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Abstract: The essential role of Critical Elements (CE) in 21st century economy has led to an 

increasing demand of these metals and promotes the exploration of non-conventional deposits 

such as weathering profiles. The present work is focused on the study of a weathering profile 

located at the Archaeological Park of the Gavà Neolithic Mines, Barcelona, Catalonia, Spain. In the 

Gavà deposit, acid and oxidising meteoric fluids generated intense weathering during the early 

Pleistocene, affecting series of Llandoverian black shales and associated syn-sedimentary 

phosphates. The circulation of these acid fluids at deeper levels of the profile generated supergene 

vein-like mineralisations comprised of secondary phosphates (e.g., variscite, perhamite, 

crandallite, phosphosiderite) and sulphates (e.g., jarosite, alunite). This supergene mineralisation is 

significantly enriched in certain CE (e.g., Ga, Sc, REE, In, Co and Sb) that were mobilised from host 

rock components and later hosted in the crystal lattice of supergene minerals. Weathering 

processes and corresponding supergene enrichment of CE at the Gavà deposit could be used as an 

example to determine exploration guidelines of CE in weathering profiles and associated 

supergene phosphates worldwide. 
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1. Introduction 

In 2017, the European Commission assessed a list of 61 raw materials (including metallic ores, 

biogenic products and industrial minerals) on their criticality for the EU. These critical elements (CE) 

were selected considering their economic relevance for the European industry and their relative 

supply risk. A group of 27 raw materials was determined as critical for the EU according to these 

two criteria [1]. 



Minerals 2020, 10, 3 2 of 25 

 

The essential role of CE in the development of 21st century industry (e.g., electric cars, green 

energy production, LED lamps, optical fibre, etc.) led to an increasing demand of these metals in the 

last few years that will probably continue in the near future [2–6]. 

In this context, European governments promote the exploration of new resources of CE with 

special interest in the study of non-conventional mineral deposits that include secondary 

sedimentary formations such as weathering profiles [7], among others. 

The exploration of CE in this type of geological environments is mainly focused on the study of 

laterites in which significant concentrations of critical elements such as rare earth elements (REE), Sc, 

or platinum group elements (PGE) have recently been reported in different localities worldwide [8–

16]. Indeed, weathering processes such as lateritisation alter bedrock minerals and lead to significant 

changes in the geochemical distribution of several elements. 

The study of CE distribution in weathering profiles is essential to understanding their 

solubility, mobility, and fractionation [17], and thus to determine the conditions required to generate 

a potential CE deposit. In addition, new constrains on CE distribution and fractionation will enhance 

current knowledge of the geochemical behaviour of some of these elements in order to trace edaphic 

and weathering processes [18,19]. 

In this study, the evolution and mobility of CE have been investigated across a Neogene 

weathering profile located in Gavà (near Barcelona, Catalonia, Spain) (Figure 1). The studied 

20-metre thick profile developed from the alteration of Llandoverian black shales that contain 

interbedded primary syn-sedimentary phosphate nodules and layers. Oxidation weathering and 

associated percolating fluids produced secondary phosphate veins that were exploited as lapidary 

material by means of underground mining during the Neolithic age [20–25]. Nearly 90 mines with 

their corresponding galleries, shafts and trenches dated from 5800–5700 BP have been exposed by 

archaeological excavations in Gavà [26–36]. These mines are amongst the oldest underground 

mining works in the world and provide essential information about mining techniques used during 

prehistoric times [21]. The Gavà Neolithic mines were dug out in the weathering profile and consist 

of pits and tunnels at different levels achieving up to 15 m in depth [30]. Thus, these mines provide 

an excellent opportunity to study the chemical variations according to depth occurring in phosphate 

mineralisation as well as in host rocks. 

Some of these mining galleries are open to the public on the site of the Archaeological Park of 

the Gavà Neolithic Mines (APGNM) [37]. Further weathering-derived rocks in the Gavà area were 

also mined for iron since the Iberian-Roman period [38]. 

The textural, mineralogical, and geochemical study of the Gavà weathered sequence and 

associated supergene vein-like mineralisation may provide relevant information about the mobility 

and redistribution of CE during weathering in phosphate-rich environments. This understanding 

will eventually be useful in the exploration of non-conventional deposits of CE associated with 

weathering profiles related to primary phosphates. 

2. Geological Setting 

The study area is located in the city of Gavà, 20 km SE of Barcelona, in the NE of the Iberian 

Peninsula (Figure 1). The Gavà area is included in the Catalan Coastal Range (CCR), a NE–SW 

mountain chain flanked by the Mediterranean Sea to the south and the Ebro Basin to the north, and 

divided into two different mountain systems (Littoral and Pre-littoral), separated by the Pre-littoral 

Depression [39,40] (Figure 1). The present relief of the CCR was formed in the late Eocene during the 

Alpine orogeny. However, outcropping materials are part of the Palaeozoic basement that was 

metamorphosed and deformed during the Hercynian and Alpine orogenies [41] (Figure 1). 

