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CRITICALITY AND SELF-ORGANIZATION IN BRANCHING
PROCESSES: APPLICATION TO NATURAL HAZARDS

ÁLVARO CORRAL AND FRANCESC FONT-CLOS

Abstract. The statistics of natural catastrophes contains very counter-
intuitive results. Using earthquakes as a working example, we show that the
energy radiated by such events follows a power-law or Pareto distribution. This
means, in theory, that the expected value of the energy does not exist (is infi-
nite), and in practice, that the mean of a finite set of data in not representative
of the full population. Also, the distribution presents scale invariance, which
implies that it is not possible to define a characteristic scale for the energy. A
simple model to account for this peculiar statistics is a branching process: the
activation or slip of a fault segment can trigger other segments to slip, with
a certain probability, and so on. Although not recognized initially by seis-
mologists, this is a particular case of the stochastic process studied by Galton
and Watson one hundred years in advance, in order to model the extinction of
(prominent) families. Using the formalism of probability generating functions
we will be able to derive, in an accessible way, the main properties of these
models. Remarkably, a power-law distribution of energies is only recovered
in a very special case, when the branching process is at the onset of attenu-
ation and intensification, i.e., at criticality. In order to account for this fact,
we introduce the self-organized critical models, in which, by means of some
feedback mechanism, the critical state becomes an attractor in the evolution
of such systems. Analogies with statistical physics are drawn. The bulk of the
material presented here is self-contained, as only elementary probability and
mathematics are needed to start to read.

1. The Statistics of Natural Hazards

Only fools, charlatans and liars predict earthquakes
C. F. Richter

Men, and women, have always been threatened by the dangers of Earth: vol-
canic eruptions, tsunamis, earthquakes, hurricanes, floods, etc. Sadly, still in the
21st century our societies have not been able to get rid of such a sword of Damo-
cles. But are natural catastrophes submitted to the caprices of the gods? Or do
these disasters contain some hidden patterns or regularities? The first view has
been dominant for many centuries in the history of humankind, and it has been
only in recent times that a more rational perspective has started to consolidate.
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2 ÁLVARO CORRAL AND FRANCESC FONT-CLOS

(a) Beno Gutenberg (b) Charles Richter

Figure 1. Seismologists Beno Gutenberg and Charles F. Richter
(photos from seismo.berkely.edu).

1.1. The Gutenberg-Richter law. One of the first laws quantifying the occur-
rence of a natural hazard was proposed for earthquakes by the famous seismol-
ogists Beno Gutenberg and Charles F. Richter in the 1940’s, taking advantage
from the recent development of the first magnitude scale by Richter himself. The
Gutenberg-Richter law is quite simple: if one counts the number of earthquakes
in any seismically active region of the world during a long enough period of time,
one must find that for each 100 earthquakes of magnitude M greater or equal
than 3 there are, approximately (on average), 10 earthquakes with M ≥ 4, one
earthquake with M ≥ 5, and so on (Gutenberg and Richter, 1944; Utsu, 1999;
Kanamori and Brodsky, 2004). So, the vast majority of events are the smallest
ones, and, fortunately, only very few of them can become catastrophic, maintain-
ing a constant proportion between their number.

It is not possible to measure all earthquakes on our planet, but for some areas
with very accurate seismic monitoring it has been found that the Gutenberg-
Richter law holds down to magnitude minus 4 (Kwiatek et al., 2010); this corre-
sponds to small rock cracks of a few centimeters in length (negative magnitudes
are introduced to account for the fact that there can be earthquakes smaller than
those of zero magnitude). And, more remarkably, for nanofracture experiments
in the laboratory (Åström et al., 2006), the law has been verified up to magnitude
below -13. The scarcity of the big events contained in the law leaves as open the
question about which is its upper limit of validity.
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CRITICALITY AND SELF-ORGANIZATION IN BRANCHING PROCESSES 3

Despite not being recognized or mentioned by Gutenberg and Ritchter in their
original paper (1944), any reader with a minimum knowledge of probability and
statistics will immediately realize that the Gutenberg-Richter law implies an ex-
ponential distribution of the magnitudes of earthquakes, i.e.,

(1) DM(M) ∝ 10−bM ,

with DM(M) the probability density of M , the parameter b taking a value close
to 1, and the symbol ∝ standing for proportionality (with the constant of pro-
portionality ensuring proper normalization).

But which is the meaning of the Gutenberg-Richter law, in addition to pro-
vide an easy-to-remember relationship between the relative abundances of earth-
quakes? The interpretation depends, of course, on the meaning of magnitude,
which we have avoided to define. In fact, there is no a unique magnitude, but
several of them, second, magnitudes do not have physical dimensions (i.e., units),
and third, “magnitudes reflect radiation only from subportions of the rupture, and
they saturate above certain size, rather than giving a physical characterization
of the entire earthquake source” (Ben-Zion, 2008). More in-depth understanding
comes from the energy radiated by an earthquake, which is believed to be an
exponential function of its magnitude (Kanamori and Brodsky, 2004), that is,

(2) E ∝ 103M/2,

with a proportionality factor close to 60 kJ (Utsu, 1999); so, an increase by 1
in the magnitude implies an increase in energy by a factor

√
1000 ' 32. Thus,

an earthquake of magnitude 9 radiates as much energy as 1000 earthquakes of
magnitude 7, or as 106 of magnitude 5.

One can reformulate then the Gutenberg-Richter law in terms of the energy.
Indeed, the probability of an event is “independent” of the variable we use to
describe it, and so,

(3) DE(E) = DM(M)
dM

dE
,

with DE(E) the probability density of the energy. Using equation (2), we can
express M as a function of E,

(4) M ∝ logE,

and differentiate to obtain dM/dE,

(5)
dM

dE
∝ 1

E
,

so that equation (3) reads:

(6) DE(E) ∝ 10−bM
1

E
=
(

10
3M
2

)− 2b
3 1

E
= E−

2b
3

1

E
.
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4 ÁLVARO CORRAL AND FRANCESC FONT-CLOS

Summarizing, this straightforward change of variables leads to

(7) DE(E) ∝ 1

Eα
, with α = 1 +

2b

3
,

and this is just the so-called power-law distribution, or Pareto distribution (New-
man, 2005), with exponent α around 1.67 when b is close to 1. Notice from
equation (7) that in order that DE(E) is a proper probability density function,
it has to be defined above a minimum energy Emin > 0 , otherwise (if Emin = 0),
it cannot be normalized. Although the true value of Emin cannot be measured
(it is too small), this parameter is not important as it does not influence any
properties of earthquakes.

Figure 2 displays the probability density of the seismic moment for worldwide
shallow earthquakes (Kagan, 2010); this variable is assumed to be proportional
to the energy, but much easier to measure accurately (Kanamori and Brodsky,
2004), and so, it should also be power-law distributed, with the same exponent.
The straight line in the plot is the defining characteristic of a power law in double
logarithmic scale, as logDE(E) = C − α logE. A fit by maximum likelihood
estimation (Clauset et al., 2009; Peters et al., 2010) yields α ' 1.68.

Two important properties of power-law distributions are scale invariance (with
some limitations due to the normalization condition) and divergence of the mean
value (if the exponent α is below or equal to 2). These are explained in the
Appendix.

To conclude this subsection, let us mention that the power-law distribution of
sizes is not a unique characteristic of earthquakes. It has been claimed that many
other natural hazards are also power-law distributed, although with different ex-
ponents (and maybe with a lower or an upper cutoff): tsunamis (Burroughs and
Tebbens, 2005), landslides, rockfalls (Malamud, 2004), volcanic eruptions (Mc-
Clelland et al., 1989; Lahaie and Grasso, 1998), hurricanes (Corral et al., 2010),
rainfall (Peters et al., 2010), auroras (Freeman and Watkins, 2002), forest fires
(Malamud et al., 2005)... As the reader will figure out, some of the facts that
we will explain having in mind earthquakes can also be applied to some of these
natural hazards, but maybe not to all of them. It is an open question to distin-
guish between these different cases. For an account of power-law distributions in
other areas beyond geoscience see the excellent review by Newman (2005).

1.2. A first model for earthquake occurrence. As far as we know, a first
attempt to develop an earthquake model in order to explain the Gutenberg-
Richter law was undertaken by Michio Otsuka in the early 1970’s (Otsuka, 1971,
1972; Kanamori and Mori, 2000). He used as a metaphor the popular Chinese
game of go, although we will formulate the model in relation to the game of
domino, probably more familiar to the potential readers.

Instead of playing domino, we are going to play a different game with their
pieces. The idea is to make the domino pieces to topple, as in the well-known
contests and attempts to break a Guinness world record, but with two important
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Figure 2. Estimation of the probability density of seismic mo-
ment for worldwide shallow earthquakes (in log-log scale), using
the so-called CMT catalog (Kagan, 2010). A power law fit results
in an exponent α = 1.68. Radiated energy should give the same
power law behavior. Deviations at small values of the seismic mo-
ment are attributed to the incompleteness of the catalog.

differences. First, the pieces are not put in a row, but, rather, they constitute
a kind of tree. Second, when one piece topples, one does not know what will
happen next, i.e., if some other pieces will topple in turn (and how many will)
or not. So, we have a stochastic cascade process that supposedly mimics the
rupture that takes place in a seismic fault during an earthquake. The tree of
domino pieces constitutes the fault, and each piece is a small fault patch, or
element. The earthquake is the chain reaction of toppling of pieces (i.e., failures
of patches).

Getting more concrete, Otsuka assumed that the tree representing the fault
had a fixed number of branches at each position, or node, and that the toppling
would propagate from each branch to the next element with a fixed probability
p, independently of any other variable. So, the number of propagating branches
resulting from a single one would follow the binomial distribution (Ross, 2002).
For instance, in Fig. 3, the possible number of branches per element is just 2.
If a fixed elementary energy is associated to the failure of each patch, one can
obtain the energy released in this process from the number of topplings, allowing
the comparison with the Gutenberg-Richter law, see nevertheless Sec. 4.1 of
the review by Ben-Zion (2008). So, the propagation of ruptures is considered
a probability controlled phenomenon, in such a way that when an earthquake
starts, it is not possible to know how big it will become. Later, we will see that
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6 ÁLVARO CORRAL AND FRANCESC FONT-CLOS

Figure 3. Scheme of Otsuka’s model for earthquake ruptures.
White circles correspond to the propagation of the rupture, whereas
black ones indicate termination points (Otsuka, 1972).

this statement is stronger than what it looks like here. The usual domino effect,
in which one toppling induces a new one for sure and so on, would correspond to
the controversial concept of a characteristic earthquake (Stein, 2002; Ben-Zion,
2008; Kagan et al., 2012), an event that always propagates along the complete
fault or fault system and would release always the same amount of energy.

