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A WAVEFUNCTION DESCRIPTION OF

STOCHASTIC-MECHANICS FOKKER-PLANCK DISSIPATION:

DERIVATION, STATIONARY DYNAMICS AND NUMERICAL

APPROXIMATIONS

PILAR GUERRERO, JOSÉ LUIS LÓPEZ, AND JESÚS MONTEJO�GÁMEZ

Abstract. A nonlinear Schrödinger equation describing how a quantum par-
ticle interacts with its surrounding reservoir is derived from the Wigner�
Fokker�Planck equation (WFPE) via stochastic (Nelsonian) mechanical tech-
niques. This model can be reduced just to a logarithmic Schrödinger equa-
tion (LSE) through a suitable gauge transformation that allows to explore
its steady state dynamics and makes its mathematical and numerical analy-
sis more tractable. The transient behaviour of the standard deviation from
the mean position associated with its solutions is also studied numerically and
compared with that stemming from the WFPE.

1. Introduction

The modeling of quantum dissipation has experienced a great impulse over re-
cent years mainly due to the investigation of system+reservoir structures, which
take into account energy transfer from the system to the environment (e.g. semi-
conductor devices with doped regions as reservoirs that inject electrons into the
active regions). This aims to open quantum systems as the most common physi-
cal scenario [9], i.e. a particle ensemble interacting dissipatively with an idealized
heat bath of harmonic oscillators, whose e�ect on the particle motion is typically
described by the bath temperature and the friction parameter after tracing over
the reservoir degrees of freedom.
One of the best accepted di�usion mechanisms in modern quantummechanics is

the Fokker�Planck scattering kernel when added to Wigner's equation. Remark-
ably, the Caldeira�Leggett master equation [4] has been succeedingly applied to
model quantum Brownian motion in spite of its mathematical de�ciencies, as it
does not �t the Kossakowski�Lindblad form [22, 25] so as to guarantee positivity
of the density matrix operator. The WFPE is the most general extension of the
pioneering Caldeira�Legett master equation, which models the interaction of a
quantum fermionic gas with a thermal bath subject to moderate/high tempera-
tures:

(1) ∂tw + ξ · ∇xw + θV (w) = LQFP (w) ,
1
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with

(2) LQFP (w) =
Dpp

m2
∆ξw + 2λ∇ξ · (ξw) + 2

Dpq

m
∇x · ∇ξw +Dqq∆xw ,

where w(t, x, ξ) is the quasiprobability Wigner distribution, as it may assume
negative values. Here x, ξ ∈ RN are the position and velocity coordinates of the
electron gas, t ≥ 0 is the time variable,

(3) Dpp = 2mλkBT , Dpq =
λΩ~2

6πkBT
, Dqq =

λ~2

6mkBT

are phenomenological constants related to electron�bath interactions, λ is the
friction coe�cient, Ω the cut�o� frequency of the oscillators conforming the ther-
mal bath, T the bath temperature, m the e�ective mass of the particles, kB the
Boltzmann constant, ~ the (reduced) Planck constant, and where

(4) θV (w)(t, x, ξ) =
i

(2π)N

∫
R2N

δV (t, x, η)w(t, x, ξ′) ei(ξ
′−ξ)·η dξ′ dη

is a pseudo�di�erential operator related to the external potential V through the
symbol

(5) δV (t, x, η) =
1

~

(
V

(
t, x+

~
2m

η

)
− V

(
t, x− ~

2m
η

))
.

In the presence of a purely Ohmic environment (namely, linear coupling in both
system and environment coordinates), the WFPE comes out from the Liouville
operator ∂tρ = L[ρ] after Wignerization (see §2 in [1]), with

L[ρ] = − i
~
(
Hx −Hy

)
ρ− λ(x− y) · (∇x −∇y)ρ

+
(
Dqq|∇x +∇y|2 −

Dpp

~2
|x− y|2 − 2i

~
Dpq(x− y) · (∇x +∇y)

)
ρ ,

where H = − ~2
2m

∆x + V (x) is the electron Hamiltonian (Hx and Hy denoting
two copies of H acting on the variables x and y, respectively) and where ρ is
the (integral kernel of the) reduced density matrix operator, derived in [13] as
the Markovian approximation of the originally non�Markovian evolution of the
particles in the oscillator bath. Here, the parameters are as follows:

(H1) The reservoir memory time Ω−1 is much smaller than the characteristic
time scale of the particles;

(H2) weak coupling: λ� Ω, and

(H3) medium/high temperatures: Ω<∼ kBT
~ .

Notice that the Caldeira�Leggett model is obtained when Dpq = Dqq = 0 is as-
sumed in the WFPE, that is, in the context of a high�temperatures regime. Other
models belonging to the Kossakowski�Lindblad class were derived for example in
[15] and [35].
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Nevertheless, though many nonlinear corrections have been proposed up to
now, quantum dissipative interactions are still far from being well understood
(mainly in the Schrödinger picture), and still deeper insight on their mathematical
modeling and physical interpretation is required. Our main purpose is to derive a
multidimensional nonlinear Schrödinger equation of logarithmic type describing
much the same e�ects as the WFPE. Following a Nelsonian procedure as in [32],
we are led to the following equation

iα∂tΨ =

(
− α

2

2m
∆x + V

)
Ψ +

α2

~2
QΨ + Λ log(n)Ψ

+ αDqq

{
i

2

∆xn

n
+
m

~
∇x ·

(
JΨ

n

)}
Ψ ,(6)

with α = 2mDqq as the new action unit (see § 2.2 for a discussion),

(7) Λ := 2Dpq + αλ ,

and

n = |Ψ|2 , JΨ =
~
m
Im
(
Ψ∇xΨ

)
,

Q = − ~2

2m

∆x

√
n

2
√
n

= − ~2

4m

(
∆xn

n
− |∇xn|2

2n2

)
denoting the probability and current densities and the quantum potential, re-
spectively, where Im(z) stands for the imaginary part of the complex number z.
After being gauged through the nonlinear transformation

Ψ 7−→ Φ = Ψ exp

{
− i

2
log(n)

}
,

Eq. (6) can be simply shown to be reduced to the following (purely) LSE

(8) iα∂tΦ =

(
− α

2

2m
∆x + V

)
Φ + Λ log(n)Φ .

We shall then simulate numerically the expected dispersive behaviour of Eq. (8)
(that retain much the same macroscopic dynamics that Eq. (6), in the sense that
|Φ|2 = |Ψ|2) in order to compare it with the exact results stemming from the
WFPE.
The structure of the paper is the following: In Section 2 we carry out the

derivation of Eq. (6), starting from the WFPE, through Nelsonian stochastic me-
chanical techniques. In Section 3 its stationary dynamics is analyzed. Section 4
concerns the presentation of several simulations for the free particle and the har-
monic oscillator cases, as well as comparisons with the exact results exhibited
by the WFPE. Two appendices �nally stand for the description of the adimen-
sionalization process and of some remarkable features of the numerical method
employed.
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2. The wavefunction approach

In many mathematical and physical situations the Schrödinger picture of quan-
tum mechanics is preferable to the Liouvillian representation, mainly for com-
putational reasons. Indeed, the Wigner function is evaluated in the position�
momentum space, which makes the subsequent numerical analysis certainly in-
tricate. Even from an analytical viewpoint, though most PDE techniques are
expected to be inhereted from kinetic theory, the fact that the probability dis-
tribution (i.e. the Wigner function) can assume negative values constitutes a
serious drawback in making things rigorous. In any case, it seems convenient
to have an equivalent' description of the dissipative Fokker�Planck mechanism,
that has proved to give satisfactory results in both the Wigner and the quantum
hydrodynamic formulations, in terms of the particle wavefunction.
Starting from the WFPE, we shall derive here below a nonlinear dissipative

Schrödinger equation characterized in an essential way by the presence of a quan-
tum correction of logarithmic type (already present in the literature since the
seminal work by Bialynicki�Birula and Mycielski [3]) as well as of various other
nonlinearities that �t the Doebner�Goldin di�usive structure [14]. This kind of
models has been already dealt with in the literature, for instance in [26, 27, 28, 29].
As will be seen, this equation does retain the same macroscopic local density that
the WFPE we started with. The derivation follows the fundamental lines of Nel-
sonian stochastic mechanics [32] combined with the Madelung theory [30].