Although Mesozoic sediments are found in the NW area of Gavà, most of the city is built on the 

Palaeozoic basement, which is partly covered by unconformable levels of Quaternary calcretes and 

reddish clays with carbonate nodules, up to 3 m thick [22,42]. 

Palaeozoic basement lithologies of the central part of the CCR consist of Ordovician, Silurian, 

Devonian and Carboniferous materials: (1) Ordovician slates and quartzites; (2) Llandoverian 

sulphide-rich black shales interbedded with centimetre-thick layers of syn-sedimentary apatite and 



Minerals 2020, 10, 3 3 of 25 

 

chert; (3) Wenlockian black shales interbedded with centimetric quartzite layers; (4) Ludlowian 

black shales with interbedded limestone lenses; (5) Pridolian nodular limestones which are partially 

dolomitised or ankeritised; (6) Lockovian black schists followed by interbedded limestones, reddish 

shales and green to bluish marls; (7) Lower Carboniferous cherts, greenish shales and greywackes 

[20–22,25,38,43]. 

 

Figure 1. Location map of the study area including the main geological units of the Catalan Coastal 

Ranges (CCR). 

During the Hercynian orogeny, the Palaeozoic series was affected by two generations of tight 

folds roughly trending NW–SE but with opposite vergence. The latter are mostly detachment folds 

and display two generations of axial plane cleavages. The fold-related thrusts and cleavage provided 

channels for the circulation of hydrothermal fluids which produced quartz veins, as well as 

dolomitisation and ankeritisation in Palaeozoic limestones. The series was affected only by very 

low-grade metamorphism in this sector of the Catalan Coastal Ranges; intrusive rocks and contact 

metamorphism are absent. During the Palaeogene, the Alpine deformation produced the 

development of transcurrent NE–SW faults and associated joint systems. These faults were 

reactivated as normal faults during the Neogene regional extension [39,42,43]. 

The Palaeozoic materials are unconformably covered by Quaternary calcretes overlaid by 

reddish clays with carbonate nodules, which add up to 3 m in thickness [22]. Below this Quaternary 

unconformity, the Palaeozoic series displays strong supergene weathering, with a mineral 

composition that depends on the degree of weathering of the affected material. The carbonate-rich 

series is partly replaced by karstic iron oxyhydroxides, which were mined during Iberian times for 

iron [38]. In contrast, the black shales become progressively paler (grey) at 15 m below the 
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unconformity. This change in colour has been explained by the destruction of organic matter 

contained in black shales [25]. These fluids also led to the formation of secondary phosphates [25]. 

The supergene phosphate mineralisation studied is distributed along vertical veins hosted by 

Llandoverian shales. Supergene phosphates are also associated with secondary sulphates (e.g., 

jarosite, alunite and baryte). Dating of alunite by K–Ar yielded an Early Pleistocene age (1.20 ± 0.05 

Ma; [21]) that corresponds to the weathering episode. Variscite mineralisation is revealed by the 

Neolithic mining galleries [20,21,25]. Over 90 Neolithic mines have been reported to date in the Gavà 

area. The most important cluster of galleries has been preserved and has become an on-site museum 

at the APGNM, where sampling for the present study was carried out (Figure 2). 

 

Figure 2. View from above the studied profile in the Neolithic mining area of the Archaeological 

Park of the Gavà Neolithic Mines (APGNM). Note the Neolithic pits and tunnels. The vertical dip of 

Silurian bleached shales (S0) and the subparallel, main Hercynian cleavage (S1) are indicated in the 

image, as well as the unconformity with Quaternary calcretes. 

3. Materials and Methods 

3.1. Sampling 

A set of 14 rock samples was obtained from a geological section that shows the greatest extent 

of the weathering profile at the location of gallery 11N of the APGNM, which crosscuts the seven 

levels of the gallery (Figure 3). The study includes 6 samples of supergene mineralisation veins 

obtained at different depths, and 7 samples of the host Llandoverian bleached shales, as well as an 

additional sample of the overlaying Quaternary calcrete. 

3.2. X-Ray Diffraction (XRD) 

The bulk mineralogical composition of altered shales and associated phosphate veins was 

studied by means of X-ray diffraction (XRD). Samples were ground in an agate mortar to produce 

homogenised powder and randomly oriented material, with a particle size below 40 µm. The XRD 

analyses of phosphates were performed using a PANalytical X’Pert PRO Alpha1 diffractometer at 

the Scientific and Technological Centres of the University of Barcelona (CCiT-UB, Barcelona, Spain). 

The diffractometer used an incident Cu Kα1 radiation at 45 kV and 40 mA, and was equipped with a 

PS detector with an amplitude of 2.113°. Diffractograms were obtained by scanning samples from 4° 
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to 80° (2θ), with a scan time of 50 s, a step size of 0.017° (2θ), and variable divergence slit. XRD 

measurements of host rock samples were carried out using a Bruker-AXS D8-A25 Advance 

diffractometer at the X-ray diffraction laboratory of the Jaume Almera Institute of Earth Sciences 

(Barcelona, Spain). The diffractometer was equipped with a Cu X-ray tube of up to 3 kW with 

point/line focus, large diameter goniometer (560 mm), and ultra-fast PSD detector (0D and 1D 

modes). XRD scans were acquired between 4° and 65° (2θ), at 0.02° steps. Mineral identification and 

semi-quantitative results were obtained using the X’Pert HighScore search-match software with 

Powder Diffraction File 2.0 from International Centre for Diffraction Data (ICDD). Semi-quantitative 

mineral phase analyses were obtained by full refinement profile using the software TOPAS 4.2. 