The novel and original model in geophysics explained in this subsection, pro-
posed by Otsuka in the 1970’s, was already known by a few mathematicians 100
years in advance. It will take us the next pages to explain the distribution of
energy in this model.

2. Branching Processes

Besides gambling, many probabilists have been interested in
reproduction
G. Grimmett and D. Stirzaker

Let us move to the Victorian (19th century) England. There, Sir Francis
Galton, the polymath father of the statistical tools of correlation and regression,
and cousin of Charles Darwin, was dedicated to many different affairs. In addition
to the height of sons in relation to the heights of their fathers, he was concerned
about the decay and even extinction of families that were important in the past,
and about whether this decline was a consequence of a diminution in fertility
provoked by the rise in comfort. If that were the case, population would be
constantly fed by the contribution of the lower classes (Watson and Galton, 1875).
In order to better understand the problem, he devised a null model in which the
number of sons of each men was random (the abundance of women was not
considered to be a limitation). Despite the apparent simplicity of the model,
Galton was not able to solve it, and made a public call for help. The call was
also fruitless, and then Galton turned to the mathematician and reverend Henry
William Watson.
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CRITICALITY AND SELF-ORGANIZATION IN BRANCHING PROCESSES 7

(a) Sir Francis Galton (b) Rev. Henry William Watson

Figure 4. The fathers of the Galton-Watson process (photos from
Wikipedia and www.wolframalpha.com, respectively).

2.1. Definition of the Galton-Watson process. Let us consider “elements”
that can generate other elements and so on. These elements may represent British
aristocratic men that have some male descendants, (or, in a more fresh perspec-
tive, women from anywhere that give birth to her daughters, or, perhaps more
properly, bacteria that replicate), neutrons that release more neutrons in a nu-
clear chain reaction, or fault patches that slip during an earthquake. The Galton-
Watson process assumes that each of these elements triggers a random number
K of offspring elements in such a way that each K is independent from that
of the other elements and all K are identically distributed, with probabilities
P (K = 0) = p0, P (K = 1) = p1, . . .P (K = k) = pk, with k = 0, 1, . . .∞ (Harris,
1963). (Naturally, the normalization condition imposes

∑
∀k pk = 1.)

The model starts with one single element, in what we call the zeroth generation
of the process, as shown in Fig. 5. The K offsprings of this first element constitute
the first generation. Let Z0 ≡ 1 denote the number of elements of the zeroth
generation, Z1 the number of elements of the first generation, etc. Obviously, by
construction, P (Z1 = k) = pk. The number of elements in the t+ 1 generation is
obtained from the number of the previous generation t as

(8) Zt+1 =
Zt∑
i=1

Ki,

with t ≥ 0, where Ki corresponds to the number of offsprings of each element in
the t generation. Equation (8) can be used to simulate the process in a straight-
forward way and will be very important to its analytical treatment, in order to



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
17

8 ÁLVARO CORRAL AND FRANCESC FONT-CLOS

Figure 5. A realization of the Galton-Watson process. At the
top, the tree associated to the process is shown, starting from the
left (Z0 = 1). At the bottom, the evolution of the number of
elements originated in each generation t are displayed. The model
for P (K = k) is binomial with n = 2 and p = 1/2, corresponding
to the critical case (see main text).

calculate the probability distribution of Zt, for any t. Some readers may recognize
that the variables Z0, Z1, . . . form a Markov chain, but this is not relevant for our
purposes. And of course, Otsuka’s earthquake model is a particular case of the
Galton-Watson process corresponding to a binomial distribution for P (K = k).

2.2. Generating functions. An extremely convenient mathematical tool will
be the probability generating function (Grimmett and Stirzaker, 2001). For the
random variable K this is, by definition,

(9) fK(x) ≡
∞∑
k=0

pkx
k = 〈xK〉,

where the brackets indicate expected value. The normalization condition guar-
antees that fK(x) is always defined at least in the x−interval [−1, 1], although
only the interval [0, 1] will be of interest for us. Of course, the same definition
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CRITICALITY AND SELF-ORGANIZATION IN BRANCHING PROCESSES 9

applies to any other random variable; in the concrete case of K (which repre-
sents the number of offsprings of any element) we may drop the subindex, i.e.,
fK(x) = f(x).

Very useful and straightforward properties will be,

(1) fK(0) = P (K = 0);
(2) fK(1) = 1 (by normalization);
(3) f ′K(1) =

∑
∀k pkk = 〈K〉 ≡ m;

(4) f ′K(x) ≥ 0 for x ≥ 0 (non-decreasing function);
(5) f ′′K(x) ≥ 0 for x ≥ 0 (non-convex function, “looking from above”);

the primes denoting derivatives (left-hand derivatives at x = 1). Note that
although we illustrate these properties with the variable K, they are valid for
the generating function of any other (discrete) random variable. So, the plot
of a probability generating function between 0 and 1 is very constrained. We
anticipate that two main cases will exist, depending on whether the expected
value of K is m < 1 or whether m > 1. This is natural, as the first case
corresponds to a population that on average decreases from one generation to
the next whereas in the second case the population grows, on average.

Another property but not so straightforward is that the generating function of
a sum of N independent identically distributed variables K (with N fixed) is the
N -th power of the generating function of K; that is, if

(10) Σ =
N∑
i=1

Ki,

then

(11) fΣ(x) = fK(x)N .

Indeed,
(12)
fΣ(x) = 〈xΣ〉 = 〈x

∑
Ki〉 = 〈xK1 · xK2 · · ·xKN 〉 = 〈xK1〉〈xK2〉 · · · 〈xKN 〉 = fK(x)N ,

where we can factorize the expected values due to statistical independence among
the Ki’s.

In general, if the random variables Ki were not identically distributed (but still
independent), the generating function of their sum would be the product of their
generating functions. The demonstration is essentially the same as before, and
one only needs to introduce new notation for the different generating functions.

A following step is to consider that N is also a random variable, with generating
function fN(x). Then,

(13) fΣ(x) = fN(fK(x)).

Note that equation (13) is just a generalization of equation (11), i.e., now we
calculate the expected value of the powers of fK(x) depending on the values that
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10 ÁLVARO CORRAL AND FRANCESC FONT-CLOS

N make take. In any case, it is easy to demonstrate: denoting with 〈·〉Ki
the

average over the Ki’s and with 〈·〉N the average over N , we have

(14) fΣ(x) = 〈xΣ〉 =
〈
〈xΣ〉Ki

〉
N

=
〈
fK(x)N

〉
N

= fN(fK(x)),

where the last equality is just the definition of the probability generating function
of the random variable N , evaluated at fK(x). We stress that this is only valid
for independent random variables.

2.3. Distribution of number of elements per generation. Going back to
the Galton-Watson branching process, where we know that Zt+1 =

∑Zt

i=1 Ki, we
can identify Zt+1 as Σ and Zt as N ; then equation (13) reads,

(15) fZt+1(x) = fZt(fK(x)) = fZt(f(x))

(dropping the subindex K). As fZ1(x) = f(x), it is straightforward to see by
induction that the generating function of Zt, is given by

(16) fZt(x) = f(f(...f(x))) = f t(x),

where the superindex t denotes composition t times. This is valid for t = 1, 2, . . . ;
for t = 0 we have, obviously, that fZ0(x) = x (because Z0 = 1 with probability 1).
In words, the generating function of the number of elements for each generation
is obtained by the successive compositions of f(x). This non-trivial result was
first proved by Watson in 1874 (Harris, 1963).

2.4. Expected number of elements per generation. Here we present an
illuminating result, which will be useful at some point in the chapter. Although,
in general, the successive compositions of the generation function leads to very
complicated mathematical expressions, the moments of Zt can be computed in a
simple way (Harris, 1963). Using what we have learnt about generating functions
together wtih equation (16), the expected value of Zt is

(17) 〈Zt〉 =
d

dx
f t(x)

∣∣∣∣
x=1

.

Let us then write

(18)
d

dx
f t(x) =

d

dx
f(f t−1(x)) = f ′(f t−1(x))

d

dx
f t−1(x),

therefore, by induction,

(19)
d

dx
f t(x) = f ′(f t−1(x))f ′(f t−2(x)) · · · f ′(f 2(x))f ′(f(x))f ′(x).

Taking x = 1 and using that all the generating functions have to be 1 at that
point,

(20) 〈Zt〉 = f ′(1)t = mt.
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So, when m < 1 the mean number of elements per generation decreases expo-
nentially, whereas when m > 1 this number increases, constituting a stochastic
realization of Malthusian growth. For this reason m is sometimes called the
branching ratio. When m = 1 the average size of the population is constant, but
we will later see that this does not mean that the population reaches a stable
state. Higher-order moments can be computed in a similar way, but they are not
so useful as the mean.

Another related issue is the one of the expected value of the number of ele-
ments per generation conditioned to the value of the previous generation, i.e.,
〈Zt+1|Zt = zt〉. As when Zt is fixed, Zt+1 =

∑zt

i=1Ki, then, taking the expected
value,

(21) 〈Zt+1|Zt = zt〉 =
zt∑
i=1

〈Ki〉 = ztm.

This result can be used to relate branching processes with martingales (Grimmett
and Stirzaker, 2001), but this does not have to bother us.

2.5. The probability of extinction. Extinction of the process is achieved when
Zt = 0, for the first “time” (i.e., for the generation that yields Zt = 0 for the first
t). Then, all the subsequent Z’s are also zero, and extinction can be considered
an “absorbing state”, in this sense. We now see that the probability of extinction
in the Galton-Watson process is equal to one (extinction for sure) for m ≤ 1 and
is smaller than one for m > 1.