2.1. Nelsonian approach to Wigner�Fokker�Planck hydrodynamics.

One of the main aspects of quantum�mechanical Fokker�Planck theories relies
on the presence of a di�usion current stemming from the (nonzero) right�hand
side of the continuity equation. In this case, the equation for the position density
reads

(9) ∂tn+∇x · J = Dqq∆xn ,

which is of Fokker�Planck type. Here, we denoted

(10) n =

∫
RN
w dξ , J =

∫
RN
ξw dξ

the position and current densities, respectively. This equation along with

∂tu+ (u · ∇x)u = − 1

m
∇xV −

1

n
divx(Pu)− 2λu− 2Dpq

m
∇x log(n)

+ Dqq

(
2∇x log(n) · ∇xu+ ∆xu

)
,(11)

constitute the hydrodynamic system associated with the WFPE, where u = J
n

represents the �uid mean velocity and where

Pu =

∫
RN
ξ⊗ξw dξ − nu⊗u
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denotes the rank�2 stress tensor. Notice that the presence of the internal stress
tensor Pu makes Eqs. (9) and (11) not to form a self�consistent system, so that
we are �rstly called to close it in a proper way.
The basic idea underlying our derivation consists of reinterpreting the conti-

nuity equation in terms of Nelsonian stochastic mechanics. This theory yields a
quantum�mechanical description by means of classical probability densities for
particles undergoing Brownian motion with di�usive interactions. In this spirit,
the Schrödinger equation will arise from a suitable interpretation of the evolution
of a classical particle subject to Brownian motion. Indeed, in our context it is as-
sumed that the di�usive contributions observed in the formulation of the WFPE
stem from Brownian motion as produced by the dissipative interaction between
the electron gas and the thermal environment. Thus, the particle is subject to
the action of forward and backward velocities u+ and u− = u+−2u0, respectively,
entering the continuity equation as

(12) ∂tn+∇x · (nu±) = ±Dqq∆xn .

Here,

(13) uo := Dqq∇x log(n)

is the so�called osmotic velocity associated with the di�usion governed by the
coe�cient Dqq, that sets the exact balance between the macroscopic and the
di�usion currents (see formula (14) below). Summing up both forward and back-
ward contributions in Eq. (12) and introducing the current mean velocity

(14) v :=
1

2
(u+ + u−) = u+ − uo ,

it is a simple matter to check that the standard continuity equation of quantum
mechanics, namely

(15) ∂tn+∇x · (nv) = 0 ,

is recovered. By de�ning the mean backward derivative of the forward velocity
as

D−u+ := ∂tu+ + u− · ∇xu+ −Dqq∆xu+ ,

the velocity equation can be rewritten for u+ as

(16) D−u+ = − 1

m
∇xV −

divx(Pu+)

n
− 2λu+ −

2Dpq

m
∇x log(n) .

We now perform time inversion according to the following rules [18]

t 7−→ −t , ∂t 7−→ −∂t , u±, v 7−→ −u∓,−v , D± 7−→ −D∓ .
Since Pu+ is a dynamic characteristic of motion, its divergence changes sign under
time inversion. Accordingly, Eq. (16) becomes

(17) D+u− = − 1

m
∇xV +

divx(Pu+)

n
+ 2λu− −

2Dpq

m
∇x log(n) ,
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where D+u− := ∂tu−+u+ ·∇xu−+Dqq∆xu− is now the mean forward derivative
of the backward velocity. We then sum up Eqs. (16) and (17) to get the following
frictional version of the quantum Navier�Stokes equation (see for instance [21]):

∂tv + v · ∇xv = − 1

m
∇x

(
V + Λ log(n)

)
−D2

qq

[(
∇x log(n) · ∇x

)
∇x log(n)−∇x

(
∆xn

n

)]
,(18)

where Λ is de�ned as in (7). Now it is clear that Eqs. (15) and (18) do constitute
a closed system.

Remark 1. Subtracting Eq. (17) from Eq. (16) yields

(∂t + v · ∇x)uo − uo · ∇xv = (Dqq∆x − 2λ)v − 1

n
divx(Pu+) ,

or equivalently the following law for the stress tensor

(19) divx(Pu+) = 2Dqqdivx
(
nSym(∇xv)

)
− 2λnv

after having used the relations (13)�(15), where we denoted

Sym(U) =
1

2

(
U + UT

)
,

given any tensor �eld U . It is then clear that (19) expresses now the closure
relation required by Eqs. (9) and (11) in order that the hydrodynamic system
associated with the WFPE becomes closed. As a matter of fact, Eq. (18) is
nothing else than the quantum Navier�Stokes kernel with dissipative contribution
(cf. Eq. (15) in [21], which in this case would be just reduced to its classical version
∂t(nu) + divx(nu⊗ u) + 1

m
n∇xV = 0).

Remark 2. When initially dealing with the Caldeira�Leggett master equation, the
same arguments as before can be applied to obtain the following equation for v

∂tv + v · ∇xv = − 1

m
∇x

(
V + ~λ log(n)

)
− ~2

4m2

[(
∇x log(n) · ∇x

)
∇x log(n)−∇x

(
∆xn

n

)]
,

which incorporates standard quantum di�usion e�ects (with di�usion coe�cient
equal to ~

2m
) at the hydrodynamic level.

Returning now to the evolution governed by the (general) WFPE and com-
bining Eqs. (12) and (18) with the relation (14), the equation for u+ can be
recovered

∂tu+ + u+ · ∇xu+ = − 1

m
∇xV −

Λ

m
∇x log(n)− 2α2

m~2
∇xQ

+ Dqq

[(
∇xu+ −∇xu

T
+

)
∇x log(n)−∇x(∇x · u+)

]
,
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where α and Q are de�ned as in the Introduction. Now, after identi�cation of
the velocity as an irrotational �eld, we get u+ = 1

m
∇xS, hence

∇x

(
∂tS +

1

m

(
∇xS · ∇x

)
∇xS

)
= −∇x

(
V +

2α2

~2
Q+ Λ log(n) +Dqq∆xS

)
,

which after integration with respect to x yields the following Hamilton�Jacobi
type equation for the evolution of S:

(20) ∂tS +
1

2m

∣∣∇xS
∣∣2 = −V − 2α2

~2
Q− Λ log(n)−Dqq∆xS + χ ,

χ = χ(t) being a function of time. Eq. (20) along with the continuity equation

(21) ∂tn+
1

m
∇x · (n∇xS) = Dqq∆xn

constitute a closed potential��ow quantum hydrodynamic system, so that an
`envelope' wavefunction may be constructed which contains the same physical in-
formation that the whole WFPE. To close this section, it is worthly to be noticed
that under the original assumptions on the parameters we are straightforwardly
led to α � ~, which means that the quantum potential e�ects are drastically
relaxed due to the spatial di�ussion introduced by the WFPE. As consequence,
the Dqq term confers `classical' behaviour to the system at the hydrodynamic
level.

