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A SCALING LAW BEYOND ZIPF’S LAW AND ITS RELATION
WITH HEAPS’ LAW

FRANCESC FONT-CLOS, GEMMA BOLEDA, AND ÁLVARO CORRAL

Abstract. The dependence with text length of the statistical properties of
word occurrences has long been considered a severe limitation for the use-
fulness of quantitative linguistics. We propose a simple scaling form for the
distribution of absolute word frequencies which uncovers the robustness of this
distribution as text grows. In this way, the shape of the distribution is always
the same and it is only a scale parameter which increases linearly with text
length. By analyzing very long novels we show that this behavior holds both
for raw, unlemmatized texts and for lemmatized texts. For the latter case, the
word-frequency distribution is well fit by a double power law, maintaining the
Zipf’s exponent value γ ' 2 for large frequencies but yielding a smaller expo-
nent in the low frequency regime. The growth of the distribution with text
length allows us to estimate the size of the vocabulary at each step and to pro-
pose an alternative to Heaps’ law, which turns out to be intimately connected
to Zipf’s law, thanks to the scaling behavior.

1. Introduction

Zipf’s law is perhaps one of the best evidences of the existence of universal
physical-like laws in cognitive science and in the social sciences. Classic examples
of it include the population of cities, the assets of companies, and the frequency of
words in texts or speech [41]. Taking the latter case, the law is obtained directly
by counting the number of repetitions, i.e., the absolute frequency n, of all words
in a long enough text, and assigning increasing ranks, r = 1, 2, . . . , to decreasing
frequencies. If a power-law relation

n ∝ 1

rβ

holds for a large enough range, with exponent β more or less close to 1, then
it is considered that Zipf’s law is fulfilled (with ∝ denoting proportionality).
An equivalent formulation of the law is obtained in terms of the probability
distribution of the frequency n, making it to play the role of a random variable,
for which a power-law distribution

D(n) ∝ 1

nγ
,

should hold, with γ = 1+1/β (taking values close to 2) and D(n) the probability
mass function of n (or the probability density of n, in a continuous approximation)

1
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[26, 38, 16, 1]. Note that this picture implies to perform a double statistics, first
counting words to get frequencies and then counting repetition of frequencies to
get the distribution of frequencies.

We can recognize that the criteria for the validity of Zipf’s law are rather
vague (long enough text, large enough range, exponent β more or less close to
1). Generally, a long enough text means a book, a large range can be a bit more
than an order of magnitude, and the proximity of the exponent β to 1 translates
into an interval (0.7,1.2), or even beyond that [39, 38, 14]. Moreover, no rigorous
methods have been usually required for the fitting of the power-law distribution,
with linear regression in double-logarithmic scale being the most common one,
either for n(r) or for D(n). But it is well known that this procedure has severe
drawbacks and can lead to flawed results [7]. Nevertheless, once these limitations
have been assumed, the fulfillment of Zipf’s law in linguistics is astonishing, being
valid no matter the author, style, or language [41, 39, 38]. So, the law is universal,
at least in a qualitative sense.

At a theoretical level, many different competing explanations of Zipf’s law
have arisen [38], as random (monkey) typing [27, 24], preferential repetitions or
proportional growth [35, 29, 32], the least effort principle [41, 18, 8, 15], and, be-
yond linguistics, Boltzmann-type approaches [13], or even avalanche dynamics in
a critical system [4]; remarkably, most of these options have generated consider-
able controversy [28, 19, 12]. In any case, the power-law behavior is the hallmark
of scale invariance, i.e., the impossibility to define a characteristic scale, either
for frequencies or for ranks. Although power laws are sometimes also referred to
as scaling laws, we will make a precise distinction here. In short, a scaling law
is any function invariant under a scale transformation (which is a linear dilation
or contraction of the axes). In one dimension the only scaling law is the power
law, but this is not true with more than one variable [6]. Note that in text sta-
tistics, other variables to consider in addition to frequency are the text length L
(the total number of words, or tokens) and the size of the vocabulary VL (i.e.,
the number of different words, or types).