This result, which may be referred to as the Galton-Watson-Haldane-Steffensen
(criticality) theorem, was first proved by J. F. Steffensen, in the 1930’s (being
unaware of the work by Galton and Watson, and later progress by Haldane). As
Kendall (1966) pointed out, after then, the same theorem “was to be re-discovered
over and over again, especially during the (Second World) War period, and no
doubt we have not yet seen its last re-discovery”. Ironically, Kendall did not
know that Irénée-Jules Bienaymé knew the theorem, in its correct formulation,
30 years in advance Galton and Watson and 85 years before Steffensen (Kendall,
1975)!

Indeed, extinction may happen at the first generation, Z1 = 0, or at the second,
Z2 = 0, etc. All these extinction events are included in Zt = 0, with t → ∞;
therefore, the probability of extinction Pext is given by
(22)
Pext = lim

t→∞
P (Z1 = 0 or Z2 = 0 or . . . or Zt = 0) = lim

t→∞
P (Zt = 0) = lim

t→∞
f t(0),

i.e., by the infinite iteration of the point x = 0 through the generating function
f(x) (using the key property that the probability of a zero value is the value of
the generating function at zero, and equation (16) again).

We now calculate the iteration f t(0). In the interval [0, 1] the function f(x) is
non-decreasing and non-convex, taking values from p0 to 1. If the slope of f(x)
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Figure 6. Probability generating function f(x) of the number of
offsprings per element and iteration of the point x = 0 through
successive compositions of f . The fixed points correspond to the
crossings of the diagonal; those closer to zero are also the attractors
for the iteration. Left corresponds to a subcritical case and right
to a supercritical case. The model is the binomial one, with n = 2.

at x = 1, given by m = 〈K〉 = f ′(1), is smaller than or equal to 1, then f(x)
only crosses (or reaches) the diagonal at x = 1 (otherwise, f(x) would need to be
convex somewhere), and the iteration of the point x = 0 ends at the point x = 1
(which is the attractor, see Fig. 6). Therefore,

(23) Pext = lim
t→∞

f t(0) = 1,

i.e., extinction is unavoidable if m ≤ 1. There is a trivial exception, though,
associated to p1 = 1 (and zero for the rest); this is an extremely boring situa-
tion indeed. In this case, f(x) = x, and therefore lim f t(0) = 0, which means,
obviously, that the probability of extinction is zero.

If the slope of f(x) at x = 1 is m > 1 (which only can happen for a non-linear
generating function, p0 + p1 < 1), then f(x) has to cross the diagonal at a point
x∗ smaller than one, which is the attractive solution to which the iteration tends,
see Fig. 6 again. In mathematical language,

(24) Pext = lim
t→∞

f t(0) = x∗,

where

(25) x∗ = f(x∗) with x∗ < 1.

The demonstration is elaborated in the Appendix.
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Summarizing,

(26) Pext =

{
1 if m ≤ 1
x∗ if m > 1

with x∗ < 1, except in the trivial case p1 = 1, which has m = 1 but yields
Pext = 0.

Equation (26) clearly shows that, in general, the point m = 1 separates two
distinct behaviors: extinction for sure for m ≤ 1 and the possibility of non-
extinction (non-sure extinction) for m > 1. Therefore, m = 1 constitutes a
critical case separating these behaviors, called therefore subcritical (m < 1) and
supercritical (m > 1). It is instructive to point out that, as x = 1 is always a
solution of f(x) = x, Watson concluded, incorrectly, that the population always
gets extinct, no matter the value of m (Kendall, 1966).

2.6. The probability of extinction for the binomial distribution. For the
sake of illustration we will consider a simple concrete example, a binomial distri-
bution (Ross, 2002; Grimmett and Stirzaker, 2001),

(27) pk = P (K = k) =

(
n
k

)
pk(1− p)n−k, for k = 0, . . . n.

This assumes that each element has only a fixed number of trials n to generate
other elements, and any of these n trials has a constant probability p of being
successful. The generating function turns out to be, using the binomial theorem

(28) f(x) =
∞∑
k=0

(
n
k

)
(1− p)n−kpkxk = (1− p+ px)n.

Let us consider the simple case with n = 2, and define q = 1− p. As we know,
the probability of extinction will come from the smallest solution in [0, 1] of

(29) x = (q + px)2.

So,

(30) x =
1− 2pq ±

√
(1− 2pq)2 − 4p2q2

2p2
,

but the square root can be written as
√

1− 4p(1− p) =
√

(1− 2p)2 = (1− 2p),
and then,

(31) x =
1− 2p+ 2p2 ± (1− 2p)

2p2
=

{ (
q
p

)2

1

Therefore, the smallest root depends on whether p is below or above 1/2

(32) Pext =

{
1 for p ≤ 1

2(
q
p

)2

for p ≥ 1
2
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Figure 7. Successive compositions of f(x), for all x, yielding the
probability generating functions of Zt, starting at t = 1 (lighter
red) up to t = 15 (darker red). Larger t leads to flatter functions,
approaching the fixed point. From left to right, subcritical, critical,
and supercritical cases, using a binomial model with n = 2.

As for the binomial distribution m = np = 2p (Ross, 2002), the critical case
m = 1 corresponds obviously to p = 1/2, in agreement with the behavior of Pext.

2.7. No stability of the population. Although this subsection contains an in-
teresting result to better understand the behavior of the Galton-Watson process,
it can be skipped as it is not connected to the rest of the chapter. In fact, the
iteration of the point x = 0 shows what happens to the whole generating function
of Zt when t→∞. Indeed, in the same way as in subsection 2.5,

(33) lim
t→∞

fZt(x) = lim
t→∞

f t(x) = 1 if m ≤ 1,

whereas

(34) lim
t→∞

fZt(x) = lim
t→∞

f t(x) = x∗ < 1 if m > 1,

except for x = 1, which always fulfills limt→∞ f
t(x) = 1, see Fig. 7).

Note that a flat generating function corresponds to probabilities equal to zero,
except for the zero value, i.e.,

(35) lim
t→∞

P (Zt = k) = 0, except for k = 0.

In this way, for m ≤ 1 we have that limt→∞ P (Zt = 0) = 1, and the population
gets extinct; but for m > 1 we have found limt→∞ P (Zt = 0) = x∗ < 1; having
any other finite value of K a zero probability, this means that Zt goes to infinite,
when t → ∞, with probability 1 − x∗; that is, Zt cannot remain positive and
bounded. The only stable state is extinction. Obviously, in this limit the Galton-
Watson process is unrealistic, as other external factors should prevent that the
population goes to infinity. But we do not need to bother about that, if we
understand the limitations of the model.
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2.8. Non-equilibrium phase transition. Let us analyze in more detail what
happens around the “transition point” m = 1. As we just have seen, recall equa-
tion (25), the extinction probability is given by the solution of Pext = f(Pext).
When m ≤ 1 the only solution in [0, 1] is Pext = 1 (except in the trivial case
p1 = 1). When m > 1 we have to take the smallest solution of Pext = f(Pext) in
[0, 1]. In terms of the non-extinction probability, ρ = 1 − Pext, we need to look
for the largest ρ that is solution of

(36) f(1− ρ) =
∞∑
k=0

pk(1− ρ)k = 1− ρ,

in the range [0, 1]. We explore the case of Pext close to 1, for which ρ is close to
zero, and, using the binomial theorem, we can expand (1− ρ)k = 1− kρ+ k(k−
1)ρ2/2 + · · · , which yields

∞∑
k=0

pk −
∞∑
k=0

kpkρ+
1

2

∞∑
k=0

k(k − 1)pkρ
2 + · · · =(37)

= 1−mρ+
1

2
µρ2 + · · · = 1− ρ,

where we have introduced the mean m and the second factorial moment µ =
〈K(K − 1)〉 (which we assume exists). Therefore, up to second order in ρ we
need to solve

(38)

(
1

2
µρ+ 1−m

)
ρ ' 0.

It is immediate that one solution of equation (38) is ρ = 0, and one can realize
that this solution is exact up to any order in ρ. The other solution is ρ '
2(m − 1)/µ, but we must pay attention to the value of µ, which can be written
as µ = σ2 + m(m − 1), with σ2 = 〈(K −m)2〉 = 〈K2〉 −m2, i.e., the variance.
Existence of m and σ2 guarantees the existence of µ, then. Assuming σ2 6= 0,

(39)
2(m− 1)

µ
=

2(m− 1)

σ2[1 +m(m− 1)/σ2]
=

2(m− 1)

σ2

[
1− m(m− 1)

σ2
+ . . .

]
(using the formula for the geometric series), therefore, ρ around zero means m
around one, and we can write the second solution as

(40) ρ ' 2(m− 1)

σ2

which is only in the range of interest for m > 1.
In conclusion, we have

(41)
ρ = 0 if m ≤ 1
ρ ' 2(m− 1)/σ2 if m > 1,
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valid in the limit of small ρ. For m > 1 this limit is equivalent to m → 1.
The separate case σ2 = 0 is only achieved in the trivial situation where p1 = 1
(otherwise, the mean cannot approach one).

In this way, we obtain a behavior that is the one corresponding to a continuous
phase transition in thermodynamic equilibrium. Identifying m with a control
parameter (as temperature, or more properly, the inverse of temperature) and
ρ with an order parameter (as magnetization in a magnetic system) these tran-
sitions show an abrupt but continuous change of ρ as a function of m at the
transition point mc, with

(42)
ρ = 0 below mc

ρ ∝ (m−mc)
β above but close tomc

For magnetic systems, mc corresponds to the so-called Curie temperature. For
the Galton-Watson branching process we can extract from equation (41) that

(43) mc = 1 and β = 1,

where we assume that the variance of K does not go to zero at the transition
point.

We can compare the previous general result, ρ ' 2(m−1)/σ2, for m above but
close to 1, with the result we found for the binomial distribution with n = 2 (see
equation (32)), for which

(44) ρ = 1−
(

1− p
p

)2

=
2p− 1

p2

when p ≥ 1/2. Using that in this case m = np and σ2 = npq (see Ross (2002)),

(45)
2(m− 1)

σ2
=

2p− 1

pq
' 2p− 1

p2
,

because q = 1− p ' p for p ' 1/2. So, equations (32) and (41) agree close to the
transition point. Figure 8 shows also how they disagree as m increases.

Finally, for completeness, we can play with the pathological case given by
σ2 = 0. Let us consider first the following model, p0 = 1− λ1, p1 = λ1 (and zero
otherwise), with λ1 < 1. Then, m = λ1, and we know that ρ = 0. Next, let us
consider p1 = 1 − λ2, p2 = λ2 (and zero otherwise), giving m = 1 + λ2. In this
case, ρ = 1 always, yielding a discontinuous, or first order phase transition.