2.2. The main dissipative model and its reduction to the purely loga-

rithmic Schrödinger equation. We consider the wavefunction

(22) Ψ =
√
n e

i
α
S , α = 2mDqq ,

along with the quantization rule m
∮
L
∇xS dl = 2kπ, where k is an integer and L

is any closed loop, in order to keep Ψ single�valued (see [36] and Theorem 3.3 in
[20]). Then, we are led to the following Schrödinger�like equation accounting for
frictional and dissipative e�ects

iα∂tΨ = HαΨ +
α2

~2
QΨ + Λ log(n)Ψ

+ αDqq

{
i

2

∆xn

n
+
m

~
∇x ·

(
JΨ

n

)}
Ψ ,(23)

where Hα = − α2

2m
∆x + V is the electron Hamiltonian (under the new action

unit α, see the discussion at the end of this Section and [7] for details). In this
picture, the probability density |Ψ|2 coincides with n, while the current density
JΨ = ~

m
Im
(
Ψ∇xΨ

)
is linked with J by the relation JΨ = ~

α
J , n and J being

as de�ned in (10). Notice that the function χ appearing in Eq. (20) has been
set to zero in virtue of a simple change of global phase. Indeed, Eq. (23) is
the (nonlinear) equation we postulate in the Schrödinger picture to model the
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dissipative e�ects undergone by a quantum particle ensemble in contact with a
thermal reservoir.
We recall that the Dpp�term, responsible for the decoherence process, does

not contribute to the �nal form of Eq. (23). This is due to the fact that the
moment system associated with the WFPE has been truncated at the level of
the momentum equation, while the Dpp�contribution is only `visible' at the next
level, i.e. that of the energy equation. However, the role played by Dpp is essential
for the ful�llment of the uncertainty inequality as well as for the Lindblad form
of the WFPE, thus for the positivity preservation of the density matrix operator.
Indeed, a su�cient and necessary condition to �t the Kossakowski�Lindblad class
is that the reservoir parameters be such that the inequality

DppDqq −D2
pq ≥

~2λ2

4
holds (see [1] and references therein).
On the other hand, the position di�usion Dqq�term in the WFPE reveals as the

more in�uential contribution to the structure of our model. First of all, it gives
rise to a set of nonlinearities belonging to the so called Doebner�Goldin family
[14], which is actually the most general class of nonlinear Schrödinger equations
compatible with a Fokker�Planck continuity equation. Besides, we must notice
that the di�usion governed by Dqq turns the standard Schrödinger Hamiltonian
H into the e�ective one Hα, where the presence of α instead of ~ contributes to
mitigate the quantum e�ects exhibited by Eq. (23), as we already commented for
Eq. (20).
Finally, we observe that the linear terms due to the λ�damping and the crossed

(or `anomalous') Dpq�di�usion in the WFPE are described in the wavefunction
picture by a logarithmic nonlinearity (see (23) and the de�nition of Λ in (7)).
This kind of self�interaction, which can be seen as an expansion of V up to O(~2)
when V is assumed to be the Hartree electrostatic potential solving ∆xV = n
[17], becomes the most relevant contribution of Eq. (23). In fact, we can take
advantage of the following nonlinear gauge transformation [31]

(24) G : Ψ 7−→ Φ = Ψ exp

{
− i

2
log(n)

}
,

which makes Eq. (23) equivalent to the (simpler) purely LSE

(25) iα∂tΦ = HαΦ + Λ log(n)Φ .

In this way, the Doebner�Goldin di�usive terms present in Eq. (23) might now be
neglected only by turning the current density JΨ into JΦ = JΨ − ~

2m
∇xn, which

does not alter the observable velocity. G is also revealed to enjoy su�ciently good
properties (indeed, it preserves the local density and the Ehrenfest equations) so
as to study various aspects of Eq. (23) via the LSE (25). This equation was
introduced in [3] and mathematically analyzed in [5, 6, 19]. Also, a discussion
about the physical meaning of the sign opposite to the logarithmic term can be
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found in [8]. A variant of this equation was successfully derived in [23] to describe
quantum Langevin processes and has been recently applied to the modeling of
di�erent phenomena such as magma transport or capillarity in �uids [11, 12, 24].
A rigorous proof of this equivalence has been recently developed in [20] under

the more general framework established by the mapping

G : Ψ 7−→ Φ = |Ψ| exp
{
i

α

(
A log(n) +BS

)}
,

where A, B are arbitrary real numbers and S(t, x) is an argument function of Ψ.
There, G is shown to be an homeomorphic transformation between both equations
in a suitable functional space, thus preserving the dynamical behaviour.
Since we are mainly interested in the local densities associated with Ψ and Φ,

which are identical to each other and also to that stemming from the Wigner
function, we are called to focus further analysis on Eq. (23) and its gauge re-
duction to the purely LSE (25). Anyway, both Eqs. (23) and (25) retain the
dissipative e�ects introduced by the WFPE.
The parameter α appearing in Eq. (23) has the dimensions of an action but

it is not a universal constant, as it hinges on the particular system under study.
Thus, though α 6= ~ in general, it plays the role of ~ in some sense (see [7] for a
wider discussion), confering quantum�mechanical meaning to our wavefunction.

If we consider ψ =
√
n e

i
~S instead of Ψ (cf. (22)), the continuity equation and

Eq. (20) along with the quantization rule lead us to

i~∂tψ = Hψ +

(
2α2

~2
− 1

)
Qψ + Λ log(n)ψ

+Dqq

{
i~
2

∆xn

n
+m∇x ·

(
Jψ
n

)}
ψ ,(26)

that might be simpli�ed into the so�called modular Schrödinger equation with
coupling parameter κ = 1− α2

~2 augmented by a logarithmic nonlinearity

(27) iα∂tφ = Hαφ− κQφ+ Λ log(n)φ ,

by making use of the gauge transformation

g : ψ 7−→ φ = ψ exp

{
− iα

2~
log(n)

}
.

For κ = 1, the modular equation does not admit exponentially con�ned solutions
but can be derived from a local Lagrangian (see [2, 16]). Besides, its associated
hydrodynamics does not contain quantum e�ects. As we have already observed,
the e�ects derived from the action of the quantum potential in Eq. (20) are quite
close to be negligible. The choice of ψ and φ as envelope wavefunctions (instead of
their counterparts Ψ and Φ) highlights this `quantum relaxation' in Eq. (27) since
κ ' 1. However, taking α as the action unit proves to be the most suitable choice
because it makes the model simpler (avoiding the presence of Q in Eq. (25)).
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A �nal remark concerning the Caldeira�Leggett approach is now in order.

Remark 3. In the particular case of the Caldeira�Leggett master equation (i.e.
Eq. (1)�(2) with Dpq = Dqq = 0), our approach gives rise to the following
potential��ow quantum hydrodynamic system

∂tn = − 1

m
∇x · (n∇xS) +

~
2m

∆xn ,

∂tS = − 1

2m
|∇xS|2 − V − 2Q− ~λ log(n)− ~

2m
∆xS + χ .