 

Figure 3. Schematic profile of mine gallery 11N from the Archaeological Park of the Gavà Neolithic 

Mines (APGNM). Mining levels are detailed, as well as the location of the main supergene phosphate 

veins and the samples used in this study. 

3.3. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FE-SEM) 

The set of 6 samples of supergene phosphate veins were prepared as polished thin sections for 

textural and mineralogical studies at the Laboratory of Geological and Paleontological Preparation 

(LPGiP) of the Natural Sciences Museum of Barcelona (Barcelona, Spain). These thin sections were 

examined in an environmental scanning electron microscope (SEM), Quanta 200 FEI, XTE 32/D8395, 

equipped with an energy-dispersive spectrometer (EDS) at the CCiT-UB (Barcelona, Spain). 

Operating conditions were 15–20 kV accelerating voltage and 5 nA beam current. Presented electron 

micrographs were obtained with a field emission scanning electron microscope (FE-SEM) JEOL 

JSM-7100 at the CCiT-UB (Barcelona, Spain). 

3.4. Electron Probe Microanalysis (EPMA) 

Electron probe microanalyses (EPMA) were performed on a JEOL JXA-8230 electron 

microprobe with five wavelength-dispersive spectrometers (WDS), an energy dispersive 

spectrometer (EDS), and a silicon-drift EDS detector, available at the CCiT-UB (Barcelona, Spain). 

Spot analyses were carried out with a 15 kV accelerating voltage, a 10 nA beam current, and a 

focused beam, in order to achieve the best lateral resolution. Counting times ranged from 20 to 40 s 

for both peaks and background. Analytical standards included natural and synthetic silicates, oxides 
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and rare earth elements (REE) glasses as follows: diopside (Ca Kα, Si Kα), spinel (Al Kα), RbTiOPO4 

(P Kα), periclase (Mg Kα), hematite (Fe Kα), orthoclase (K Kα) and celestine (S Kα). The XPP 

correction procedure was used to convert specimen intensity ratios into concentrations. Structural 

formulae were calculated considering Fe as Fe3+, 4 oxygens for variscite and phosphosiderite, 7 

oxygens for halloysite, 12 oxygens for apatite, and 59 oxygens for perhamite. 

3.5. Bulk Rock Geochemistry 

Major, minor, and trace element (including REE) analyses of the 14 selected samples were 

carried out at ActLabs Activation Laboratories Ltd. (Ontario, Canada). Major elements (SiO2, TiO2, 

Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5) and loss on ignition (LOI) were performed by 

fusion inductively coupled plasma emission spectroscopy (ICP-ES). Trace elements, including Sc, Be, 

V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Zr, Nb, Mo, Ag, In, Sn, Sb, Cs, Ba, Bi, REE (La–Lu, Y), Hf, 

Ta, W, Tl, Pb, Th and U, were performed by fusion inductively coupled plasma mass spectrometry 

(ICP-MS). Supergene phosphate samples were previously crushed and examined under the 

microscope in order to select pure fragments. 

4. Structure of the Deposit 

The APGNM consists of a network of four connected mines, excavated in weathered 

Llandoverian shales through a complex system of tunnels and shafts. The distribution of tunnels 

depends directly on the occurrence of supergene phosphate veins, mainly composed of variscite 

[25]. The altered Llandoverian shales are covered by 1.5–2 m-thick Quaternary calcrete, which is well 

lithified. Thus, the calcrete was generally used as the roof of the Neolithic tunnels’ top level (Figures 

2 and 3). The Llandoverian shales of the mining area occur on the inverted flank of first-stage 

Hercynian folds. Most of the beds are subvertical with penetrative slaty cleavage that is subparallel 

to the bedding due to deformation by Alpine faulting. As a result, the deformation of the fold axis 

during the first tectonic event (stage 1) accounts for the orientation variations of the deposit between 

NW–SE and WSW. The latter are the directions followed by apatite beds replaced by variscite 

(Figure 4a), and some of the tunnels accordingly follow these directions. 

Llandoverian shales occurring across the Catalonian Coastal Ranges are characteristically black 

due to their organic matter content. However, in the APGNM profile, this lithology is completely 

bleached due to intense weathering that produced the alteration of organic matter, hence its light 

grey colour (Figure 4a–f), which darkens with depth. 

Two dense systems of subvertical veinlets crosscut the above materials (Figure 4b–f). One 

system consists of veinlets that follow the slaty cleavage and are therefore subparallel to the 

stratification. These veinlets are up to a few millimetres wide. The other system consists of joints that 

are perpendicular to the fold axis and may reach up to 1–2 cm in width. This is why the paths of the 

rest of the tunnels have NNW–SSE and NE–SW orientations. All these veinlets are mainly filled at 

the top of the deposit, up to 2 m below the unconformity, by yellowish green or white clay minerals. 