Somehow related to Zipf’s law is Heaps’ law (also called Herdan’s law [2, 23]),
which states that the vocabulary VL grows as a function of the text length L as
a power law,

VL ∝ Lα,

with exponent α smaller than one. However, even simple log-log plots of VL
versus L do not show a convincing linear behavior and therefore, the evidence
for this law is somewhat weak. Nevertheless, a number of works have derived
the relationship β = 1/α between Zipf’s and Heaps’ exponents [37], at least
in the infinite-system limit [34, 25], using different assumptions.

Despite the relevance of Zipf’s law, and its possible relations with criticality,
few systematic studies of the dependence of the law on system size (i.e., text
length) have been performed. But it was Zipf himself [41, pp. 144] who first
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observed a variation in the exponent β when the system size was varied. In
particular, “small” samples would give β < 1, while “big” ones yielded β > 1.
However, that was attributed to “undersampling” and “oversampling”, as Zipf
believed that there was an optimum system size under which all words occurred
in proportion to their theoretical frequencies, i.e., those given by the exponent
β = 1. This increase of β with L has been confirmed later, see Refs. [30, 2],
leading to the conclusion that the practical usefulness of Zipf’s law is rather
limited [2]. More recently, using rather large collections of books from single
authors, Bernhardsson et al. [5] find a decrease of the exponents γ and α with
text length, in correspondence with the increase in β found by Zipf and others.
They propose a size-dependent word-frequency distribution based on three main
assumptions:

(i) The vocabulary scales with text length as VL ∝ Lα(L), where the exponent
α(L) itself depends on the text length. Note that this is not an assumption
in itself, just notation, and is also equivalent to writing the average frequency
〈n〉 = L/VL as 〈n(L)〉 ∝ L1−α(L).

(ii) The maximum frequency is proportional to the text length, i.e. nmax =
n(r = 1) ∝ L.

(iii) The functional form of the word frequency distribution DL(n) is that of a
power law with an exponential tail, with both the scale parameter c(L) and
the power-law exponent γ(L) depending on the text length L. That is,

DL(n) = A
e−n/c(L)

nγ(L)
,

with 1 < γ(L) < 2.

Taking c(L) = c0L guarantees that nmax ∝ L; moreover, the form of DL(n) im-
plies that, asymptotically, 〈n(L)〉 ∝ L2−γ(L) [6], which, comparing with condition
(i) leads to

α(L) = γ(L)− 1,

so, 0 < α(L) < 1. This relation between α and γ is in agreement with previous
results if L is fixed [26, 25, 34]. It was claimed in Ref. [5] that α(L) seems to
decrease from 1 to 0 for increasing L and therefore γ(L) decreases from 2 to 1.
The resulting functional form,

DL(n) = A
e−n/(c0L)

n1+α(L)
,

is in fact the same appearing in many critical phenomena, where the power-law
term is limited by a characteristic value of the variable, c0L, arising from a devia-
tion from criticality or from finite-size effects [6, 36, 40, 10]. Note that this implies
that the tail of the frequency distribution is not a power law but an exponential,
and therefore the frequency of most common words is not power-law distributed.
This is in contrast with recent studies that have clearly established that the tail
of DL(n) is well modelled by a power law [7, 9]. But what is most uncommon
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about this functional form is to have a “critical” exponent that depends on the
system size, rather, the values of exponents should not be influenced by external
scales. So, we seek for an alternative picture that is in more agreement with
typical scaling phenomena.

Our proposal is that, although the word-frequency distribution DL(n) changes
with system size L, the shape of the distribution is independent on L and VL,
and it is only the scale of DL(n) which changes with these variables. This implies
that the shape parameters of DL(n) (in particular, any exponent) do not change
with L and only one scale parameter changes with L, increasing linearly. This
is explained in the next section, while the third one is devoted to the validation
of our scaling form in real texts, using both plain words or their corresponding
lemma forms; in the latter case an alternative to Zipf’s law can be proposed, con-
sisting in a double power-law distribution. Our findings for words and lemmas
suggest that the previous observation that the Zipf’s exponent depends on the
text length [30, 2, 5], might be an artifact of the increasing weight of a second
regime in the distribution of frequencies beyond a certain text length. The fourth
section investigates the implications of our scaling approach for Heaps’ law. Al-
though the scaling ansatz we propose has a counterpart in the rank-frequency
representation, we prefer to illustrate it in terms of the distribution of frequen-
cies, as this approach has been found more appropriate from a statistical point
of view [9].