If we introduce the Madelung wavefunction ψ =
√
n e

i
~S, its temporal evolution is

shown to be ruled by the Schrödinger�like equation

(28) i~∂tψ = Hψ +Qψ + ~λ log(n)ψ +
i~2

4m

∆xn

n
ψ +

~
2
∇x ·

(
Jψ
n

)
ψ ,

with H standing for the usual electron Hamiltonian, which is analogous to that
for the general case by taking α = ~. In turn, this equation might be simpli�ed to

i~∂tφ = Hφ+ ~λ log(n)φ ,

through the transformation φ = ψ exp
{
− i

2
log(n)

}
.

3. Steady state dynamics

This section is devoted to explore the existence of solutions to Eq. (23) with
constant local density, making special emphasis in the dynamics of radial solu-
tions. Throughout this section, we consider a unit system for which ~ = m =
kB = 1 for the sake of simplicity, and use the transformation given in (24) in
order to investigate Eq. (25) instead of Eq. (23). Indeed, in this system of units
Eq. (25) can be rewritten as

(29) i
∂Φ

∂t
= −α

2
∆xΦ +

1

α

(
V + Λ log(n)

)
Φ .

Notice that the de�nition of G given in (24) straightforwardly leads to |Ψ|2 = |Φ|2
(henceforth denoted by n), and

(30) JΨ = JΦ +
1

2
∇xn =

1

α
J ,

where n and J are the ξ�moments of the Wigner functions de�ned in (10).
We are intended to construct solutions of Eq. (23) that satisfy the stationary

condition ∂tn = 0, so that the divergence of the di�usion current J − Dqq∇xn
must vanish in terms of the continuity equation (9). Speci�cally, we shall deal
with the particular case in which J = Dqq∇xn (that is, the di�usion current is
set to zero). In other words, we are considering the following current density
distribution JΨ = 1

2
∇xn or, in the context of Eq. (29), JΦ = 0 (cf. formula (30)).
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Of course, this situation obviously leads to stationary pro�les n(t, x) = n0(x). In
this setting, we search for solutions with the form

(31) Φ(t, x) = |Φ0(x)| eiν(t) .

The necessary condition for such a solution to exist is

(32) ν ′ =
α

2

∆x|Φ0|
|Φ0|

− 1

α

(
V + 2Λ log(|Φ0|

)
= −β ∈ R ,

as follows from insertion of (31) into Eq. (29), which �nally means that ν(t) is
subject to linear growth, ν(t) = −βt+k with k ∈ R. Therefore, the uniparametric
family of wavefunctions Φ(t, x) = |Φ0(x)| e−iβt are steady state solutions (up to a
constant phase factor) of Eq. (25) with constant density. Now, by applying G−1

we are led to the associated stationary pro�les of Eq. (23) given by

(33) Ψ(t, x) = |Φ0(x)| exp
{
i
(

log(|Φ0(x)|)− βt
)}
.

It is remarkable that for the free particle case (V = 0), Eq. (29) is Galilean
invariant. Then, since the gauge transformation preserves this property (see for
instance [31]), the Schrödinger equation for Ψ = G−1(Φ) is Galilean invariant too.
As a consequence, for any solution Ψ and v ∈ RN , the wavefunctions given by

Ψv(t, x) := Ψ(t, x− vt) exp
{
− i
α

(
1

2
|v|2t− v · x

)}
constitute a new family of solutions.
The rest of this section will be concerned with the �nding of explicit solutions

to Eq. (32) in di�erent situations.

3.1. Exponential pro�les. When searching for solutions as in (31) with expo-
nential density pro�le Φ0(x) = eA|x|

2+B (A,B ∈ R), we are led to the necessary
condition

∆x|Φ0| =
(
2NA+ 4A2|x|2

)
eA|x|

2+B ,

so that Eq. (32) now reads

βα +Nα2A− 2ΛB − V = 2A(Λ− α2A)|x|2 .
In case that V ≡ 0 we obtain (up to a constant change of phase) A = Λ

α2 and

B = βα
2Λ

+ N
2
, which leads to

Φ(t, x) = exp{γ(|x|)− iβt} , with γ(r) =
Λ

α2
r2 +

βα

2Λ
+
N

2
.

Then, translated into the context of Eq. (23) we get

Ψ(t, x) = G−1(Φ)(t, x) = exp
{
γ(|x|) + i(γ(|x|)− βt)

}
.

The plot on the left side in Figure 1 shows the modulus of some of these solutions
under several coupling strengths for typical high temperature values of the coef-
�cients (T,Ω, λ) within Dekker's phenomenology [10, 33]. One important feature
to be stressed at this point is the absence of Gaussons due to the positive sign
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of the coe�cient preceeding the logarithmic term (see [8] for a discussion), that
contrarily do exist if the opposite sign is chosen [5].
For the harmonic potencial V (x) = ω2

0|x|2/2 we �nd

A± =
1

2α2

(
Λ±

√
Λ2 + ω2

0α
2

)
,

that corresponds to

B± =
βα

2Λ
+
N

4Λ

(
Λ±

√
Λ2 + ω2

0α
2

)
.

This straightforwardly yields

Φ±(t, x) = exp{γ±(|x|)− iβt} , with γ±(r) = A±r
2 +B± .

Translated again into the context of Eq. (23), we �nally get two biparametric
families of solutions given by

Ψ±(t, x) = G−1(Φ)(t, x) = exp
{
γ±(|x|) + i(γ±(|x|)− βt)

}
.

Notice that in this case Ψ− is a Gausson of Eq. (29). Several examples of such
pro�les are represented in the plot on the right�hand side in Figure 1.

0.25 0.5 0.75
0

250

500

|x|

|Φ
0
|

0 2.5 5 7.5

0.25

0.5

0.75

1

|x|

|Φ
0
|

Figure 1. Radial solutions with exponential shape of Eq. (32) for N = 3, β = 0

(ground states) and T = 2, Ω = 1. From left to right: (i) V = 0 with increasing

switching of the coupling parameter: λ = 0.05 (dashed line), λ = 0.15 (continuous)

and λ = 0.5 (dashed�pointed line). (ii) The harmonic potential V (x) = ω2
0 |x|2/2

with λ = 0.05 and frequencies ω0 = 0.075 (thin�dashed line) and ω0 = 0.025 (thin�

continuous line); and with λ = 0.25 and frequencies ω0 = 0.4 (thick�dashed line) and

ω0 = 0.1 (thick�continuous line), respectively.
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3.2. Solutions depending upon s(x) =
∑N

j=1 xj. It also proves of interest to
�nd nontrivial solutions of Eq. (32) as functions of the symmetric polynomial
s(x) = x1 + x2 + · · · + xN in the free�particle case (indeed, it is remarkable
the fact that for the harmonic potencial case, it is not possible to write down an
equation only depending upon s). As a matter of fact, in considering the position
density ansatz |Φ0(x)| = y(s(x)) we can deduce

(34) β = −Nα
2

y′′

y
+

2Λ

α
log(y) .

Now, taking y(s) = exp{Csa+D} we are necessarily led (up to a constant change
of phase) to

a = 2 , C =
Λ

Nα2
, D =

1

2
+
βα

2Λ
,

that gives

Φ(t, x) = exp

{
γ
(
s(x)/

√
N
)
− iβt− N − 1

2

}
.