Variscite displays a pale olive-green colour in the upper and intermediate levels, and tends to 

become bluish green at the deeper parts of the deposit. In general, phosphate associations occur 

along with secondary sulphates as well as with cryptocrystalline quartz (Figure 4c,d) and clay 

minerals. 



Minerals 2020, 10, 3 7 of 25 

 

 

Figure 4. (a) Replacement of a vertical apatite bed (Ap) with variscite (Var1); (b) Neolithic tunnel 

following veinlets with variscite and black, cryptocrystalline quartz within grey shales; (c,d) Details 

of the above veinlets; (e) Two generations of variscite veinlets, the first following the slaty cleavage 

(Var1), and the second in vertical joints (Var2); (f) Detail of variscite veins in bleached shales. 

5. Mineral Characterization 

The X-ray diffractograms of the hosted rock samples along the profile show broad diffraction 

peaks, which indicate poor crystallinity of the mineralogy (Figure 5). 
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Figure 5. Schematic weathering profile of the Gavà area and corresponding X-ray powder 

diffractograms of selected representative samples from different profile levels. (a) Quaternary 

calcrete with 75 wt. % of calcite (Cal), 14 wt. % of quartz (Qtz), 5 wt. % of jarosite (Jrs) and 6 wt. % of 

illite (Ill); (b) altered Llandoverian shale from level 1, with 33 wt. % of smectite (Sme), 65 wt.% of 

halloysite 10 Å (Hal) + halloysite 7 Å (Hal) and 2 wt. % of quartz (Qtz); (c) supergene veinlike 

mineralisation, in this case, exclusively composed by variscite (Var); (d) altered Llandoverian shale 

from level 6, with 2 wt. % of smectite (Sme), 92 wt. % of halloysite 10 Å (Hal) + halloysite 7 Å (Hal), 4 

wt. % of quartz (Qtz) and 2 wt. % barite (Brt). 
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5.1. Host Rocks 

The XRD study of bleached Llandoverian shales revealed halloysite, with lesser quartz and 

accessory jarosite. These shales do not show significant mineralogical variations between different 

levels in the profile (Table 1). Jarosite occurs in these shales replacing primary framboidal pyrite 

(Figure 6a–c). Jarosite crystals in these framboids are fine-grained (less than 5 μm) and have a 

rhombohedral shape (Figure 6a). Quartz and halloysite are cryptocrystalline. 

Chert beds are mainly comprised of cryptocrystalline quartz with scattered organic matter, 

with minor pyrite framboids, and crystals of monazite-(Ce) and xenotime-(Y) (Figure 6b–f). 

 

Figure 6. Mineralogical and textural features of Landoverian shales and associated supergene 

mineralisation; Scanning Electron Microscope (SEM)-backscattering electrons (BSE) images. (a) 

Pyrite framboid replaced by jarosite (Jrs), and finally by variscite (Var). Note the rhombohedral 

shape of the jarosite crystals; (b) Jarosite (Jrs) after pyrite framboids scattered in shales and chert 

(Qtz); Chert has disseminated monazite (Mnz); the ensemble is crosscut by baryte (Brt), variscite 

(Var), crandallite (Cra) and perhamite (Per) veins; (c) Similar to the image above, with an apatite vein 
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(Ap); (d) Similar to the image above, with jarosite veins (Jrs); (e) Detail of the above image, showing 

monazite grains; (f) Xenotime grains (Xtm) scattered in chert beds. 

Primary phosphate beds are made up of cryptocrystalline fluorapatite, also with dispersed, 

fine-grained organic matter and lesser amounts of pyrite framboids. Apatite beds may be replaced 

by supergene mineralisation along the weathering profile. 

5.2. Vein-like Supergene Mineralisation 

Textural studies of the supergene vein mineralisation revealed a complex sequence of vein 

infill. Two types of veins were found: on the one hand, containing smectite or Fe-rich phosphates - 

dominant in the shallower parts of the profile (levels 1–4) and, on the other, veins of Al-rich 

phosphates, predominant in the deeper section of the deposit, especially between levels 4 and 7 

(Figure 4f). 

Smectite from shallower veins is commonly associated to significant amounts of halloysite, as 

well as minor quartz, jarosite, baryte and less abundant phosphosiderite and variscite (Table 1). 

Vein infill in the Fe-rich phosphate assemblage consists of alternating cryptocrystalline, 

colloform bands of phosphosiderite and fluorapatite, each up to 20–30 µm thick, associated with, up 

to 5 µm-thick, cryptocrystalline quartz and jarosite bands (Figure 7a). In addition, some of these 

bands are crosscut by late bands infilled with halloysite and baryte, which may occur as elongated 

sections of tabular crystals up to 40 µm long (Figure 7a,b). 

 

Figure 7. Detail of phosphate veins from upper levels. (a) Cryptocrystalline phosphosiderite (Phs) 

associated with fluorapatite (Ap), cryptocrystalline quartz (Qtz) and jarosite (Jrs) defining a 

colloform texture. It is also possible to distinguish microcrystalline halloysite (Hal) with fine bands of 

baryte (Brt) filling secondary cracks; (b) Detail of acicular aggregates of baryte (Brt) within a 

fluorapatite (Ap) vein associated with jarosite (Jrs) and halloysite (Hal). 