2. The scaling form of the word-frequency distribution

Let us come back to the rank-frequency relation, in which the absolute fre-
quency n of each word is a function of its rank r. Defining the relative frequency
as x ≡ n/L and inverting the relationship, we can write

r = GL(x).

Note that here we are not assuming a power-law relationship between r and x,
just a generic function GL, which may depend on the text length L. Instead of the
three hypothesis introduced by Bernhardsson et al. we just need one hypothesis,
which is the independence of the function GL on L; so

r = G(n/L),

This turns out to be a scaling law, with G(x) a scaling function. It means that
if in the first 10,000 words of a book there are 5 words with relative frequency
larger than or equal to 2%, that is, G(0.02) = 5, then this will still be true for
the first 20,000 words, and for the first 100,000 and for the whole book. These
words need not necessarily be the same ones, although in some cases they might
be. In fact, instead of assuming as in Ref. [5] that the frequency of the most
used word scales linearly with L, what we assume is just that this is true for all
words, at least on average.
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Now let us introduce the survivor function or complementary cumulative dis-
tribution function SL(n) of the absolute frequency, defined in a text of length
L as SL(n) = Prob[frequency ≥ n]. Note that, estimating from empirical data,
SL(n) turns out to be essentially the rank, but divided by the total number of
ranks, VL, i.e., SL(n) = r/VL. Therefore, using our ansatz for r we get

SL(n) =
G(n/L)

VL
.

Within a continuous approximation the probability mass function of n, DL(n) =
Prob[frequency = n], can be obtained from the derivative of SL(n),

(1) DL(n) = −∂SL(n)

∂n
=
g(n/L)

LVL
,

where g is minus the derivative of G, i.e., g(x) = −G ′(x). If one does not trust the
continuous approximation, one can write DL(n) = SL(n)−SL(n+1) and perform
a Taylor expansion, for which the result is the same, but with g(x) ' −G ′(x).
In this way, we obtain simple forms for SL(n) and DL(n), which are analogous
to standard scaling laws, except for the fact that we have not specified how VL
changes with L. If Heaps’ law holds, VL ∝ Lα, we recover a standard scaling
law, DL(n) = g(x/L)/L1+α, which fulfills invariance under a scaling transforma-
tion, or, equivalently, fulfills the definition of a generalized homogeneous function
[6, 22],

DλLL(λnn) = λDDL(n),

where λL, λn, and λD are the scale factors, related in this case through

λn = λL ≡ λ

and

λD =
1

λ1+α
.

However, in general (if Heaps’ law does not hold), the distribution DL(n) still
is invariant under a scale transformation but with a different relation for λD,
which is

λD =
VL
λVλL

.

So, DL(n) is a not a generalized homogeneous function, but presents an even
more general form. In any case, the validity of the proposed scaling law, Eq. (1),
can be checked by performing a very simple rescaled plot, displaying LVLDL(n)
versus n/L. A resulting data collapse would be in favor of the independence of
the scaling function on L. This is undertaken in the next section.
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3. Data analysis results

To test the validity of our predictions, summarized in Eq. (1), we analyze a
corpus of literary texts, comprised by seven large books in English, Spanish, and
French (among them, some of the longest novels ever written, in order to have
as much as possible statistics of homogeneous texts). In addition to performing
the statistics of the words in the texts, we consider the lemmatized version of
each text, where each word is substituted by its corresponding lemma (roughly
speaking, the stem form of the word), and we consider the statistics of lemmas as
well. Appendix A provides detailed information on the lemmatization procedure,
and Table 1 summarizes the most relevant characteristics of each of the books.

Title author language year Ltot Vtot L
(l)
tot V

(l)
tot

Artamène Scudéry siblings French 1649 2,078,437 25,161 1,737,556 5,008

Clarissa Samuel Richardson English 1748 971,294 20,490 940,967 9,041

Don Quijote Miguel de Cervantes Spanish 1605-1615 390,436 21,180 378,664 7,432

La Regenta L. Alas “Claŕın” Spanish 1884 316,358 21,870 309,861 9,900

Bragelonne A. Dumas (father) French 1847 693,947 25,775 676,252 10,744

Moby-Dick Herman Melville English 1851 215,522 18,516 204,094 9,141

Ulysses James Joyce English 1918 268,144 29,448 242,367 12,469

Table 1. Total text length and vocabulary before (Ltot, Vtot)

and after (L
(l)
tot, V

(l)
tot ) the lemmatization process, for all the books

considered (including also their author, language, and publication
year). The text length for lemmas is shorter than for words because
for a number of word tokens their corresponding lemma type could
not be determined, and they were ignored.