2.9. Distribution of the total size of the population: binomial distribu-
tion and rooted trees. Our main interest will now be to calculate the total
size S of the population, summing across all generations, i.e.,

(46) S =
∞∑
t=0

Zt,
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Figure 8. Left: non-extinction probability ρ as a function of the
mean number of offsprings per element, m. Dashed line corresponds
to the approximation explained in the text (eq. (41)). The abrupt
change in ρ is the hallmark of a continuous phase transition. The
model is binomial with n = 2. Right: the same but as a function
of the rescaled distance to the critical point, 2(m − 1)/σ2, where
σ2 refers to the variance at m = 1. The Poisson and the geometric
distributions are also studied.

this corresponds to the total number of individuals that have ever been born, the
total number of neutrons participating in a nuclear chain reaction, or the energy
released during an event in an earthquake model.

Let us go back to the concrete binomial case,

(47) pk = P (K = k) =

(
n
k

)
pk(1− p)n−k, for k = 0, . . . n.

The size distribution can be calculated using elementary probability and com-
binatorics. One needs to take advantage of the representation of a branching
process as a tree (which is a connected graph with no loops). Each element is as-
sociated to a node, and branches linking nodes indicate an offspring relationship
between two nodes. Naturally, all nodes have just one incoming branch, except
the one corresponding to the zero generation (which in this context is called the
root of the tree). So, the number of branches is the number of nodes minus 1. As
the size s of a tree is the number of nodes it contains, the number of branches is
s− 1, and the number of missing branches (non-successful reproductive trials) is
ns− (s− 1) (because the number of possible branches arising from s nodes is ns)
(Christensen and Moloney, 2005). Therefore, a particular tree of size s comes
with a probability ps−1(1− p)(n−1)s+1, and the probability P (S = s) of having an
undefined tree of size s is obtained by summing for all possible trees of size s. In
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the case n = 2 the number of trees with s nodes is given by the Catalan number

(48) Cs =
1

s+ 1

(
2s
s

)
,

see the Appendix for its calculation. Then,

(49) P (S = s) =
1

s+ 1

(
2s
s

)
ps−1(1− p)s+1 with s = 1, 2, . . .

It can be checked, using the generating function of the Catalan numbers, that
this expression is normalized for p ≤ 1/2 but not for p > 1/2, in fact,

(50)
∞∑
s=1

P (S = s) = Pext,

see the Appendix again.
Nevertheless, the exact expression we have obtained for P (S = s) does not

teach us anything about the behavior of this function (unless one has a great
intuition about the behavior of the binomial coefficients). In this regard, Stirling’s
approximation is of great help (Christensen and Moloney, 2005). It states that,
in the limit of large N one can make the substitution

(51) N ! ∼
√

2πN

(
N

e

)N
,

see the Appendix once more. The symbol e is nothing else than the e number.
So, for large sizes we can apply the approximation to s and also to 2s,

(52) (2s)! ∼
√

4πs

(
2s

e

)2s

.

Therefore, the binomial coefficient turns out to be,

(53)

(
2s
s

)
=

(2s)!

s!s!
∼ 1√

πs

(2s)2s

s2s
∼ 4s√

πs
,

and the Catalan number, replacing s+ 1 ∼ s,

(54) Cs =
1

s+ 1

(
2s
s

)
∼ 4s√

πs3/2
.

This is an exponential increasing function of s, and the term s3/2 does not seem
to play any role, asymptotically. However, introducing the factor ps−1(1− p)s+1,
we go back to equation (49), getting

(55) P (S = s) ∼ 1− p√
πp

[4p(1− p)]s

s3/2
.
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Notice that p(1 − p) is no larger than 1/4, so the exponential term becomes
decreasing, except for p = 1/2, where it disappears. We can go one step further,
by writing,

(56) [4p(1− p)]s = es ln[4p(1−p)] = e−s/ξ(p)

with the characteristic size defined as

(57) ξ(p) =

(
ln

1

4p(1− p)

)−1

,

and finally equation (55) reads,

(58) P (S = s) ∼ 1− p√
πp

e−s/ξ(p)

s3/2
,

So, for s large, but substantially smaller than ξ(p), the size probability mass
function is a power law, with exponent 3/2. For larger s, the exponential decay
dominates. The exception is the critical case, p = 1/2, for which ξ(p) becomes
infinite, the exponential disappears and the distribution is a pure power law. In
this case the exponent 3/2 is a critical exponent. The reader can see the goodness
of the approximation in Fig. 9.

Another critical exponent arises for the divergence of the characteristic size
ξ(p). Introducing the deviation with respect to the critical point, ∆ ≡ p − pc =
p− 1/2, one can write,

(59) p(1− p) =
1

4
−∆2,

and so, close to the critical point (for small ∆),

(60)
1

4p(1− p)
=

1

1− 4∆2
' 1 + 4∆2 + . . .

(using the formula of the geometric series), then

(61) ln
1

4p(1− p)
' ln(1 + 4∆2) ' 4∆2 + . . .

(using the Taylor expansion of the logarithm at point 1) and

(62) ξ(p) =

(
ln

1

4p(1− p)

)−1

' 1

4∆2
+ . . .

Therefore, the characteristic size ξ(p) diverges at the critical point as a power
law, with an exponent equal to 2. This allows to write the asymptotic formula
(s large) for the size distribution in a simpler form, close to the critical point (∆
small),

(63) P (S = s) ∼ 1− p√
πp

e−4(p−pc)2s

s3/2
.
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Figure 9. Probability mass functions of the total size of the pop-
ulation S , for different values of the parameter p of a binomial
distribution with n = 2, both in the subcritical and critical cases.
The asymptotic solution for large s is also shown. The pure power
law at the critical point becomes apparent.

Hence, after this perhaps long but worthwhile digression, we are able to say
something about the energy distribution in Otsuka’s model, which the reader
will have already noted is a particular case of the Galton-Watson process. If one
takes p < 1/2 the resulting energy distribution has an exponential tail, with a
characteristic scale given by ξ(p). This means that earthquakes attenuate, or
get extinct, and in no way can dissipate energies larger than the scale provided
by ξ(p) (the probability of having an earthquake of size larger than 10ξ(p) is
ridiculously small). This is the subcritical case. On the other hand, if p >
1/2 there are two types of earthquakes, first, those similar to the subcritical
ones, with a size limited by the scale defined by ξ(p), and second, infinite or
never-ending earthquakes (Pext < 1), where the initial small perturbation (the
toppling of just one domino piece) grows exponentially. This is the supercritical
regime (Ben-Zion, 2008). Neither the subcritical nor the supercritical case are
in correspondence with the Gutenberg-Richter law, which yields a power-law
distribution of energies, and therefore the absence of a characteristic scale. But
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this is precisely what corresponds to the critical case, p = 1/2, which yields also a
power-law distribution. Thus, the propagation of an earthquake through a fault
is not only stochastic in the sense that when a patch fails one does not know what
will happen next, but it is worse than that, as a critical process is equally likely
to intensify or attenuate. Note how difficult is to achieve a critical behavior, as
p has to be finely tuned to 1/2, otherwise criticality is lost. In terms of domino
topplings this is what is really difficult, and not to get a full-system supercritical
toppling, which, despite its mathematical triviality, deserves a lot of attention
from the media when a Guinness world record is broken.

The agreement between the model and real earthquakes is qualitative but not
quantitative, as the model leads to α = 3/2 whereas for earthquakes α ' 5/3 '
1.67. In the next subsection we will explain that the model value of 3/2 is
rather robust and other versions of the Galton-Watson process lead to the same
exponent. This discrepancy has been explored in detail by Kagan (2010), who
argues that there are a series of technical artifacts that make increase the value
of the exponent for earthquakes, and therefore, following Kagan, both exponents
would be close and probably compatible.

2.10. Generating function of the total size of the population. In order to
advance further in the understanding of branching processes, our little story car-
ries us to the U.S. during the Second World War. While soldiers were fighting in
the field and civilians were suffering the horrors of war, a group of scientists gath-
ered in the peace of Los Alamos, New Mexico, to do research to develop the first
nuclear bombs. Among these brilliant people was the great Polish mathemati-
cian Stanislaw Ulam, who was hired by his famous colleague John Von Neumann
(Ulam, 1991). Together with David Hawkins (philosopher of science and most
talented amateur mathematician ever known by Ulam) they were investigating
the multiplication of neutrons in nuclear chain reactions, using what we call now
branching processes. It seems that they were unaware of the pioneering work of
Galton and Watson.

Hawkins and Ulam showed, among other things, that the generating func-
tion g(x) of the total size of the population, S =

∑
∀t Zt, fulfills, in the non-

supercritical case,

(64) g(x) = xf(g(x))

where, as usual, f(x) is the generating function of the number of offsprings of an
individual element. What follows in this subsection is based in their work for the
Manhattan Project (Hawkins and Ulam, 1944; Ulam, 1990), but our derivation
is somewhat simpler. What we call total size of the population will correspond
to all neutrons generated during the reaction.
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Figure 10. Polish mathematician Stanislaw Ulam, together with
the current version of the first page of Ref. Hawkins and Ulam
(1944), after being unclassified for public release. The work, in
which important formulas for branching processes are derived, was
done as a part of the Manhattan project.

First, it is convenient to consider the size from generation 1 to τ (excluding by
now the zero generation). This is

(65) Sτ =
τ∑
t=1

Zt

with probabilities q
(τ)
s = P (Sτ = s) and a generating function g̃τ (x) =

∑
∀s q

(τ)
s xs.

A size s in generations from 1 to τ can be decomposed into a size k in the first
generation, with probability pk, and a size s−k in the remaining τ−1 generations

(from 2 to τ), but starting with k elements; this has a probability q
(τ−1,k)
s−k . (Note

that, with this notation q
(τ)
s = q

(τ,1)
s .) Then, using the law of total probability,

(66) q(τ)
s =

s∑
k=1

pkq
(τ−1,k)
s−k ,

except for s = 0, where q
(τ)
0 = p0. If we multiply by xs and sum for all s, from 0

to ∞, we will obtain on the left hand side the generating function of Sτ , which
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turns out to be

(67) g̃τ (x) = p0 +
∞∑
s=1

s∑
k=1

pkq
(τ−1,k)
s−k xs = p0 +

∞∑
k=1

pk

[
∞∑
s=k

q
(τ−1,k)
s−k xs−k

]
xk.