Hence, the wavefunction pro�les

Ψ(t, x) = exp

{
γ
(
s(x)/

√
N
)
− N − 1

2
+ i

(
γ(s(x)/

√
N)− N − 1

2
− βt

)}
satisfy Eq. (23). To �nd a relation between y and y′ we are just called to multiply
the identity (34) by yy′ and integrate against s to get

(35) (y′)2 − 2β

Nα
y2 − 2Λ

Nα2
y2
(

log(y2)− 1
)
≡ K0 ∈ R ,

for which the only admissible saddle point is
(
exp
{
− βα/2Λ

}
, 0
)
. In order to

remove the parameter β we may introduce the scaling y = y0Y , where

y0 = exp

{
1

2
+
βα

2Λ

}
is the constant solution of Eq. (51) with K0 = 0. This gives rise to the simpler
equation

(36) (Y ′)2 − 2Λ

Nα2
Y 2 log(Y 2) = K̃0 ∈ R ,

that now has the saddle point at
(
exp{−1/2}, 0

)
. Figure 2 below establishes a

comparison among the phase portraits of this equation and those of the logarith-
mic equation proposed in [3] (with focusing nonlinearity).
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Figure 2. Left to right and top to bottom: The �rst two pictures show the

phase portrait of Eq. (36) (with K̃0 = 0) in three dimensions for the values of the

parameters T = 2, Ω = 1, and λ = 0.01 and λ = 0.5, respectively. The last two

pictures correspond to the opposite sign for the logarithmic term.

3.3. Radial solutions. We �nally investigate the radial (rotationally symmet-
ric) solutions of Eq. (32). To this aim, consider |Φ0(x)| = ϕ(r) with r = |x|.
Then, ∆x|Φ0| = N−1

r
ϕ′ + ϕ′′ and Eq. (32) does become

β = −α
2

(
N − 1

r

ϕ′

ϕ
+
ϕ′′

ϕ

)
+

1

α
V +

Λ

α
log(ϕ) .

Using the change of variables ϕ = exp{βα/(2Λ)}z we �nd the following (β�
independent) equation for the density pro�le z:

(37) z′′ − (z′)2

2z
+ (N − 1)

z′

r
− 4

α2
V z − 2Λ

α2
log(z2)z = 0 ,

Eq. (37) can be solved numerically using the classical Runge�Kutta scheme with
z′(0) = 0 in order to avoid the singularity at the origin. As a result, we obtain
compactly supported density pro�les Φ0 to Eq. (32) for both potentials V = 0
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and V (x) = 1
2
ω2

0|x|2 (see Figure 3 for some examples). As consequence, Eq. (23)
also admits rotationally symmetric, compactly supported steady states.

0 0.1 0.2 0.3 0.4

0.05

0.1 

0.15

0.2

r

z

0 0.1 0.2 0.3 0.4

0.05

0.1

0.15

0.2

r

z

Figure 3. Numerical solutions of Eq. (37) in three dimensions for T = 2,

Ω = 1. From left to right: (i) V = 0 with initial data z(0) = 0.1, z′(0) = 0 and the

following values of the coupling coe�cient: λ = 0.1 (continuous line) and λ = 0.01

(dashed line). (ii) V (x) = 1
2
ω2
0 |x|2 with initial data z(0) = 0.2, z′(0) = 0 and the

following values of the pair frequency�coupling parameter: ω0 = 0.05 and λ = 0.15

in the overdamped case (dashed line), ω0 = 0.3 and λ = 0.05 in the underdamped

case (continuous line). Numerically, these pro�les are observed to be unstable when

changing the initial data.

4. Numerical comparison of transient dynamics for the

logarithmic Schrödinger and the Wigner�Fokker�Planck

equations

The purpose of this section is to construct numerical solutions of the one di-
mensional version of Eq. (25) (that is recalled to be gauge equivalent to Eq. (23)
according to the transformation introduced in (24)) and compare them to the
exact solutions stemming from the corresponding WFPE. To this aim, we are
intended to extend the discretization procedure introduced in [34] in the setting
of Schrödinger�Poisson models to our context (cf. Appendix B). We will partic-
ularly focus our attention on the macroscopic information shed by the position
standard deviation σX (see formula (39) below), which constitutes an accurate
measure of the (statistically) dispersive behaviour peculiar to these equations.

4.1. Theoretical framework. This paragraph is devoted to set up the main
di�erential laws that determine the time evolution of σX from both the Wigner�
Fokker�Planck and the logarithmic Schrödinger pictures. Since the LSE is written
in a much smaller scale than that of the WFPE (we recall on this point that
α� ~), we shall perform the numerical comparison using dimensionless equations
based on adequate units of space, time and velocity (see Appendix A).



C
R
M

P
re
p
ri
n
t
S
er
ie
s
n
u
m
b
er

1
1
5
9

16

4.1.1. The Wigner�Fokker�Planck setting. We consider the dimensionless WFPE
in 1D

(38) wt + ξwx + [V ?]θV (w) = [Dpp]wξξ + (ξw)ξ + [Dpq]wξx +
1

2
wxx ,

in which formulation we have kept the notation (t, x, ξ) for the kinetic vari-
ables, w for the Wigner function, and θ for the pseudo�di�erential operator
(cf. Eq. (48)), and where [Dpp] and [Dpq] are dimensionless constants (see Eq. (49)
in Appendix A). Also, here and henceforth the subscripts x and t will denote the
variables with respect to which di�erentiation is performed. We start by estab-
lishing the main notational conventions to be employed from here on. In this
spirit, the particle and current densities n and J are those de�ned in (10), while
the magnitudes(

P, 〈v〉, E, 〈x〉, 〈x2〉
)
(t) =

∫ ∞
−∞

(
n, J, e, xn, x2n

)
(t, x) dx

represent (from left to right) the total probability and the expected values of the
mean velocity, the kinetic energy, the position operator, and the square position
operator associated with the Wigner function w(t, x, ξ), respectively. Here, the
kinetic energy density reads as

e(t, x) =
1

2

∫ ∞
−∞

ξ2w(t, x, ξ) dξ .

The standard deviation from the mean position is then given by

(39) σX =
√
〈x2〉 − 〈x〉2 .

Below we shall analyze the time evolution of these quantities for the general
case of an arbitrary real�valued potential V = V (t, x), making especial emphasys
on the free particle and the harmonic oscillator models. Also, the notation E0 =
E(0), 〈xk〉0 = 〈xk〉(0) and 〈v〉0 = 〈v〉(0) will be adopted for the powers k = 1, 2,
as well as an analogous notation for their corresponding derivatives.
Concerning Eq. (38), the more relevant information for our purpose is contained

in the following

Lemma 1. Let V = V (t, x) be any real�valued potential and w a smooth solution
of the Wigner�Fokker�Planck equation (38). Then, the following identities hold
true:

(i) 〈x〉′′ + 〈x〉′ = −FV .
(ii) 〈x2〉′′ + 〈x2〉′ = −2GV + 4E + 2[Dpq] + 1.
(iii) E ′ + 2E = −HV + [Dpp].

Here, we denoted

FV = [V ?]

∫ ∞
−∞

nVx dx , GV = [V ?]

∫ ∞
−∞

xnVx dx , HV = [V ?]

∫ ∞
−∞

JVx dx ,
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whereas [V ?] is given in (49). In addition, the total probability is preserved along
the time evolution, that is, P (t) ≡ 1 (after appropriate normalization). Further-
more, the following relation is also ful�lled:

(iv) 〈x2〉′(t) = 2

∫ ∞
−∞

xJ dx+ 1.