First, we plot the distributions of word frequencies, DL(n) versus n, for each
book, considering either the whole book or the first L/Ltot fraction, where Ltot

is the real, complete text length (i.e., if L = Ltot/2 we consider just the first half
of the book, no average is performed over parts of size L). For a fixed book, we
observe that different L leads to distributions with small but clear differences,
see Fig. 1. The pattern described by Bernhardsson et al. (equivalent to Zipf’s
findings for the change of the exponent β) seems to hold, as the absolute value
of the slope in log-log scale (i.e., the apparent power-law exponent γ) decreases
with increasing text length.
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Figure 1. Density of word frequencies DL(n) (y-axis) against
absolute frequency n (x-axis), for six different books, taking text
length L = Ltot/10, Ltot/104/5, Ltot/103/5, . . . , Ltot. The slope
seems to decrease with text length.
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However, a scaling analysis reveals an alternative picture. As suggested by
Eq. (1), plotting LVLDL(n) against n/L for different values of L yields a collapse
of all the curves onto a unique L−independent function, which represents the
scaling function g(x). Figure 2 shows this for the same books and parts as in
Fig. 1. The data collapse can be considered excellent, except for the smallest
frequencies. For the largest L the collapse is valid up to n ' 3 if we exclude
La Regenta, which only collapses for about n ≥ 6. So, our scaling hypothesis
is validated, independently of the particular shape that g(x) takes. Note that
g(x) is independent on L but not on the book, i.e., each book has its own g(x),
different from the rest. In any case, we observe a slightly convex shape in log-log
space, which leads to the rejection of the power-law hypothesis for the whole
range of frequencies. Nevertheless, the data does not show any clear parametric
functional form. Any of a double power law, a stretched exponential, a Weibull,
or a lognormal tail could be fit to the distributions. This is not incompatible
with the fact that the large n tail can be well fit by a power law (the Zipf’s law),
for more than 2 orders of magnitude [9].

Things turn out to be somewhat different after the lemmatization process. The
scaling ansatz is still clearly valid for the frequency distributions, see Fig. 3, but
with a different kind of scaling function g(x), with a more defined characteristic
shape, due to a more pronounced log-log curvature or convexity. In fact, close
comparison of the data leads to conclude that the lemmatization process enhances
the goodness of the scaling approximation, specially in the low frequency zone.
It could be reasoned that, as lemmatized texts have a significantly reduced vo-
cabulary compared to the original ones, but the total length remains essentially
the same, they are somehow equivalent to much longer texts, if one considers
the length-to-vocabulary ratio. Although this matter needs to be further investi-
gated, it supports the idea that our main hypothesis, the scale-invariance of the
distribution of frequencies, holds more strongly for longer texts.

Due to the clear curvature of g(x) in the lemmatized case, we go one step
further and propose a concrete function to fit these data, namely,

(2) g(x) =
k

x(a+ xγ−1)
.

This function has two free parameters, a and γ (with γ > 1 and a > 0), and
behaves as a double power law, that is, for large x, g(x) ∼ x−γ (we still have
Zipf’s law), while for small x, g(x) ∼ x−1. The transition point between both
power-law tails is determined by a, and k is fixed by normalization. But an
important issue is that it is not g(x) which is normalized to one but DL(n). We
select a power-law with exponent one for small x for three reasons: first, in order
to explore an alternative to the power law in the VL versus L relation (which
is not clearly supported by data, see next section); second, to compare better
our results with those of Ref. [5]; and third, to keep the number of parameters
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Figure 2. Rescaled densities LVLDL(n) (y-axis) against relative
frequency n/L (x-axis), for the same books and fractions of text
as in Fig. 1. As it is apparent, the rescaled densities collapse onto
a single function, independently of the value of L, validating our
proposed scaling form for DL(n) [Eq.(1)] and making clear that
the decrease of the log-log slope with L is not a consequence of a
genuine change in the scaling properties of the distribution.