The term inside the square brackets is the generating function of the size from 1 to
τ −1 generations but, instead of starting with one single element (the usual Z0 =
1), starting with k elements (Z1 = k). As these k parents are independent of each
other, the resulting size will be the sum of k independent random variables, each
with generating function g̃τ−1(x), which yields [g̃τ−1(x)]k as the corresponding
generating function, that is,

(68) [g̃τ−1(x)]k =
∞∑

s−k=0

q
(τ−1,k)
s−k xs−k,

Substituting into equation (67), this leads to

(69) g̃τ (x) = p0 +
∞∑
k=1

pk[g̃τ−1(x)]kxk = f(xg̃τ−1(x))

where we have introduced the definition of f(x) = fK(x).
If we want to include the zero generation in the size, we need to add an indepen-

dent variable with generating function x (as Z0 takes the value 1 with probability
1), and then, the generating function of the size from generation 0 to τ is the
product gτ (x) = xg̃τ (x). This leads to

(70) gτ (x) = xf(gτ−1(x)).

Coming back to the total size,

(71) S =
∞∑
t=0

Zt,

the corresponding generating function is g(x) = limτ→∞ gτ (x). If the probability
of extinction is one, i.e., if the system is not supercritical, this is the same as
limτ→∞ gτ−1(x), and therefore we have

(72) g(x) = xf(g(x)).

So, the desired generating function is the solution of this equation, with f(x)
known. We will not be able to solve it in general; however, notice that this is not
necessary in order to get the moments of S. Differentiating equation (72) with
respect x one obtains

(73) g′(x) = f(g(x)) + xf ′(g(x))g′(x),

and taking x = 1 and isolating,

(74) 〈S〉 = g′(1) =
1

1− f ′(1)
=

1

1−m
,
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which goes to infinity as 〈K〉 = m = f ′(1) goes to 1, that is, at the critical point.
Of course, as we have mentioned, the result is not applicable in the supercrit-
ical case, m > 1, where the population can growth to infinite with a non-zero
probability. Further differentiation yields higher-order moments.

The same result could have been obtained directly, as
(75)

〈S〉 = 〈Z0 +Z1 +Z2 + · · · 〉 = 〈Z0〉+〈Z1〉+〈Z2〉+ · · · = 1+m+m2 + · · · = 1

1−m
,

where the last equality only holds in the subcritical case, otherwise, 〈S〉 goes to
infinity.

In a few cases, the equation for g(x) allows to easily obtain a solution. Re-
visiting the binomial example with n = 2, for which f(x) = (1 − p + px)2, one
gets

(76) g(x) = xf(g(x)) = x(1− p+ pg(x))2,

from where

(77) g(x) =
1− 2pqx±

√
1− 4pqx

2p2x
,

with q = 1 − p. Using the Taylor expansion for the square root term (see the
Appendix),

(78)
√

1− 4pqx = 1− 2pqx−
∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
(pqx)s+1,

and recognizing the Catalan numbers Cs there, we get (see the Appendix),

(79) g(x) =
q

p

∞∑
s=1

Cs(pqx)s,

where we also realize that only the minus sign before the square root leads to a
true generating function. Therefore, the coefficients of xs lead to

(80) P (S = s) = Csp
s−1qs+1,

for s ≥ 1. This result is exactly the same as the one we obtained previously in
a different manner (see equation (49)), although in this way we do not need to
count trees, as the Catalan numbers arise directly in the series expansion (in fact,
we do not even need to know them).

We confirm that the results for Otsuka’s binomial model yield a size exponent
equal to 3/2. But it would be desirable to test the robustness of such exponent
value, as, after all, the model is a crude simplification of reality, and we would like
that modifications of the model do not lead to a totally different behavior. Despite
the difficulty to find the power-law behavior (for which we need to finely tune the
parameter p to 1/2), if one considers other models different than the binomial
one, the asymptotic behavior of the size distribution is in general always given by
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a power law with exponent 3/2, in the critical case; this can be proved by means
of Cauchy’s formula and assuming only finite variance, see Otter (1949); Harris
(1963). So, going beyond robustness, it is common to denote such invariance as
universality.

2.11. Self-organized branching process. At this point we are ready to ac-
cept the agreement, not only qualitative but, following Kagan’s remarks (Kagan,
2010), also quantitative, between a critical branching process and earthquake oc-
currence. So, in order to tune the model to reality we just need to take p = 1/2
(in Otsuka’s binomial case) or m = 1 (in general) and the agreement is really
satisfactory, and we could finish our search for a model here.

But we can try to go one step farther and ask: why do we find that the tectonic
systems (and other geosystems related to natural catastrophes) are always keep-
ing a delicate balance between a subcritical and a supercritical state, i.e., in an
apparent critical state? Can the coincidence be just fortuitous? In the reproduc-
tion of individuals one could devise an evolutionary explanation. Imagine a series
of isolated islands, each one occupied by a population following a Galton-Watson
process but with different parameters for each island. It is clear that islands with
subcritical populations get deserted after a number of generations. Populations in
supercritical islands either get extinct also or explode exponentially, in which case
we assume that the population collapses, due to the exhaustion of the resources
(this is an ingredient that is not in the original Galton-Watson model). In the
critical case, the population also gets extinct, but for a few of these islands the
population can survive for very long times, much longer than in the subcritical
and supercritical cases. So, after a long enough time we would only find critical
populations.

However, this evolutionary scenario is not applicable to a tectonic system,
where, when the process (the earthquake) gets extinct, a new one will start
sooner or later. Rather, the situation would be analogous to finding all magnetic
materials on Earth at the onset of magnetization, which would mean that their
temperatures would be equal to the Curie temperature of each material. One
could suspect then that there is some mechanism enforcing criticality, where the
temperature changes as a function of magnetization, and magnetization is kept at
the border of the transition; in other words, both parameters are linked through
some feedback mechanism (Sornette, 1992; Pruessner and Peters, 2006).

Zapperi et al. (1995) propose a model in this line. They start with a standard
branching process but introduce some important modifications:

• They limit the number of generations to a maximum τ , so 0 ≤ t ≤ τ .
• After the extinction of the process (which is obviously certain when the

number of generations is limited), the parameters of the process change
for the next realization, in such a way that for subcritical cases (m < 1),
the mean m of the number of offsprings for each individual unit increases,
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whereas in the supercritical case (m > 1) the mean m decreases. The idea
is to make the critical state m = 1 an attractor of the dynamics.

In order to be more concrete, let us consider the usual binomial distribution
with only 0, 1, or 2 possible offsprings and a probability p that each reproductive
trial is successful. Then we already know that p < 1/2, p = 1/2, and p > 1/2
correspond to the subcritical, critical, and supercritical cases, respectively. The
dynamics proposed by Zapperi and coauthors relies on the activity that reaches
the “boundary” of the system (defined by the last generation, t = τ), which is
Zτ , changing the probability p through the following formula

(81) p(T + 1) = p(T ) +
1− Zτ (p(T ), T )

N
,

with T a discrete time index counting the number of realizations of the process
(do not confuse with t) and N = 2τ+1 − 1 the maximum number of possible
elements, i.e., the number of branches of the underlying complete tree. Thus,
if the activity does not reach the boundary, Zτ is zero and the parameter p is
increased by 1/N , this is a very small number in the limit of very large systems
(N → ∞). On the other hand, if the activity at the boundary is greater than
one, p is decreased by (Zτ − 1)/N .

We already know that the expected value of Zτ is mτ , with m the mean of
the offspring distribution (m = 2p in our particular binomial model). Let us
introduce a noise term, η, which takes into account the fluctuations of Zτ with
respect its mean, i.e., η = Zτ −mτ . Obviously, by construction, 〈η〉 = 0. If we
neglect, for a while, the noise term in equation (81), the deterministic part reads,

(82) p(T + 1) = F (p(T )) = p(T ) +
1− (2p(T ))τ

N
.

This is a discrete dynamical system, or a map, for which a fixed point p∗ = F (p∗)
exists, p∗ = 1/2. Moreover, the fixed point is attractive, as |F ′(p∗)| < 1 (Alligood
et al., 1997), due to τ � N .

Taking into account the value of the standard deviation of Zτ (Harris, 1963), it
can be shown that the noise term η/N will have a vanishing effect in the limit of
very large systems, and then the stochastic evolution will lead the system towards
the deterministic fixed point, plus small random fluctuations around it.

This spontaneous evolution of a system towards a particular organized state is
referred to as self-organization. It is clear now that what Zapperi et al. introduced
is a branching process that self-organizes towards a critical state. Nevertheless,
the particular dynamics they propose seems a bit arbitrary. How can this kind of
global control be implemented in a real system, where we expect the interactions
between elements to be purely local?

2.12. Self-organized criticality and sandpile models. In fact, the self-
organized branching process introduced by Zapperi et al. (1995) was naturally
embedded in the previous notion of self-organized criticality (SOC), invented
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by Bak and coworkers in the 1980’s (Bak, 1996; Jensen, 1998; Christensen and
Moloney, 2005). Although it is not relevant for our story, it is worth to state that
these authors were not interested in (because they were not aware of) the prob-
lem of power-law distributions in natural hazards (Bak, 1996); rather, they were
mainly concerned to similar-in-spirit problems in condensed-matter physics, as
charge density waves and one-over-f noise, as well as to the emergence of fractal
spatial structures elsewhere (Bak et al., 1987). The fact that earthquakes (and
other hazards) were a manifestation of self-organized criticality was a fortunate
by-product, pointed by Ito and Matsuzaki (1990), Sornette and Sornette (1989),
and Bak and Tang (1989) shortly after the introduction of the SOC concept, see
also the review of Main (1996). Nowadays, natural hazards are one of the main
applications of SOC, despite the original lack of attention by Bak et al. (1987).
As we have seen through this chapter, ignorance seems a common characteristic
of science evolution.