Proof. The hydrodynamic system associated with Eq. (38), up to �rst order
ξ�moments, is easily shown to be given by

nt + Jx =
1

2
nxx ,(40)

Jt + 2ex + [V ?]nVx = −J − [Dpq]nx +
1

2
Jxx ,(41)

et +
1

2

∫ ∞
−∞

ξ3wx dξ + [V ?]JVx = [Dpp]n− 2e− [Dpq]Jx +
1

2
exx ,(42)

after multiplying (formally) Eq. (38) by ξk and integrating against ξ for k = 0, 1, 2,
respectively.
On one hand, we observe that (i) follows straightforwardly from Eqs. (40) and

(41). On the other hand, multiplying Eq. (40) times x2 and integrating with
respect to x leads to

〈x2〉′(t) = 2

∫ ∞
−∞

xJ dx+ P (t) .

Since integration of Eq. (40) entails that P (t) is time preserved, we can normalize
it to unity to get (iv). Furthermore, di�erentiating (iv) with respect to time
and using Eq. (41) yield (ii). Finally, multiplication of Eq. (38) times 1

2
ξ2 and

subsequent integration against x and ξ imply (iii). �

Notice that the ODEs appearing in Lemma 1 allow us to address the study
of the Wigner�Fokker�Planck transient dynamics without an explicit knowledge
of the Wigner function. Indeed, for our distinguished examples the setting is as
follows.

(i) In the free particle case (V = 0), it is clear that FV =GV =HV =0. Then,
the equations established in Lemma 1 (i)�(iii) can be solved explicitely to
give the following expressions for 〈x〉 and 〈x2〉:

〈x〉(t) = 〈x〉0 + 〈v〉0
(
1− e−t

)
,

〈x2〉(t) = 〈x2〉0 + At+
(
〈x2〉′0 − A

)(
1− e−t

)
+
B

2

(
1− e−t

)2
,(43)

where we denoted

A = 2[Dpp] + 2[Dpq] + 1 , B = 4E0 − 2[Dpp] .
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(ii) In the harmonic oscillator case, the pseudo�di�erential term in Eq. (38)

can be proved to read [V ?]θV (w) = −
(
ω0

2λ

)2
xwξ. Hence, we have

FV =
(ω0

2λ

)2

〈x〉 , GV =
(ω0

2λ

)2

〈x2〉 , HV =
ω2

0

8λ2

(
〈x2〉′(t)− 1

)
,

so that all of the equations in Lemma 1 are realized to depend upon the
strength of the damping. Indeed, we have

〈x〉over,under(t) = e−
t
2 Xover,under(t) ,

where Xover(t) reads

〈x〉0 cosh
( 1

2λ

√
λ2 − ω2

0 t
)

+
λ
(
〈x〉0 + 2〈v〉0

)√
λ2 − ω2

0

sinh
( 1

2λ

√
λ2 − ω2

0 t
)
,

while Xunder(t) is given by

〈x〉0 cos
( 1

2λ

√
ω2

0 − λ2 t
)

+
λ
(
〈x〉0 + 2〈v〉0

)√
ω2

0 − λ2
sin
( 1

2λ

√
ω2

0 − λ2 t
)
,

for the overdamped (λ > ω0) and the underdamped (λ < ω0) regimes,
respectively, as follows from straightforward calculations. Observe that
brackets notation can be skipped here, as explained in Appendix A
(cf. (51)). As well, the system (ii)�(iii) governing the evolution of 〈x2〉
will be solved by means of the classical Runge�Kutta method, in order to
compute σX (see Figures 6 and 7 below).

4.1.2. The Schrödinger setting. The gauge�reduced LSE we deal with in this
section reads as follows

(44) iΦt = −1

2
Φxx +

(
[V ?]V + [Λ] log(nΦ)

)
Φ ,

where [Λ] = 1
2

+ [Dpq]. In this picture, the particle and current densities are
respectively de�ned by

nΦ = |Φ|2 , JΦ = Im
(
ΦΦx

)
,

whereas the magnitudes(
PΦ, 〈v〉Φ, 〈x〉Φ, 〈x2〉Φ

)
(t) =

∫ ∞
−∞

(
nΦ, JΦ, xnΦ, x

2nΦ

)
(t, x) dx

have the same meaning that their counterparts de�ned in the previous section.
The expected kinetic energy is now given by

(45) EΦ(t) =
1

2

∫ ∞
−∞
|Φx(t, x)|2 dx .

The standard deviation from the mean position is de�ned as in (39), by just
considering 〈xk〉Φ instead of 〈xk〉, for k = 1, 2.
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We shall carry over the calculations for an arbitrary potential, in order to �t
the examples of our interest later on in the numerical simulations presented in
this paper. The relevant evolution laws for our purposes are collected in the
following

Lemma 2. Let V = V (t, x) be any real�valued potential and Φ a smooth solution
of the LSE (44). Then, the following identities hold true:

(i) 〈x〉′′Φ = −FΦ
V .

(ii) 〈x2〉′′Φ = −2GΦ
V + 4EΦ + 2[Dpq] + 1.

(iii) E ′Φ +
(

[Dpq] +
1

2

)∫ ∞
−∞

log(nΦ)xJΦ dx = −HΦ
V ,

where the integrals FΦ
V , G

Φ
V and HΦ

V are de�ned as in Lemma 1 with nΦ and JΦ

instead of n and J . In addition, the total probability is preserved along the time
evolution, that is, PΦ(t) ≡ 1 (after appropriate normalization), and the following
relation is also ful�lled:

(iv) 〈x2〉′Φ = 2

∫ ∞
−∞

xJΦ dx.

Proof. We �rst observe that the preservation of PΦ as well as the identity
〈x〉′Φ = 〈v〉Φ follow immediately from di�erentiating the expression for 〈x〉Φ and
employing Eq. (44) properly. Also, di�erentiation of 〈v〉Φ yields

〈v〉′Φ = Im

∫ ∞
∞

{
ΦtΦx + ΦΦtx

}
dx .

In order to calculate this integral we use again Eq. (44) and the real�valuedness
of V to conclude that

〈v〉′Φ = −[V ?]

∫ ∞
∞

nΦVx dx ,

which implies (i). On the other hand, (iv) easily follows from di�erentiating
〈x2〉Φ. Besides, the second derivative of this quantity can be computed as

〈x2〉′′Φ = 2Im

∫ ∞
∞

x
{

ΦtΦx + ΦΦtx

}
dx .

Now, performing the same calculations as before and identifying terms, we obtain
(ii). Finally, (iii) arises from di�erentiation of EΦ, use of Eq. (44), and convenient
integration by parts. �

In the free particle case, Lemma 2 (i) informs that the expected position evolves
linearly in time according to 〈x〉Φ(t) = 〈x〉Φ,0 + 〈v〉Φ,0 t, while for the case of the
harmonic oscillator one has

〈x〉Φ(t) = 〈x〉Φ,0 cos
(ω0

2λ
t
)

+
2λ〈v〉Φ,0
ω0

sin
(ω0

2λ
t
)
.
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Note that we are using again the relation [ω0]
[λ]

= ω0

λ
to avoid unnecessary brackets.