C
R
M

P
re
p
ri
nt

S
er
ie
s
nu
m
b
er

11
50

10 FRANCESC FONT-CLOS, GEMMA BOLEDA, AND ÁLVARO CORRAL

minimum. Thus, we do not look for the most accurate fit but for the simplest
description of the data. Although double power laws have been previously fit to
rank-frequency plots for unlemmatized corpora [17, 21], the resulting exponents
for large ranks (low frequencies) are different than for our lemmatized texts.

Then, defining na = a
1

γ−1L, the corresponding word-frequency density turns
out to be

(3) DL(n) ∝ 1

n (1 + (n/na)γ−1)
,

with na the scale parameter (the scale parameter of g(x) was a
1

γ−1 ).
The data collapse in Fig. 3 and the good fit imply that the Zipf-like exponent

γ does not depend on L, but the transition point between both power laws, na,
obviously does. Hence, as L grows the transition to the ∼ n−γ regime occurs at
higher absolute frequencies, given by na, but fixed relative frequencies, given by

a
1

γ−1 . In Table 2 we report the fitted parameters for all seven books, obtained by
maximum likelihood estimation for the frequencies of the whole books, as well
as Monte Carlo estimates of their uncertainties. We have confirmed the stability
of γ fitting only a power-law tail from a fixed common relative frequency, for
different values of L [9].

title na ± σna γ ± σγ a± σa
Artamène(l) 129.7± 12.6 1.807± 0.026 (4.65± 0.91) · 10−4

Clarissa(l) 32.70± 2.17 1.864± 0.021 (1.40± 0.24) · 10−4

Don Quijote(l) 7.91± 0.75 1.827± 0.020 (1.35± 0.22) · 10−4

La Regenta(l) 9.45± 0.66 1.983± 0.021 (3.68± 0.62) · 10−5

Bragelonne(l) 14.56± 1.23 1.866± 0.018 (9.10± 1.37) · 10−5

Moby-Dick(l) 8.21± 0.53 2.050± 0.024 (2.42± 0.47) · 10−5

Ulysses(l) 5.38± 0.31 2.020± 0.017 (1.79± 0.28) · 10−5

Table 2. Values of the parameters na, γ, and a for the lem-
matized versions (indicated with the superscript l) of the seven
complete books. The fits are performed numerically through max-
imum likelihood estimation, while the standard deviations come
from Monte Carlo simulations, see Appendix B.

Regarding the low-frequency exponent, one could find a better fit if the expo-
nent were not fixed to be one; however, our data does not allow to constrain well
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Figure 3. Same rescaled distributions as in previous figure
(LVLDL(n) versus n/L), but for the frequencies of lemmas. The
data collapse guarantees the fulfillment of the scaling law also in
this case. The fit resulting from the double power-law distribution,
Eq. (2), is also included.
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this value. A more important point is the influence of lemmatization errors in the
characteristics of the low-frequency regime. Although the tools we use are rather
accurate, rare words are likely to be assigned a wrong lemma. This limitation
is intrinsic to current computational tools and has to be considered as a part of
the lemmatization process. Nevertheless, the fact that the behavior at low fre-
quencies is robust in front of a large variation in the percentage of lemmatization
errors implies that our result is a genuine consequence of the lemmatization. See
Appendix A for more details.

4. An asymptotic approximation of Heaps’ law

Coming back to our scaling ansatz, Eq. (1), we notice that the normalization
of DL(n) will allow us to establish a relationship between the word-frequency
distribution and the growth of the vocabulary with text length. In the continuous
approximation,

1 =

∫ ∞
1

DL(n)dn =
1

VL

∫ ∞
1

g(n/L)
dn

L
=

1

VL

∫ ∞
1/L

g(x)dx =
1

VL
G

(
1

L

)
,

where we have used the previous relation g(x) = −G ′(x), and have additionally
imposed G(∞) ≡ 0, for which it is necessary that g(x) decays faster than a power
law with exponent one. So,

(4) VL = G

(
1

L

)
.

This just means that the number of words with relative frequency greater or equal
than 1/L is the vocabulary size VL, as this is the largest rank for a text of length
L. It is important to notice the difference between saying that GL(1/L) = VL,
which is a trivial statement, and stating that G(1/L) = VL, which provides a
link between Zipf’s and Heaps’ law, or more generally, between the distribution
of frequencies and the vocabulary growth, by approximating the latter by the
former. The quality of such an approximation will depend, of course, on the
goodness of the scale-invariance approximation. In the usual case of a power-
law distribution of frequencies extending to the lowest values, g(x) ∝ 1/xγ, with
γ > 1, then G(x) ∝ 1/xγ−1, which turns into Heaps’ law, VL ∝ Lα, with α = γ−1,
in agreement with previous works.