The metaphor used by Bak in order to illustrate his ideas was that of a pile
of sand (Bak, 1996). We have to recognize that the sandpile we are going to
consider is a bit esoteric; in fact, there is a clear correspondence between the
model and a pile only in one dimension (the one-dimensional model corresponds
to a pile constrained in two dimensions, between two parallel plates (Christensen
et al., 1996)). But instead of keeping close to reality, it is more effective to deal
with a mean-field sandpile; this is achieved either in a system defined in the limit
of infinite dimensions or in a system in which each element has “random neigh-
bors”, and neglecting the correlations between the elements. Notice that Bak
and colleagues make use of a new concept, not present in the branching processes
already explained: the notion of complexity, understood here as the nontrivial
interaction between many units or agents, which will result in an emergent col-
lective behavior that is different than the sum of the behavior of the individual
parts (Newman, 2011).

So, consider a system consisting in a large number of elements, such that each
element can store a certain number of discrete packages (or particles), but when
this limit is surpassed the packages are released to other elements – the neighbors.
The situation is analogous to what happens in a Ministry office. Each bureaucrat
has a series of documents or papers (the packages) at his/her desk, but when the
number of those is too big, he/she decides to do something about it and transfers
some papers to some other (random) bureaucrats, and so on (Bak, 1996). This
simple behavior will lead to interesting dynamics, unexpectedly.

To be specific, let us consider that each element can store at most one package;
if some extra package arrives to it, the element releases two packages to some other
units, taken randomly (either among all other elements, what defines random
neighbors or among the 2d nearest neighbors in a d−dimensional square lattice).
If, after the release, the number of packages is still greater than one (which
may happen if the element received more than one package) the release process is
repeated. All the elements evolve following a parallel updating of their dynamics,



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
17
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i.e., there is a common clock setting the time t of all elements. In a formula,

(83) if zi ≥ 2⇒
{
zn(i) → zn(i) + 1,
zi → zi − 2,

where zi counts the number of packages of element i and n(i) denotes two of its
neighbors.

Obviously, this process can give rise to an avalanche in the transference of
packages, which only stops when all elements have no more than one package.
In that case, the system is perturbed by the addition of one extra package to
a randomly chosen element, and the dynamics starts again. This defines a new
time scale, denoted by T (in the same way as in the previous subsection). So,

(84) if zi ≤ 1,∀i⇒ zj → zj + 1,

where j denotes a randomly selected unit. The system also releases packages
outside (or to the garbage can, in the bureaucrats picture); in a d− dimensional
lattice this happens when a boundary element selects as a neighbor an external
element; in a fully random-neighbor system this happen just with a small prede-
fined probability for each element. This simple variation of the original sandpile
model of Bak et al. (1987) (changing the topology of the system by means of a
different selection of neighbors) can be viewed also as a mean-field version of the
so-called Manna model (Manna, 1991; Christensen and Moloney, 2005).

The simple rules of the model make that the total number of packages in the
system, M , evolves, from the addition of one package to the next, accordingly to

(85) M(T + 1) = M(T ) + 1− drop(T ),

where drop is the number of packages that are expelled from the system. The key
parameter of this model is p, defined, for each element, as the probability that
its number of packages is equal to one (so they are at the onset of instability).
But in a mean field description all elements are uncorrelated and equivalent, so
we can define a generic p for the whole system, verifying p = M/N , with N the
total number of elements. So, there is a probability p that an element releases
two packages when it receives one. The action of release is what constitutes the
generation of an offspring, which is the element that relaxes. Therefore, dividing
equation (85) by N we obtain

(86) p(T + 1) = p(T ) +
1− drop(T )

N
,

which we can recognize as essentially equation (81), the one introduced by Zapperi
et al. (1995) in the self-organized branching process. We have already realized
that this equation provides a feedback mechanism of the number of packages into
the toppling (branching) probability (early identifications of this obvious feedback
in SOC were written by Kadanoff (1991) and Sornette (1992)).

Both in the limit of an infinite dimension lattice or in a fully random neighbor
system one realizes that the evolution of an avalanche corresponds to a set of
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propagating non-interacting packages (as the probability that the activity comes
back to an element is vanishingly small), and therefore the activity evolves as a
branching process. But note that the tree associated to the branching process
does not correspond to a quenched underlying structure of the system, as the
random neighbors are selected dynamically, at each time step. The limit τ in the
number of generations introduced by Zapperi and coauthors needs to be added
as an extra ingredient in the model, enforcing the dissipation of packages to
take place at the τ time step. In summary, this illustrates the correspondence
between the mean-field limit of sandpile models and branching processes. This
is enough for our purposes. Other chapters in this book illustrate in much more
detail the dynamics of sandpiles. Nevertheless, it is worth mentioning that the
first connection between SOC and critical branching process was published by
Alstrøm (1988), where it was assumed, however, that the system was in a critical
state from the beginning. Notably, much before, Vere-Jones (1976) had proposed
a branching model very similar to Otsuka’s (but, as usual, unaware of it) and
realized that the tectonic system should evolve spontaneously towards criticality.
Also, very recently, Hergarten (2012) has introduced a variation of Zapperi et
al.’s branching model that evolves only with local rules.

Recapitulating, self-organized criticality offers a coherent framework for the
understanding of earthquakes and many other natural hazards mentioned in the
first section. Indeed, both phenomena (SOC and earthquakes) show a highly non-
linear response, where a small and slow perturbation or driving (the addition
of grains, or the stress provided by the motion of the tectonic plates) pumps
energy into the system, which, due to the presence of local thresholds stores that
energy, until at some point some threshold is surpassed. The resulting release
of energy propagates locally, which can trigger further surpassings of thresholds,
generating a chain reaction or avalanche. One key point is that the energy released
in such a way has to be power-law distributed, so the system responds in all
possible scales. Notice also that the dynamics shows a time-scale separation, as
the avalanches happen infinitely fast compared with the driving (the toppling
of grains is stopped during the propagation of an avalanche). Moreover, Main
(1996) mentions additional characteristics of seismicity present in SOC models,
namely, stress drops that are small in comparison with the regional tectonic stress
field and the existence of seismicity induced or triggered by relatively small stress
perturbations. All this makes SOC a very plausible mechanism for earthquakes.
The connection is made still more concrete using variations of the sandpile models
that mimic the behavior of the spring-block model of Burridge and Knopoff (1967)
as the so-called OFC model (Olami et al., 1992). See also Main (1996).

However, as far as we know, the authentic hallmark of SOC, the existence of
an underlying second-order (continuous) phase transition, has not been found in
earthquakes. The very nature of SOC makes almost impossible to identify such an
abrupt change of an order parameter when a control parameter changes (because
the control parameter is attracted towards the critical point). Nevertheless, this
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elusive behavior has been found in a different system: rainfall (Peters and Neelin,
2006), thanks to very large fluctuations from criticality; so, if a control and an
order parameter could be measured and if similarly large fluctuations were exist,
one would finally prove the existence of SOC in earthquakes.

The same reasoning applies to other natural hazards, for which, at least,
sandpile-like models are abundant in the literature, and their classification as
SOC systems is plausible (Jensen, 1998). The case of hurricanes is still not clear
(Corral, 2010), whereas for tsunamis we can state that their power-law distri-
bution (Burroughs and Tebbens, 2005) does not arise from a SOC mechanism,
as they are not slowly driven (rather, they are violently driven by earthquakes,
landslides and meteorite impacts).

Finally, it is worth mentioning that there is another connection between branch-
ing processes and earthquakes. Instead of using the branching to model the
propagation of individual earthquakes, it is used for the way in which one earth-
quake triggers other earthquakes, i.e., aftershocks, following the so-called Omori
law. The most representative model of this kind is the epidemic-type aftershock-
sequences (ETAS) model (Ogata, 1999; Helmstetter and Sornette, 2002). In-
terestingly, the evolution model of Bak and Sneppen (1993) (another paradigm
of SOC) can be interpreted to reproduce the statistics of earthquakes from this
(slow) time scale (Ito, 1995). This perspective opened a whole new line in statis-
tical seismology, but this is a different story (Bak et al., 2002; Corral, 2004a,b).

3. Conclusions

We started this chapter showing some remarkable statistical properties of earth-
quake occurrence, and ended up mingling with infinite-dimensional sandpiles
models for self-organized criticality. In between, we learnt a few things about
branching processes. Now we sketch some consequences for our initial object of
study: natural hazards.

First, besides any model, we can say a few things just by looking at the data:
earthquakes and other natural hazards follow a power-law distribution of sizes,
in some cases with an exponential cutoff due to finite-size effects (the Earth is
finite, after all!). For the particular values of the exponents found, this implies
that, although big events are less likely, they are always the main contributors
of the overall devastation. As financial data of asset returns and other social
and technological data have also been reported to follow power law distributions
(Mantegna and Stanley, 1999; Newman, 2005), one wonders what the points in
common with these systems and natural hazards can be.

Regarding Otsuka’s rupture model, we showed how, by using a fairly simple
stochastic cascade setup for the local dynamics of fault patches and the mathe-
matical formalism for branching processes, one can reproduce the global statisti-
cal properties of real earthquake occurrences (and other natural hazards). This
is quite remarkable, as it constitutes a link between two distinct observational
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scales: the micro-scale of local dynamics, and the macro-scale of global statistical
behavior.

But Otsuka’s model is a particular case of the Galton-Watson branching pro-
cess. So, first, we presented in an easy way the main results already known for
such processes (main results in relation to our interests). We explained how the
machinery of probability generating functions allows to find a formula for the
activity (or population) at any generation of the process. In the limit of infi-
nite generations, one gets the probability of extinction, which shows an abrupt
change between two different regimes: extinction for sure if the mean number of
offsprings is below or equal to one, and the possibility of non-extinction in the
opposite case. Further progress leads to an expression for the probability of the
total size of the process (the total population ever born or the total energy radi-
ated by an earthquake). It is precisely at the border of the two mentioned cases,
at the critical point of the transition, that one finds a behavior compatible with
earthquakes and other natural hazards. A power-law distribution with exponent
3/2 emerges in this case; however, it remained unexplained how the Earth should
drive itself towards such a critical state.

In this regard, we showed how, by using a simple feedback mechanism, one can
turn the critical point into an attractor of the model. A global condition, related
with boundary dissipation, acts on the probability of activation, in such a way
that when this probability is low, it increases, and vice versa when it is high.
Idealized sandpile models in the mean-field limit implement in a natural way
this mechanism, by means of the transport of particles through the system up to
the boundaries where they are dissipated. The content of particles regulates the
activity in the system.