It is also obvious that the system (ii)�(iii) in Lemma 2 is not self�consistent for
the determination of 〈x2〉. Indeed, even if V is set to zero (which is the simplest
case we investigate here), Eq. (iii) in Lemma 2 leads to

E ′Φ(t) = −
(

[Dpq] +
1

2

)∫ ∞
−∞

log(nΦ)xJΦ dx ,

so that (ii)�(iii) does not �t the form of a closed system. As consequence, all
of the calculations concerning observable quantities for the LSE are to be per-
formed from the perspective of a numerical approach, in the spirit of the scheme
developed in Appendix B.
When comparing the evolution laws proven in Lemmata 1 and 2, it can be im-

mediately observed that the only structural di�erence a�ecting the equations for
〈x〉 and 〈x2〉 lies in the absence of the λ�damping terms at the Schrödinger level.
Of course, this entails by no means that these e�ects are lost via our derivation.
At variance, friction e�ects are still present in Eqs. (ii) and (iii) of Lemma 2,
mainly through the integral term in (iii) which involves a combination of the
interaction parameters stemming from the original WFPE. The behaviour of σX
will then reveal mainly in�uenced by the damping terms a�ected by [Dpq] and
[λ], which are the two more relevant contributions in our models as commented
in § 2.2.

4.2. Simulations. This section is devoted to the presentation of the one�
dimensional numerical simulations for the positional dispersion (quanti�ed
through the standard deviation σX) of the solutions to Eq. (44) as compared
with that associated with the exact solutions of Eq. (38).
To this aim, the choice of the physical parameters [λ], [Ω], [ω0], and [T ] has been

subject to the ful�llment of the assumptions (H1)�(H3) stated in the Introduction.
Indeed, in the Figures below we have kept [T ] = 0.8 and [Ω] = 1 �xed, while varied
[λ] = 0.25, 0.3, 0.35, 0.4. Also, when dealing with the harmonic oscillator we have
used [ω0] = 0.1π. We call the reader to realize that σX is expressed in length units
referred to L? (see Appendix A for a comprehensive statement of the meaning of
?�superscripts and parameters between brackets).
As initial data we choose single Gaussian pro�les with mean position x0 and

mean velocity ξ0, namely

w0(x, ξ) =
(
2πσX,0σV,0

)−1
exp

{
−(x− x0)2

2σ2
X,0

− (ξ − ξ0)2

2σ2
V,0

}
,

σX,0 and σV,0 denoting the initial standard deviations for the position and the
velocity, respectively. Note that the election of σX,0 and σV,0 is constrained by
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Heisenberg's uncertainty principle, which in our unit system reads

(46) σX,0σV,0 ≥
~

2α
= 1.9335

[T ]

[λ]
.

In the sequel, σV,0 will be chosen to ful�ll the equality in (46). Translated into
the wavefunction picture, these initial data correspond to

Φ0(x) =
(
2πσ2

X,0)−
1
4 exp

{
−(x− x0)2

4σ2
X,0

+ i

(
ξ0x+

(x− x0)2

4σ2
X,0

)}
,

as can be checked by performing to a large extent the same construction carried
out along Section 2, that is: Calculating the densities n0 and J0 associated with
w0 (as in Eq. (10)), extracting a scalar potential S0 of

J0
n0

(which is not necessarily

unique), constructing the wavefunction Ψ0 =
√
n0 e

iS0 , and lastly observing that
Φ0 = G(Ψ0), where G is the gauge transformation introduced in (24). Notice
that w0 and Φ0 are both normalized in such a way that the integrals of their
probability densities amount one.
Associated with these pro�les, there are the following initial values to be taken

into consideration in the subsequent numerical solutions of Eqs. (ii) and (iii) in
Lemma 1:

〈x2〉0 = x2
0 + σ2

X,0 , 〈x2〉′0 = 2x0ξ0 + 1 , E0 =
ξ2

0

2
+
σ2
V,0

2
.

Regarding the numerical approximation of solutions to Eq. (44), the time step
dt has been chosen equal to 10−4 whereas the spatial mesh consists of the inter-
val [−35, 35] split into 104 subintervals (that is, we selected the length interval
dx = 0.007). We also stress that our simulations have been performed in the
time interval [0, 1], as in our dimensionless equations the (momentum) relaxation
time has been set to unity. Figures 4 to 7 below plot the results shed by these
simulations.
On one hand, Figures 4 and 5 show the time evolution of the standard deviation

associated with numerical solutions to the (purely) LSE (44) and exact solutions
to the Wigner�Fokker�Planck equation (38) calculated from Eq. (43), for the
initial pro�les introduced above and in the free particle case. In particular, these
plots show how the �tness of both curves is modi�ed according to the di�erent
variables taking part in the model. The action of the Fokker�Planck mechanism
is indeed shown to be `milder' in Eq. (44) than in Eq. (38), in the sense that
the statistical dispersion of solutions to Eq. (44) is less changeable than that of
solutions to Eq. (38) against increasing bias of the coupling parameter. Besides,
the approximation is observed to improve as [λ] grows.
On the other hand, Figures 6 and 7 still depict the time behaviour of the

standard deviations of transient solutions to the LSE and the WFPE, now subject
to the action of the harmonic oscillator potential. Here, the value of σX associated
with the Wigner function is computed numerically by solving system (ii)�(iii) in
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Lemma 1. Unlike the previous case, it is now observed that the standard deviation
associated with Eq. (38) is less changeable than that of Eq. (44) when increasing
the strength of the coupling. Nevertheless, the conclusion is exactly the same as
before: Larger values of [λ] lead to better approximations of the Wigner function
by the wavefunction. Finally we stress that, contrary to what one might expect,
the oscillatory behaviour inherent to the harmonic potential is not manifested
in our plots due to the restrictions on the physical parameters that make us to
consider too low oscillation frequencies [ω0], so that the period is necessarily much
longer than the relaxation time in our parameter regime.
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Figure 4. Evolution of the standard deviation of the exact solutions to Eq. (38)

(continuous line) computed from Eq. (43), and of the numerical solutions of Eq. (44)

(dashed line) in the free particle case, with x0 = ξ0 = 0, σX,0 = 6.5, and increasing

coupling (from left to right and top to bottom): [λ] = 0.25, 0.3, 0.35, 0.4.
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Figure 5. Evolution of the standard deviation of the exact solutions to Eq. (38)

(continuous line) computed from Eq. (43), and of the numerical solutions of Eq. (44)

(dashed line) in the free particle case, with x0 = ξ0 = 0, σX,0 = 7.5, and increasing

coupling (from left to right and top to bottom): [λ] = 0.25, 0.3, 0.35, 0.4.
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Figure 6. Evolution of σX computed through system (ii)�(iii) in Lemma 1

(continuous line) and through the numerical solutions of Eq. (44) (dashed line) in

the harmonic oscillator case, with x0 = 1, ξ0 = 0, σX,0 = 7.5, angular frequency

[ω0] = 0.1π, and increasing coupling (from left to right and top to bottom): [λ] =

0.25, 0.3, 0.5, 0.4.
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Figure 7. Evolution of σX computed through system (ii)�(iii) in Lemma 1

(continuous line) and through the numerical solutions of Eq. (44) (dashed line) in

the harmonic oscillator case, with x0 = 1, ξ0 = 0, σX,0 = 8.5, angular frequency

[ω0] = 0.1π, and increasing coupling (from left to right and top to bottom): [λ] =

0.25, 0.3, 0.35, 0.4.
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Appendix A. Adimensionalization

Here we review the main steps leading to the adimensionalization of our prob-

lem. To that aim, we write w(t, x, ξ) = w?w̃(t̃, x̃, ξ̃) with

(47) t = t?t̃, x = L?x̃, ξ = v?ξ̃,

where the symbols ? and ˜ have been used to denote the referential magnitudes
and the dimensionless variables, respectively. Furthermore, for an external real�
valued potential V (t, x) = V ?Ṽ (t̃, x̃), the associated pseudo�di�erential operator
can be expressed in function of the dimensionless variables as θV (w)(t, x, ξ) =
V ?

mL?v?
w?θ̃V (w̃)(t̃, x̃, ξ̃), where

θ̃V (w̃)(t̃, x̃, ξ̃) =
1

2π

∫
R2

δ̃Ṽ (t̃, x̃, z)w̃(t̃, x̃, ξ̃′) ei (ξ̃−ξ̃
′) z
mL?v? d(ξ̃′, z) ,

and the rescaled symbol of the pseudo�di�erential operator is given by

δ̃Ṽ (t̃, x̃, z) =
1

~

[
Ṽ

(
x̃+

~z
2
(
mL?v?