However, this power-law growth of VL with L is not what is observed in texts.
Due to the accurate fit that we can achieve for lemmatized texts, we can explicitly
derive an asymptotic expression for VL given our proposal for g(x). As we have
just shown, g(x) is not normalized to one, rather,

∫∞
1/L

g(x)dx = VL. Hence,

substituting g(x) from Eq. (2) and integrating,

VL =

∫ ∞
1/L

k

x(a+ xγ−1)
dx =

k

a

∫ ∞
1/L

ax−γ

ax1−γ + 1
dx =
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Eq. (6)

Figure 4. The actual curve VL (solid black with triangles) for
the lemmatized version of the book Artamène, together with the
curves VL = G(1/L) obtained by using the empirical inverse of the
rank-frequency plot, r = G(n/L), with Li = Ltot/10(6−i)/5 (colors),
and the analytical expression Eq. (6) with parameters determined
from the fit of DLtot(n), Eq. (5) (dashed black).

=
k

a(1− γ)
ln(ax1−γ + 1)

∣∣∣∞
1/L

=
k

a(γ − 1)
ln(aLγ−1 + 1).(5)

In this case VL is not a power law, and behaves asymptotically as ∝ lnL. This
is a direct consequence of our choice for the exponent 1 in the left-tail of g(x).
Indeed, it seems clear that the vocabulary growth curve greatly deviates from a
straight line in log-log space, for it displays a prominent convexity, see Fig. 4 as
an example. Nevertheless, the result from Eq. (5) is not a good fit either, due to a
wrong proportionality constant. This is caused by the continuous approximation
in Eq. (5).

For an accurate calculation of VL we must treat our variables as discrete and
compute discrete sums rather than integrals. In the exact, discrete treatment of
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DL(n), equation (5) must be rewritten as

VL = G

(
1

L

)
= G

(
Ltot/L

Ltot

)
=

∑
n≥Ltot/L

g(n/Ltot)

Ltot

=

=
1

Ltot

∑
n≥Ltot/L

k(
n
Ltot

)(
a+

(
n
Ltot

)γ−1
)(6)

where we have used that SLtot(n
′) =

∑
n≥n′ DLtot(n) ( notice that in the discrete

case, g(x) 6= −G′(x)). This is consistent with the fact that, indeed, the maximum
likelihood parameters γ and a have been computed assuming a discrete probabil-
ity function (see Appendix B), and so has the normalization constant. We would
like to stress that no fit is performed in Figure 4, that is, the constant k in g(x)
is directly derived from the normalizing constant of DL(n), and depends only on
γ and a.

5. Conclusions

In summary, we demonstrate that, contrary to what is claimed in previous
works [2, 30, 5], Zipf’s law in linguistics is extraordinarily stable under changes
in the size of the analyzed text. A scaling function g(x) provides a constant
shape for the distribution of frequencies of each text, DL(n), no matter its length
L, which only enters into the distribution as a scale parameter and determining
the size of the vocabulary VL. The apparent size-dependent exponent found pre-
viously seems to be an artifact of the slight convexity of g(x) in a log-log plot,
which is more clearly observed for very small values of x, accessible only for the
largest text lenghts. Moreover, we find that in the case of lemmatized texts the
distribution can be well described by a double power-law behavior with a large-
frequency exponent γ that does not depend on L, and a transition point na that
scales linearly with L. The small-frequency exponent is different than the one
reported in Ref. [17] for a non-lemmatized corpus. Further, the stability of the
shape of the frequency distribution allows one to predict the growth of vocabu-
lary size with text length, resulting in a generalization of the popular Heaps’ law.
The robustness of Zipf-like parameters under changes in system size opens the
way to more practical applications of word statistics. In particular, we provide a
consistent way to compare statistical properties of texts with different lengths [3].
Another interesting issue would be the application of the same scaling methods
to other fields in which Zipf’s law has been proposed to hold, as economics and
demography, for instance.
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Appendix A. Lemmatization

To analyze the distribution of frequencies of lemmas, we needed to have the
texts lemmatized. To manually lemmatize the words would have exceeded the
possibilities of this project, so we proceeded to automatic processing with stan-
dard computational tools: FreeLing [20] for Spanish and English and TreeTagger
[33] for French. The tools carry out the following steps:

(1) Tokenization: Segmentation of the texts into sentences and sentences into
words (tokens).