It is worth mentioning that going beyond the mean-field limit and turn to lat-
tice (more realistic) systems makes things terribly complicated, and the researcher
has to rely more and more on computer simulations and losses the guide of exact,
or at least approximated analytical treatments. But this makes the mathematical
problems that these systems pose much more interesting and exciting. For sure,
researchers will devote their efforts to them for decades.

As a final point, we have to recognize that criticality and self-organized critical-
ity are not the only ways to generate power-law distributions. In fact, much sim-
pler processes that yield power laws exist, as reviewed in Sornette (2004); Mitzen-
macher (2004); Newman (2005). A well known mechanism that escapes from the
normal-distribution attractor in diffusion processes is provided by anomalous dif-
fusion (Bouchaud and Georges, 1990), and its relation with sandpiles was studied
by Boguñá and Corral (1997), among others. Nevertheless, we believe the present
work has clearly shown the plausibility of self-organized criticality for the expla-
nation of earthquakes and natural hazards in general. A complementary, even
more complex perspective is provided by Ben-Zion (2008).
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Appendix

Properties of power-law distributions. Some facts about the power-law dis-
tribution are remarkable. Let us consider the probability density D(E) ∝ 1/Eα,
defined between Emin and ∞. We may first calculate its mean, i.e., the expected
value of E, given by

(87) 〈E〉 =

∫ ∞
Emin

ED(E)dE.

It is easy to check that, when α ≤ 2 (i.e. b ≤ 3/2), this integral becomes infinite,
so, mathematicians would state the expected value of the energy does not exist,
whereas physicists would say that that value is infinite. We take the second
option, which is more informative as we are aware of what we are dealing with.
Of course, the average energy radiated by an earthquake cannot be infinite (the
Earth contains a finite amount of energy), so there is a problem extrapolating
the power law up to infinity. With a normal distribution or with an exponential
distribution (for example) we would not have such a problem of extrapolation,
but it is worth to realize that this is a physical problem, not a mathematical
problem – for instance, if instead of energy we were talking about time between
some events, the mean time could perfectly be “infinite”. Then, for physical
reasons, there has to be an upper limit for the validity of the Gutenberg-Richter
law; however, we have no idea about how large that limit should be. In practice,
the fact that the mean energy becomes infinite means that the average energy one
might calculate from a series of data does not converge, no matter the number of
data. Figure 11 illustrates this fact for the case of mean seismic moment, which
is considered to be proportional to radiated energy. Summarizing, seismologists
are totally ignorant about the mean energy radiated by earthquakes, due to the
special properties of power-law distributions.

Although previously we interpreted as good news the fact that most earth-
quakes are of small size and only very few of them are devastating, the situation
is certainly not so favorable. The reason is that the rare big events, despite their
scarcity, are the ones responsible for the dissipation of energy in the system. For
the particular value of α we are dealing with, it is easy to check that the largest
order of magnitude considered in the energy (the largest decade, or scale) con-
tributes to the total budget more than all the other scales below. In mathematical
terms,

(88)

∫ c

Emin

ED(E)dE <

∫ 10c

c

ED(E)dE,

no matter how big is c (see next subsection for details).
A second peculiar property of power laws is scale invariance. Let us introduce

the concept of scale transformation, considering an arbitrary function that we
call D(E). The idea of a scale transformation is to look at the function D(E) at
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Figure 11. Mean seismic moment for worldwide shallow earth-
quakes with seismic moment greater that 1018 Nm, using the CMT
catalog, starting in 1980. This yields a total of 3363 events. Note
that the mean value does not converge. The big jump at the end
of 2004 is caused by the great Sumatra-Andaman earthquake. The
radiated energy should lead to the same behavior.

a different scale, as for instance, using a mathematical microscope. We can have
a view of the function at the scale of meters (if E and D(E) were distances) and
try to see how it looks at the scale of centimeters. This is performed through a
scale transformation, denoted by an operator T acting on the function D(E), as

(89) T [D(E)] = c2D(E/c1),

where c1 and c2 are two constants called scale parameters, performing a linear
transformation on E and D. In the case of the meters-centimeters example,
c1 = c2 = 100.

In general, almost every function changes under a scale transformation; the ex-
ception can be found looking for the function or functions that verify the following
condition,

(90) D(E) = c2D(E/c1).

It is trivial to check that a solution is given by the power-law function

(91) D(E) ∝ 1

Eα
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Figure 12. A scale transformation acting on its corresponding
scale-invariant function. The function is expanded by factors c1 =
10 and c2 =

√
10, in such a way that the small box at the left is

the full figure at the right. The function is D(E) =
√
E.

with α given by

(92) α = − ln c2

ln c1

,

in other words, a power law with exponent α does not change under a scale
transformation if the scale factors are related through

(93) c2 =
1

cα1

Figure 12 shows how indeed this is the case, with c1 = 10, c2 =
√

10, and D(E) =√
E. Note that the constant of proportionality in equation (91), contained in the

symbol ∝, does not play any role here.
More importantly, it can also be demonstrated that not only the power law is

a solution, but it is the only solution valid for all values of c1 (positive real) if c1

and c2 are related by equation (93) (Takayasu, 1989; Newman, 2005; Christensen
and Moloney, 2005; Corral, 2008). In summary, the condition of scale invariance
demands that

(94) D(E) = c2D(E/c1) for all c1 positive real,

and then, the only solution is the power law. One can verify that other solutions,
as D(E) = sin(lnE), only work for special values of c1 and c2.

Scale invariance is in fact the symmetry associated to scale transformations,
in an analogous way as rotational invariance is the symmetry corresponding to
rotations. If scale invariance is fulfilled, no characteristic scale can be defined for
the variable E, in the same way as if there is rotational invariance in a system,
this system cannot be used to point at a particular direction (a compass cannot
be built from a ball). Systems do not displaying scale invariance allow to define
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characteristic scales, as the exponential functions defining radioactive decay lead
to the definition of the unit of time in terms of the half-life.

There is, nevertheless, an important point to be taken into account here. If
D(E) represents a probability density (as it is the case for the energy radiated
by earthquakes), then, D(E) cannot be a power law for all E ≥ 0, because it
could not be normalized (its integral from 0 to ∞ would diverge). We have
already mentioned that it is necessary to introduce a lower cutoff Emin in order
to avoid this fact. Also, sometimes the power law cannot be extended to infinity,
for physical reasons. So, complete scale invariance is not possible for probability
distributions, and one can have only a restricted scale invariance. However, in the
case of earthquakes, as both the lower limit and the upper limit are not available
from observations, scale invariance plays a genuine role.

Scale invariance in the energy of earthquakes has some counter-intuitive con-
sequences. Imagine that you arrive at a new country, and you are worried about
earthquakes, and ask the people there the following question: how big are typ-
ically earthquakes here? Despite the innocence of such a simple question, due
to scale invariance no characteristic scale for the energy can be defined and the
question has no possible answer.

Dissipation of energy in the largest scales. Let us consider a (continuous)
power-law distribution, defined, for simplicity, between 1 and∞, with probability
density,

(95) D(E) ∝ 1

Eα
.

We are going to see that, for a given r > 2 there exist values of α such that the
contribution to the expected value of E from an interval 1 ≤ E < c is always
smaller than the contribution from c ≤ E < rc, no matter how big c is.

The contribution of an interval a ≤ E < c to the mean value of E is

(96)

∫ c

a

ED(E)dE ∝ c2−α − a2−α.

Therefore,

(97)

∫ c

1

ED(E)dE ∝ c2−α − 1,

and

(98)

∫ rc

c

ED(E)dE ∝ c2−α(r2−α − 1).

In order that the last integral is larger than the previous one it is enough that

(99) (r2−α − 1)c2−α > c2−α.

So, r2−α > 2 and this implies that

(100) α < 2− logr 2.



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
17
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For r = 10, the (sufficient) condition becomes α < 1.699. In the case of earth-
quake radiated energy, α ' 1 + 2b/3 ' 1.667, and equation (100) is fulfilled.
Though, slightly larger values of α violate the condition; nevertheless, there is
nothing special in taking r = 10 (it is not a magical number!) and we have
that equation (100) is fulfilled for a larger r. For r = 2 equation (100) would
imply α < 1, but this is not an acceptable exponent for a power-law distribution
(normalization would not be fulfilled).

Rigorous proof of extinction probability. Besides graphical arguments (see
Fig. 6), we want to provide a rigorous proof for the computation of the extinction
probability in the Galton-Watson process, given by

(101) Pext = lim
t→∞

f t(0),

where Pext is properly defined only if the limit exists. To see that this is always
the case, we note that Zt = 0 =⇒ Zt+1 = 0. Hence, {Zt = 0} ⊂ {Zt+1 = 0}
and P (Zt = 0) ≤ P (Zt+1 = 0), so f t(0) ≤ f t+1(0) or, in words, (f t) is a non-
decreasing sequence. As f([0, 1]) ⊂ [0, 1], we conclude that f t(0) is bounded and
has a limit. To continue our proof, let us treat separately the two cases m ≤ 1,
m > 1. Hence,

case m ≤ 1: As f(x) is non-convex for x ≥ 0, it always lies above any straight
line tangent to it (Spivak, 1967). In particular, we consider the line tangent to
f(x) at the point (1, 1), and

(102) f(x) > 1 +m(x− 1) > x.

Hence f(x) > x for 0 ≤ x < 1. Also, it is straightforward to see that f(Pext) =
Pext,

(103) f
(

lim
t→∞

f t(0)
)

= lim
t→∞

f(f t(0)) = lim
t→∞

f t+1(0) = lim
t→∞

f t(0),

and of course 0 ≤ Pext ≤ 1. So we have that f(Pext) = Pext with 0 ≤ Pext ≤ 1.
Summarizing, Pext is a fixed point of f(x) in the interval [0, 1], but f(x) > x
(strictly) in [0, 1). It is clear that the only option left is Pext = 1.

case m > 1: We will start showing that Pext 6= 1 in this case. First, as already
said, (f t) is a non-decreasing sequence. Second, as f(x) is continuous and f ′(1) =
m > 1, we have that f(x) < x for x ∈ (1−ε, 1) for some ε > 0. So, f t(0) /∈ (1−ε, 1)
for all t (because it would then decrease). This means that the only way for f t(0)
to have limit 1 is to “jump over” the interval (1− ε, 1), that is, by means of some
y < 1− ε such that f(y) = 1. But such y cannot exist because then f ′(x) < 0 at
some point between y and 1.