In the case of the phosphate mineralisation of the deeper domains, XRD revealed that variscite 

is predominant (Figure 5) and is generally associated with jarosite and minor halloysite (10 Å). This 

variscite is cryptocrystalline and develops massive centimetric bands crosscut by perhamite veinlets 

(Figure 6b,c). Crandallite also occurs as bands up to 100 µm thick with disseminated 

microcrystalline grains of baryte (Figure 6b–d; Table 1). In other cases, colloform fluorapatite bands 

up to 200 µm thick can also be present (Figure 6c). 

In all cases, variscite X-ray diffractograms fit with the XRD reference 00-025-0018 (“Powder 

Diffraction File, version 2; Joint Committee of Powder Diffraction Standards”, 2000)—described by 

[44] as “Messbach-type, VM” variscite. This type of variscite presents an orthorhombic Pcab space 

group with the following lattice parameters: a = 9.90, b = 9.65 and c = 17.18 Å; and can be 

distinguished from “Lucin-type VL” variscite [44], which has a c parameter equal to 8.55 Å. The 

differences between both types of variscite are detected by XRD and infrared spectroscopy, and are 

caused by differences in water molecule distribution and in the symmetry of PO43− anions [44].
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Table 1. Distribution and occurrence of mineral phases at different levels of the studied APGNM profile, according to XRD data (xxx: very abundant; xx: abundant; x: less 

abundant; m: accessory). 

 Level Variscite Phosphosiderite Crandallite Jarosite Baryte Halloysite 10Å Halloysite 7Å Alunite Smectite Quartz Pyrite 

Altered shales 

1      xxx   xx m m 

2    x  xx    x m 

3      xx  x  x m 

4    x  xx  xx x m m 

5    x  xx    x m 

6     m x  x x m m 

7      x    x m 

Supergene veins 

1 x x  x m xx x  xxx x m 

2 x x  xx m x   xxx x m 

4 xxx x  x  x    x  

6 xx   x m x xx  x x m 

7 xxx  xx x       m 
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5.3. Mineral Chemistry 

In the study area, variscite composition is quite variable, and the most remarkable changes are 

found in the Fe2O3 content, which corresponds to the solid solution variscite-strengite (Table 2). The 

high silica contents detected in some samples may be due to fine-grained admixtures of 

cryptocrystalline quartz. Sulphate content is very low, and minor elements such as V or Cr are below 

EPMA detection limits. 

Phosphosiderite also contains Al, however only in low proportions, less than 2.8 wt. % Al2O3. 

The relatively high contents of CaO recorded in some samples can be due to admixtures of 

cryptocrystalline calcite or interstitial apatite, and to the occurrence of cryptocrystalline perhamite. 

Similarly, the high SiO2 amounts in cryptocrystalline perhamite can be explained by disseminations 

of cryptocrystalline quartz. 

Halloysite may be relatively enriched in Fe3+, which may explain the greenish-brownish colour 

of the mineral in some veinlets. 

6. Bulk Rock Geochemistry 

Bulk rock composition of major and trace elements was analysed for the different lithologies of 

the Gavà profile; namely, Quaternary calcrete, altered Llandoverian shales and supergene 

mineralisation veins (Table 3). 

The Quaternary calcrete level lies on top of the weathering profile and does not present any 

significant compositional anomalies. It contains 38.7 wt. % CaO, SiO2 contents of up to 12.24 wt. %, 

5.71 wt. % Fe2O3 and 5.71 wt. % Al2O3 (Table 3). 

Llandoverian shale samples do not display any compositional anomalies that could be related 

to weathering. In general, they are mostly comprised of silica, with SiO2 contents ranging between 

81.3 and 92.26 wt. % (Table 3). Al2O3 contents are also high, related to the occurrence of 

phyllosilicates, and range between 3.3 and 8.6 wt. %, while Fe2O3 contents are up to 4.41 wt. %. The 

trace element composition of altered shales is marked by a general and significant enrichment in V 

(up to 718 ppm) and Ba (up to 1494 ppm).
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Table 2. Electron probe microanalyses (EPMA) analyses: representative composition of different supergene mineralisation phases. 