(2) Morphological analysis: Assignment of one or more lemmas and morpho-
logical information (tag) to each token. For instance, found in English
can correspond to the past tense of the verb find or to the base form of
the verb found. At this stage, both are assigned whenever the word form
found is encountered.

(3) Morphological disambiguation: An automatic tagger assigns the single
most probable lemma and tag to each word form, depending on the con-
text. For instance, in I found the keys the tagger would assign the lemma
find to the word found, while in He promised to found a hospital, the
lemma found would be preferred.

All these steps are automatic, such that errors are introduced at each step.
However, the accuracy of the tools is quite high (e.g., around 95-97% at the
token level for morphological disambiguation), such that a quantitative analysis
based on the results of the automatic process can be carried out. Also note that
step 2 is based on a pre-existing dictionary (of words, not of lemmas, also called
a lexicon): only the words that are in the dictionary are assigned a reliable set
of morphological tags and lemmas. Although most of the tools used heuristically
assign tag and/or lemma information to words that are not in the dictionary,
we only count tokens of lemmas for which the corresponding word types are
found in the dictionary, so as to minimize the amount of error introduced by the
automatic processing. This comes at the expense of losing some data. However,
the dictionaries have quite a good coverage of the vocabulary, particularly at the
token level, but also at the type level (see Table A). The exceptions are Ulysses,
because of the stream of consciousness prose, which uses many non-standard word
forms, and Artamène, because 17th century French contains many word forms
that a dictionary of modern French does not include.

Appendix B. Maximum likelihood fitting

The fitted values of Table 2 have been obtained by maximum-likelihood es-
timation (MLE). This well-known procedure consists firstly in computing the
log-likelihood function L, which in our case reads,
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title types tokens

Clarissa 68.0 % 96.9 %

Moby-Dick 70.8 % 94.7 %

Ulysses 58.6 % 90.4 %

Don Quijote 81.3 % 97.0 %

La Regenta 89.5 % 97.9 %

Artamène 43.6 % 83.6 %

Bragelonne 89.8 % 97.5 %

Seitsemän v. 89.8 % 95.4 %

Kevät ja t. 96.2 % 98.3 %

Vanhempieni r. 96.5 % 98.5 %

average 78.4 % 95.0 %

Table 3. Coverage of the vocabulary by the dictionary in each
language, both at the type and at the token level. Remember that
we distinguish between a word type (corresponding to its ortho-
graphic form) and its tokens (actual occurrences in text).

L =
1

VL

VL∑
i=1

lnDL(ni) = lnK − 1

VL

VL∑
i=1

ln
(
ni(b+ nγ−1

i )
)

with ni the VL values of the frequency and the normalization constant K in the
discrete case equal to

K =

[
VL∑
i=1

1

ni(b+ nγ−1
i )

]−1

.

Note that we have reparameterized the distribution with regard the main text,
introducing b = nγ−1

a = aLγ−1. Then, L is maximized with respect to the param-
eters γ and b; this has been done numerically using the simplex method [31]. The
error terms σγ and σb, representing the standard deviation of each estimator, are
computed from Monte Carlo simulations: from the resulting maximum-likelihood
parameters γ∗ and b∗, synthetic data samples are simulated, and the MLE pa-
rameters of these samples are calculated in the same way; their fluctuations yield
σγ and σb. We stress that no continuous approximation has been made, that is,
the simulated data follows the discrete probability function DL(n) (this is done
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using the rejection method, see Ref. [11, 9] for details for a similar case). In a
summarized recipe, the procedure simply is:

(1) Numerically compute the MLE parameters, γ∗ and b∗.
(2) Draw M datasets, each of size VL, from the discrete probability function

DL(n; γ∗, b∗).
(3) For each dataset m = 1 . . .M , compute the MLE parameters γm, bm.
(4) Compute the standard deviations σγ and σb of the sets {γm}Mm=1 and
{bm}Mm=1.

The standard deviations of na and a are computed in the same way using their
relationship with b and γ.
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