Now we will see that the equation f(x∗) = x∗ has a unique solution in the
interval [0, 1). There must be at least one solution because f(0) > 0, and f(x) < x
in (1− ε, 1) (here we are using Bolzano’s theorem for f(x)− x). To see that this
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solution is unique, suppose there are two solutions, 0 ≤ x1 < x2 < 1. As we also
have f(1) = 1, by Rolle’s theorem there would exist two points y1, y2 such that
f ′(y1) = f ′(y2) = 1 and x1 < y1 < x2 < y2 < 1, but this is impossible because
f ′′(x) ≥ 0 in [0, 1], which means that f ′(x) is non-decreasing and hence takes any
value only once in [0, 1].

So, if Pext 6= 1 but f(Pext) = Pext, then Pext must be the unique solution of
f(x∗) = x∗ in [0, 1).

For the sake of rigor, we must point out that some “pathological” cases would
need a separate treatment, such as f(x) = x, but those are almost never of actual
interest.

Catalan numbers. The Catalan numbers owe their name not to a Mediter-
ranean region but to the French-Belgian mathematician from the 19th century
Eugène Charles Catalan. “His” numbers count a large variety of objects (Stanley,
1999), in particular, the rooted trees that arise in the study of branching process
when the number of offsprings can be 0, 1, or 2. We can consider a tree of size
s as the root (corresponding to the zero generation of the associated branching
process) plus the remaining s − 1 nodes, these latter can be distributed as a
varying number of nodes associated to the first branch, 0, 1, . . . s− 1 and the rest
to the second branch, s− 1, s− 2, . . . 1, 0, respectively. Therefore, the number of
trees Cs of size s fulfills,

(104) Cs = C0Cs−1 + C1Cs−2 + · · ·+ Cs−2C1 + Cs−1C0,

where C0 is taken equal to one, as there is only one way in which a branch can
have no elements. Note that from here we obtain

(105)

C1 = (C0)2 = 1
C2 = 2C0C1 = 2
C3 = 2C0C2 + (C1)2 = 5
C4 = 2C3C0 + 2C2C1 = 14

and so on this simple formula generates all Catalan numbers. The curious
reader can check Figure 13, where all possible rooted trees with no more than
two branches per node, of size up to 4, are shown.

If we want a closed expression for these numbers, we may define a generating
function

(106) h(x) = C0 + C1x+ C2x
2 + · · · =

∞∑
s=0

Csx
s.

One can obtain an expression for h(x) just using the properties of the Catalan
numbers (Wilf, 1994). First, let us calculate

[h(x)]2 =

[
∞∑
s=0

Csx
s

]2

=
∞∑

i,j=0

CiCjx
i+j =
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C1 = 1

C2 = 2

C3 = 5

C4 = 14

Figure 13. The number of rooted trees with no more than two
branches per node is shown, up to size s = 4. The number of such
trees of a given size is given by Cs, the s-th Catalan number.

=
∞∑
s=0

[∑
i+j=s

CiCj

]
︸ ︷︷ ︸

Cs+1

xs =
1

x

∞∑
s=0

Cs+1x
s+1 =

h(x)− C0

x

As we know that C0 = 1, we end up with a quadratic equation for h(x), namely,

(107) x[h(x)]2 − h(x) + 1 = 0,

which allows us to isolate h(x),

(108) h(x) =
1±
√

1− 4x

2x
.

One of both functions (depending on the± sign) is then the generating function of
the Catalan numbers. We are going to recover these numbers from its generating
function. First, one needs the Taylor expansion of

√
1− x around x = 0, which
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is

(109)
√

1− x = 1− x

2
− 1

4

x2

2!
− 3

8

x3

3!
− · · · = 1− x

2
−
∞∑
s=1

(2s− 1)!!

2s+1(s+ 1)!
xs+1,

where, remember, n!! = n(n− 2) · · · 1, and so,

(110)
√

1− 4x = 1− 2x−
∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
xs+1.

Then, substituting in h(x), one can realize that only the minus sign can corre-
spond to a generating function, and

(111) h(x) = 1 +
1

2x

∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
xs+1 = 1 +

∞∑
s=1

(2s− 1)!!2s

(s+ 1)!
xs,

from where we obtain a first expression for the Catalan numbers,

(112) Cs =
(2s− 1)!!2s

(s+ 1)!
for s ≥ 1.

A more comfortable formula can be obtained using that

(113) (2s)! = (2s)!!(2s− 1)!! = s!2s(2s− 1)!!,

and then one finds,

(114) Cs =
(2s)!

s!(s+ 1)!
=

1

s+ 1

(
2s
s

)
,

the standard expression for the Catalan numbers, now valid for all s ≥ 0.

Normalization and non-normalization of the total size distribution. We
are going to illustrate how the total size probability distribution, P (S = s), is only
normalized in the subcritical and critical cases. We use the binomial distribution
for the distribution of the number of offsprings, with k = 0, 1 and 2. From the
main text, we know that

(115) P (S = s) =
1

s+ 1

(
2s
s

)
ps−1(1− p)s+1 with s = 1, 2, . . .

It can be checked, using the generating function of the Catalan numbers, that
this expression is normalized for p ≤ 1/2 but not for p > 1/2. In order to see
this, let us first consider the generating function of the Catalan numbers, derived
in the previous subsection of the Appendix,

(116) h(x) =
∞∑
s=0

Csx
s =

1−
√

1− 4x

2x
.
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Then, introducing q = 1− p,

(117)
∞∑
s=1

P (S = s) =
q

p

∞∑
s=1

Cs(pq)
s =

q

p
(h(pq)− 1) ,

and using the expression for h(x),

(118) h(pq) =
1−
√

1− 4pq

2pq
=

1−
√

(1− 2p)2

2pq
=

1− |1− 2p|
2pq

.

We can distinguish two cases, first, p ≤ 1/2, for which,

(119) h(pq)− 1 =
1

q
− 1 =

p

q
=

min(p, q)

max(p, q)
,

and for the opposite case, p ≥ 1/2,

(120) h(pq)− 1 =
1

p
− 1 =

q

p
=

min(p, q)

max(p, q)
.

Therefore,

(121)
∞∑
s=1

P (S = s) =
q

p

min(p, q)

max(p, q)
=

{
1 for p ≤ 1/2(
q
p

)2

for p ≥ 1/2

Remembering the results for the extinction probability for the binomial distribu-
tion,

(122)
∞∑
s=1

P (S = s) = Pext,

which obviously is not normalized for p > 1/2. We could also have arrived to the
same result using, not the generating function of the Catalan numbers, but the
generating function g(x) of the size S.

Stirling’s Approximation. Usually, Stirling’s formula is demonstrated by
means of the Euler-Maclaurin formula. However, if one knows some elementary
properties of the gamma distribution, Stirling’s formula arises almost sponta-
neously, by means of a probabilistic trick.

Remember that the factorial is associated to the gamma function, n! = Γ(n+1),
which is defined as

(123) Γ(γ) =

∫ ∞
0

yγ−1e−ydy

for γ > 0 (Abramowitz and Stegun, 1965). This allows to introduce the gamma
distribution (Durrett, 2010), with probability density given by

(124)
1

Γ(γ)
yγ−1e−y

for y ≥ 0 (and zero otherwise), and with mean γ and variance γ.
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Figure 14. Approaching of the normal distribution by the gamma
distribution, adding 8 and 100 exponentials, respectively. The cen-
tral limit theorem allows the derivation of Stirling’s approximation.

It turns out that the gamma distribution arises as a sum of a number γ of inde-
pendent exponential random variables, each with density e−y (this can be easily
demonstrated through successive convolutions of the exponentials, see Durrett
(2010)). But using the central limit theorem, the gamma distribution will con-
verge, in the limit γ → ∞, to a normal distribution (see Fig. 14), with mean µ
and standard deviation σ (in this case the notation is different to the rest of the
chapter).

Then, it will be possible to transform the gamma function into a Gaussian
integral. Indeed,

(125) n! = Γ(n+ 1) =

∫ ∞
0

yne−ydy → C

∫ ∞
0

exp

(
−(y − µ)2

2σ2

)
dy.

The key point is to find the value of C for which both functions overlap. This
happens around the mean or the mode of both distributions, corresponding, re-
spectively, to y = γ = n+ 1 ' n and y = µ. Substituting both values in

(126) yne−y = C exp

(
−(y − µ)2

2σ2

)
we get

(127) C =
(n
e

)n



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
17
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and therefore, looking for the normal probability density inside the integral,

(128) n! = Γ(n+ 1)→
√

2πσC

∫ ∞
0

1√
2πσ

exp

(
−(y − µ)2

2σ2

)
dy.

The value of σ is obtained from σ2 = γ = n+1 (for independent random variables
the variance of a sum is the sum of variances, which is one for each exponential
distribution in our sum). Substituting, and replacing the lower integration limit
by −∞, due to the fact that the standard deviation σ '

√
n is much smaller

than the mean µ ' n, one obtains,

(129) n! ∼
√

2πn
(n
e

)n
,

valid, remember, in the limit n→∞. This proof has some parts in common with
the more elaborated one of Khan (1974) and less resemblance with that of van
den Berg (1995).

We would like to dedicate this work to the colorful scientist Per Bak, in the 25
years of his invention of self-organized criticality and in the 10th anniversary of
his untimely death. The chapter originates, in part, from a lecture that one of
the authors gave at the 2011 Fall Meeting of the American Geophysical Union.
In this regard, we thank Armin Bunde, and also Tom Davis, for making his notes
on the Catalan numbers publicly available on the Internet, and Anna Deluca and
Gunnar Pruessner, for discussions. Cećılia M. Clos provided valuable graphical-
design assistance. Funding has come from Spanish projects FIS2009-09508 and
2009-SGR-164.

References

Abramowitz, M. and Stegun, I. A., editors (1965). Handbook of Mathematical
Functions. Dover, New York.

Alligood, K., Sauer, T., and Yorke, J. (1997). Chaos. An Introduction to Dynam-
ical Systems. Textbooks in Mathematical Sciences. Springer-Verlag.

Alstrøm, P. (1988). Mean-field exponents for self-organized critical phenomena.
38:4905–4906.
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