Analysis Number 
Variscite Phosphosiderite Halloysite Perhamite Apatite 

11S34.5.5 11S5.1 11S34.1 11S34.5.3 11S5.1 11S34.5.4 71.2 71.2 11S2.5L3 11N1.20 6.7 11S34.5.5 11S34.5.5 573.1 

wt. %               

SiO2 7.33 0.59 9.52 2.29 2.45 0.71 2.64 0.91 43.72 44.50 40.91 20.47 26.23 0.02 

Al2O3 30.24 30.90 25.83 28.52 29.88 2.32 2.82 2.48 32.59 32.21 28.32 21.64 22.69 0.05 

FeO 0.59 1.51 1.90 1.82 1.47 32.22 32.77 33.72 2.18 1.32 2.27 0.77 0.77 0 

Fe2O3 calculated 0.66 1.68 2.11 2.02 1.63 35.81 36.42 37.47 2.42 1.47 2.52 0.86 0.85 0 

MgO 0 0 0.09 0.11 0.12 0.17 0.09 0 0.13 0.22 0.14 0.32 0.27 0.24 

CaO 0.79 0.28 0.98 0.39 2.31 4.21 1.89 0.41 0.65 0.52 0.42 11.06 10.99 49.59 

K2O 0.42 0.03 0.73 0.27 0.07 0.04 0.01 0 0.09 0.14 0.17 0.28 0.23 0.01 

P2O5 39.60 45.26 39.08 44.23 41.01 33.58 33.96 36.23 0.18 0.08 0.12 21.81 16.20 35.58 

SO3 0.03 0.06 0.05 0.14 0.16 0.05 0.07 0.04 0.01 0.03 0.03 0.06 0.07 0.19 

Sum 79.22 78.85 78.57 78.00 77.78 73.47 74.36 73.86 79.91 79.68 72.67 76.65 77.58 86.21 

Si 0.191 0.015 0.251 0.060 0.066 0.023 0.084 0.029 2.052 2.094 2.108 8.691 11.030 0.002 

Al 0.926 0.946 0.801 0.885 0.943 0.090 0.106 0.093 1.803 1.786 1.720 10.829 11.245 0.005 

Fe3+ 0.013 0.033 0.042 0.040 0.033 0.884 0.873 0.897 0.086 0.052 0.098 0.275 0.270 0 

Mg 0 0 0.003 0.004 0.005 0.008 0.004 0 0.010 0.015 0.010 0.203 0.171 0.033 

Ca 0.022 0.008 0.028 0.011 0.066 0.148 0.065 0.014 0.033 0.026 0.023 5.031 4.952 4.929 

K 0.014 0.001 0.025 0.009 0.003 0.002 0 0 0.006 0.008 0.011 0.153 0.122 0.002 

P 0.872 0.996 0.873 0.986 0.929 0.933 0.916 0.976 0.007 0.003 0.005 7.839 5.767 2.794 

S 0.001 0.001 0.001 0.003 0.003 0.001 0.002 0.001 0 0.001 0.001 0.018 0.022 0.013 

Sum 2.038 2.000 2.026 1.998 2.047 2.089 2.050 2.010 3.996 3.985 3.978 33.039 33.579 7.778 

Oxygens 4 4 4 4 4 4 4 4 7 7 7 59 59 12 
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The composition of different phosphate veins hosted in Llandoverian shales has been analysed 

at different depths in the weathering profile. The deepest veins (between levels 3 and 7) are mainly 

comprised of variscite and are therefore mostly enriched in aluminium, with Al2O3 contents of 20.28 

to 24.61 wt. %. However, sample GAV 0.1 (Table 3), which was obtained at the mine entrance near 

the surface, is mainly composed of phosphosiderite. Accordingly, Fe2O3 contents are higher than 

Al2O3 contents; 32.85 wt. % and 3.26 wt. %, respectively (Table 3). 

In comparison with altered shales, the trace element composition of supergene phosphate veins 

is characterised by a significant enrichment in critical elements, such as Sc (up to 219 ppm), Ga (up to 

72 ppm). In the case of REE, deeper samples of supergene phosphates (Figure 3) present a significant 

enrichment (up to 281.7 ppm ∑REE) while shallower samples are impoverished in REE in 

comparison with hosted shales. Other elements such as Cr (up to 790 ppm), As (up to 852 ppm) or Sr 

(up to 491 ppm) are also significantly enriched in phosphate veins (Table 3). 

REE diagrams show negative patterns for all the samples derived from the veins, except for 

phosphosiderite sample GAV 0.1 obtained at the uppermost levels (see above), which shows a 

positive pattern with a significant enrichment in Heavy Rare Earth Elements (HREE) (Figure 8a) and 

a marked negative Ce anomaly. Phosphate veins at the deepest levels show a neat positive anomaly 

in Pr and Nd, and a general enrichment in Light Rare Earth Elements (LREE). Negative anomalies in 

Ce and Eu are also worth noting, and an Eu anomaly is also observed in altered shales and 

quaternary calcrete. 

Trace element diagrams of different lithologies (Figure 8b) showed similar patterns between 

phosphate veins and altered shales. However, the shallowest phosphate veins are depleted in REE 

and High Field Strength Elements (HFSE; Nb, Ta, Zr and Hf) in comparison to the deepest. Other 

lithologies, including Quaternary calcrete, are depleted in Th and HFSE and are significantly 

enriched in Ba, U, Pb, Sr and Eu (Figure 8b).
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Table 3. Representative bulk rock chemical analyses of the different lithologies occurring at the APGNM weathering profile. LOI: Loss on ignition. 