)2

)
− Ṽ

(
x̃− ~z

2
(
mL?v?

)2

)]
.

Then, when writing the derivatives of w in terms of t̃, x̃ and ξ̃, we are led to

w̃t̃ +
v?t?

L?
ξ̃ w̃x̃ +

t?V ?

mL?v?
θ̃V (w̃) = L̃QFP (w̃) ,

L̃QFP (w̃)(t̃, x̃, ξ̃) =
Dppt

?

m2v?2
w̃ξ̃ξ̃ + 2λt?

(
ξ̃w̃
)
ξ̃

+
2Dpqt

?

mL?v?2
w̃x̃ξ̃ +

Dqqt
?

(L?)2
w̃x̃x̃ ,

which is the dimensionless Wigner�Fokker�Planck equation (DWFPE). It is no-
ticeable the fact that this equation is no longer in�uenced by w? due to can-
cellation e�ects. Now we choose the referential magnitudes according to the
peculiarities of our problem, namely

L? =
~√

6mkBT
≈ λdB , t? =

1

2λ
, v? =

L?

t?
,

representing space, time and velocity, respectively. In our framework, the typical
length is conveniently chosen to be of the same order of the thermal de Broglie
wavelenght, while the momentum relaxation time is normalized to unity. With
these values and taking into account the de�nitions in (3), the DWFPE reads

(48) w̃t̃ + ξ̃ w̃x̃ + [V ?]θ̃V (w̃) = [Dpp]w̃ξ̃ξ̃ +
(
ξ̃w̃
)
ξ̃

+ [Dpq]w̃x̃ξ̃ +
1

2
w̃x̃x̃ ,
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where

(49) [V ?] =
3kBT

2~2λ2
V ? , [Dpp] =

3

2

(
kBT

~λ

)2

, [Dpq] =
Ω

2πλ
.

Since kB
~ = O(1011), we are called to deal with

(50) λ = 1012[λ] , Ω = 1012[Ω] , T = 10[T ] ,

in order to work with O(1) magnitudes. Note that all of the parameters written
between brackets are already dimensionless, yielding Eq. (38) up to notational
simpli�cations.
In the particular case of V (x) = 1

2
mω2

0x
2 we can write V (x) = V ?Ṽ (x̃), where

V ? = mω2
0L

?2 and Ṽ (x̃) = 1
2
x̃2. Thus

(51) [V ?] =
ω2

0

4λ2
=

[ω0]2

4[λ]2
,

where we have considered ω0 = 1012[ω0] according to the orders of magnitude
established in (50). These relations have been employed in Section 4.

In the Schrödinger scope, when taking Φ(t, x) = Φ?Φ̃(t̃, x̃) (cf. (47)), the LSE
given by (25) is now written as

iΦ̃t̃ = − αt?

2mL?2 Φ̃x̃x̃ +
V ?t?

α
Ṽ Φ̃ +

t?Λ

α
log(nΦ̃)Φ̃ +

t?Λ

α
log(|Φ?|2)Φ̃ ,

as shed from simple computations. Since we are interested in the observable
behaviour, we may perform the following change of global phase

Φ̃ 7−→ exp
{
− i log(|Φ?|2)t

}
Φ̃

and obtain

(52) iΦ̃t̃ = −1

2
Φ̃x̃x̃ + [V ?]Ṽ Φ̃ + [Λ] log(nΦ̃)Φ̃

with [Λ] = 1
2

+ [Dpq], which is Eq. (44) up to notational simpli�cations.

Appendix B. The numerical scheme

We give here a short description of the numerical procedure employed to ap-
proximate the standard deviation of the solution to the 1D initial value problem
associated with Eq. (44), to be compared with that corresponding to the exact
Wigner�Fokker�Planck solution as established in Section 4. Speci�cally, we are
concerned with an adaptation of the conservative scheme introduced in [34] to
our situation.
Consider the interval [a, b] and the following partition of R+

0 × [a, b], with time
step dt > 0 and length interval dx = (b− a)/n, n ∈ N:

U =
{

(tj, xl) ∈ R+
0 × [a, b] : j = 0, 1, 2, . . . , l = 0, 1, . . . , n

}
,
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where

tj = j dt ∀j = 0, 1, 2, . . . and xl = a+ l dx ∀l = 0, 1, . . . , n .

We also denote ujl := u(tj, xl) for all j = 0, 1, . . . and l = 0, . . . , n, u being any
function de�ned on the grid U .
In order to evaluate the spacial derivatives we choose centered di�erences, so

that the Laplacian of u will be approximated in terms of the usual formula:

uxx(xl) ≈
u(xl+1)− 2u(xl) + u(xl−1)

(dx)2
, l = 0, 1, . . . , n .

It is remarkable that this equality also holds for the extremal points, given that
null boundary conditions are imposed at in�nity (so that x−1 = xn+1 = 0). Now,
we consider the discrete operators

δtu
j =

uj+1 − uj

dt
, µtu

j =
1

2

(
uj+1 + uj

)
, j = 0, 1, . . .

for any u de�ned on U . Then, the discretized version of Eq. (44) reads

(53) iδtΦ
j
l +

1

2
µt(Φ

j
l )xx − µtU

j
l µtΦ

j
l = 0 ,

where we denoted Φ the numerical approximation to be provided by our scheme,
and where U embraces the external potential as well as the nonlinearity:

(54) U j
l = [V ?]V j

l + [Λ](logn)jl .

Observe that Eq. (53) entails a complicated nonlinear system, whose numerical
solvability constitutes a serious drawback. In order to overcome this di�culty we
invoke a predictor�corrector procedure Φj 7→ Φj,1 7→ Φj+1, where the prediction
step Φj,1 is attained by solving the following di�erence equation

(55) i
Φj,1
l − Φj

l

dt
+

1

4

(
(Φj,1

l )xx + (Φj
l )xx

)
− 1

2
U j
l

(
Φj,1
l + Φj

l

)
= 0 .

Then, according to (54) we may construct

U j,1
l = [V ?]V j,1

l + [Λ](logn)j,1l ,

and �nally solve

(56) i
Φj,2
l − Φj

l

dt
+

1

4

(
(Φj,2

l )xx + (Φj
l )xx

)
− 1

4

(
U j,1
l + U j

l

)(
Φj,2
l + Φj

l

)
= 0 .

The correction step is then de�ned as Φj+1 := Φj,2. It is noticeable the fact
that this scheme is mass�preserving, which reveals of crucial importance in our
framework (cf. (i) in Lemmata 1 and 2).
To close this section we observe that, in order to avoid singularities, the dis-

cretization of the logarithmic term is implemented in such a way that
(
logn

)j
l
is

truncated as log(TOL) whenever njl < TOL, with TOL = 10−20.
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