

p

.

.

(∫ ∞
0

rtp+2α+1

(∫ bc
r

0

z−k−1

(∫ z

0

|f̃k(ρ)|ρ2α+k+1 dρ

)
dz

)p

dr

) 1
p

and after the change of variables r → bc
r

,(∫ ∞
0

rtp+2α+1|f(r)|p dr
) 1

p

.

.

(∫ ∞
0

(
r−t−

2α+3
p

∫ r

0

z−k−1

(∫ z

0

|f̃k(ρ)|ρ2α+k+1 dρ

)
dz

)p
dr

) 1
p

.

We use Hardy’s inequality in Lemma 3.3 with u(r) = r−t−
2α+3
p , F (z) =

z−k−1
∫ z

0
|f̃k(ρ)|ρ2α+k+1 dρ, and v(r) = r−t−

2α+2
p

+1− 1
q .

Let us verify that u and v satisfy condition (3.10) in Lemma 3.3. Indeed,
because of the definition of t, both integrals in (3.11) are finite, and(∫ ∞

a

u(r)p dr

) 1
p
(∫ a

0

v(r)−q
′
dr

) 1
q′

=

=

(∫ ∞
a

(
r−t−

2α+3
p

)p
dr

) 1
p
(∫ a

0

(
r−t−

2α+2
p

+1− 1
q

)−q′
dr

) 1
q′

. a−t−
2α+3
p

+ 1
p a

t+ 2α+2
p
−1+ 1

q
+ 1
q′ = 1,

provided that condition (3.17) holds.
We get(∫ ∞

0

rtp+2α+1|f(r)|p dr
) 1

p

.

(∫ ∞
0

(
r−t−

2α+2
p
− 1
q
−k
∫ r

0

|f̃k(ρ)|ρ2α+k+1 dρ

)q) 1
q

.

Using again Hardy’s inequality (3.11) with q = p,

u(r) = r−t−
2α+2
p
− 1
q
−k, v(r) = r

−t−(2α+2)( 1
q
− 1
p

′)−k− 2α+1
q′ = r

−s−k− 2α+1
q′ ,

and F (ρ) = |f̃k(ρ)|ρ2α+k+1, we obtain(∫ ∞
0

rtp+2α+1|f(r)|p dr
) 1

p

.

(∫ ∞
0

ρ−s+
2α+1
q |f̃k(ρ)|q dρ

) 1
q

provided that t > −2α+2
p
− k. This concludes the proof.
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