Sample 

Quaternary 

Calcrete 
Altered Shales Supergene Phosphates 

FGAV_TOR 11NL1 11NL2 11NL3 11NL4 11NL5 11NL6 11NL7 0.1 3.9 4.0 L4V 6.1 

wt.%              

SiO2 12.24 81.31 89.63 92.83 91.69 82.49 92.26 88.05 5.49 14.04 15.03 9.40 7.08 

TiO2 0.20 0.47 0.30 0.17 0.20 0.28 0.20 0.22 0.31 0.25 0.22 0.14 0.14 

Al2O3 2.98 8.61 4.76 3.27 4.72 7.23 4.07 5.27 3.26 20.28 22.37 24.61 23.74 

Fe2O3 5.71 1.74 0.72 0.72 0.37 4.41 1.01 0.91 32.85 8.70 5.22 6.91 8.61 

MnO 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

MgO 0.59 0.92 0.46 0.26 0.44 0.59 0.32 0.45 0.21 0.18 0.16 0.10 0.09 

CaO 38.7 0.43 0.12 0.08 0.09 0.13 0.05 0.40 3.54 1.77 2.11 0.85 0.57 

Na2O 0.05 0.08 0.02 0.05 0.02 0.03 0.03 0.05 0.15 0.30 0.15 0.09 0.10 

K2O 1.78 2.35 1.24 0.8 1.17 1.80 0.98 1.25 0.03 0.20 0.30 0.49 0.70 

P2O5 0.40 0.07 0.07 0.04 0.03 0.17 0.06 0.18 30.63 32.24 29.14 33.16 34.19 

LOI 33.77 4.52 1.76 1.18 1.43 2.68 1.40 2.20 22.58 21.40 23.75 22.40 23.08 

Sum 96.43 100.52 99.08 99.41 100.17 99.82 100.38 98.99 99.06 99.39 98.46 98.15 98.33 

ppm              

Sc 9 11 6 3 6 8 5 6 49 219 113 208 203 

V 76 286 269 275 236 718 423 384 288 300 336 312 363 

Cr 120 60 50 30 30 70 40 50 790 340 280 770 720 

Co 1 8 <1 1 <1 4 1 1 <1 1 4 2 5 

Ni <20 30 <20 <20 <20 70 <20 <20 < 20 <20 80 50 40 

Cu 40 50 10 20 10 150 30 40 230 40 340 90 100 

Zn <30 <30 <30 <30 <30 < 30 <30 80 <30 <30 70 <30 <30 

Ga 14 17 9 7 8 13 9 10 29 20 15 72 69 

Ge <1 5 3 1 2 2 2 2 <1 <1 1 1 <1 

As 98 16 10 <5 <5 51 <5 6 852 192 219 631 714 

Rb 26 74 37 22 34 51 28 37 <2 7 4 5 5 

Sr 256 29 32 17 13 37 19 47 309 442 452 430 491 

Y 11 37 28 11 10 33 16 19 22 13 3 19 20 

Zr 33 85 49 27 27 46 30 37 25 4 5 5 5 

Nb 3 9 6 4 4 5 4 5 3 1 <1 <1 <1 

Mo 10 6 8 4 2 10 4 7 16 19 18 15 17 



Minerals 2020, 10, 3 16 of 25 

 

In 0.8 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.3 0.8 0.7 1.2 1.0 

Sb 2.8 7.2 5.7 2.4 2.8 6.3 2.8 5.4 51.2 7.5 3.5 12.1 13.1 

Cs 1.2 2.3 1.1 0.5 1.3 1.3 0.8 1.0 <0.5 <0.5 <0.5 <0.5 <0.5 

Ba 747 1494 990 711 961 1398 822 1136 842 5150 5877 1785 1434 

La 25.5 52.1 43.6 15.0 11.9 31.2 17.3 22.2 2.6 18.7 5.2 32.0 36.9 

Ce 41.7 69.3 65.6 27.1 21.7 55.6 28.6 41.8 1.7 28.9 5.5 76.0 87.7 

Pr 5.9 8.7 9.3 3.4 2.6 7.1 3.8 5.4 0.4 4.3 0.6 17.2 21.4 

Nd 29 31 34 14 10 27 15 23 1 14 2 77 96 

Sm 5.0 4.4 5.8 2.5 1.7 6.6 3.4 5.7 0.4 2.6 0.5 15.0 16.9 

Eu 0.8 0.9 1.0 0.4 0.4 1.3 0.8 1.3 0.1 0.6 0.1 2.9 3.6 

Gd 2.8 3.2 4.0 1.8 1.5 4.6 2.9 5.0 0.9 2.4 0.6 8.9 10.0 

Tb 0.4 0.6 0.6 0.3 0.2 0.7 0.4 0.6 0.2 0.3 <0.1 1.0 1.0 

Dy 2.0 4.0 3.9 1.7 1.3 4.5 2.6 3.3 2.1 1.9 0.5 4.0 4.5 

Ho 0.4 0.9 0.8 0.3 0.3 1.0 0.5 0.6 0.5 0.4 0.1 0.6 0.7 

Er 1.3 3.1 2.6 1.1 0.9 2.8 1.5 1.8 1.9 1.1 0.3 1.6 1.7 

Tm 0.2 0.5 0.4 0.2 0.2 0.4 0.2 0.3 0.4 0.2 <0.1 0.2 0.2 

Yb 1.0 3.9 2.7 1.3 1.0 3.1 1.5 2.0 2.5 1.1 0.3 1.0 1.0 

Lu 0.14 0.7 0.4 0.2 0.2 0.5 0.2 0.3 0.4 0.2 0.1 0.1 0.1 

Hf 0.9 1.8 1.2 0.6 0.6 1.1 0.6 0.9 0.6 0.2 0.3 <0.2 0.2 

Ta 0.2 0.7 0.4 0.2 0.3 0.4 0.3 0.4 0.1 <0.1 <0.1 <0.1 <0.1 

Pb 15 34 31 15 27 42 17 58 60 22 20 110 81 

Th 6 7.8 5.5 3.0 3.2 5.0 3.5 4.0 3.1 2.5 3.1 3.8 4.0 

U 2.4 5.2 4.9 3.7 2.5 7.0 3.8 5.5 4.2 6.0 6.4 12.8 8.3 

ΣREE 201.1 183.7 174.4 68.9 53.9 146.5 78.9 113.2 15.4 76.9 16.0 237.9 281.7 
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Figure 8. (a) REE plots of Llandoverian shales, Quaternary calcrete and supergene phosphate 

mineralisations of the Gavà weathering profile normalised to chondrite C1 (McDonough and Sun, 

1995); (b) Multi-element trace element composition of the same lithologies normalised to the Post 

Archaean Australian Shales (PAAS; [45]). 

7. Discussion 

7.1. Formation of the Gavà Supergene Mineralisations 

Llandoverian black shales are generally rich in organic matter and are typically dark in colour. 

However, in the Gavà deposits, they are strongly bleached due to weathering by percolating acidic 

and oxidising meteoric fluids during the early Pleistocene (1.20 ± 0.05 Ma; [21]). Similar bleaching 

processes developed in shales are reported worldwide [46–48]. 

This weathering process also generated the alteration of framboidal pyrite, which is abundant 

in the Llandoverian shales. Pyrite oxidation accounted for the acidic character of percolating fluids 

as well their enrichment in dissolved sulphate [49]. Such oxidation follows Reaction (1) [50], which is 

attested by the general replacement of pyrite by jarosite in Gavà [51,52]. (Figure 6). 

2FeS2 + 7.5O2 + 7H2O → goethite + 8H+ + 4SO42− (1) 

The action of these oxidised and acidic fluids (pH < 3), as evidenced by the occurrence of alunite 

in supergene mineralisation [53]), promotes the alteration of sheet silicates in Llandoverian shales 

and also of the hosted syn-sedimentary phosphate beds. These processes lead to the corresponding 

enrichment of fluids in Al, Fe and phosphate, respectively. This general fluid composition provides 

the basis to form secondary supergene phosphate-sulphate mineralisation within deeper cracks and 

fractures. Llandoverian shales are poor in Ca, thus only minor Ca-bearing supergene phosphates 

and sulphates occur in Gavà, while the predominant supergene phases in this location are 

aluminium or iron bearing minerals (e.g., variscite, phosphosiderite, jarosite or alunite). The 

formation of these supergene phases occurs through a chemical Reaction (2) similar to that proposed 

by [50] for the formation of APS minerals such as variscite. 
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Al(OH)3 + HPO42− + 2H+ → variscite + H2O (2) 

According to this reaction, the formation of supergene phases would be directly related to an 

increase of pH conditions. This pH variation would probably be associated with the circulation of 

these fluids to the deepest levels of the profile, where framboidal pyrite grains are not yet altered 

and thus do not generate acidification. 

7.2. Distribution of Critical Elements in Supergene Mineralisation 

Weathering processes in black shales have been systematically studied in the literature due to 

their potential as economical interest [54–58]. Elements such as As, Cd, Co, Cu, Ni, Pb, Sb or Ga may 

occur within the structure of framboidal pyrite [57,58]; while Cr or V may be found in clays and 

micas [59]). 

The distribution of some critical trace elements was investigated in the different lithologies of 

the Gavà profile studied, and elemental anomalies that can be linked to the aforementioned 

supergene vein-like mineralisation were identified (Figure 9). In general, supergene veins in the 

Gavà deposits show significant enrichments in As, Ga, Sc and Ba (Figure 9a) and, to a lesser extent, 

in REE, In, Co and Sb (Figure 9b), with respect to their host rocks. In addition, V does not occur in 

significant concentrations in supergene veins, however, its contents in altered shales increase with 

depth, probably due to lixiviation and remobilisation as a result of weathering (Figure 9a). 

The solubility, lixiviation, and remobilisation of several critical metals by fluids at standard 

conditions (~25 °C and 1 bar) are a matter of discussion [60]. However, the physicochemical 

conditions of the Gavà weathering fluids were seemingly very efficient in their mobilisation, since 

phosphate and/or sulphate dissolved in acid fluids (pH < 3), may act as ligands and play an 

important role in their transport [61–64].  

Therefore, in the case of the Gavà deposits, the critical elements mentioned above would have 

been mobilised by weathering of Llandoverian shale components and associated syn-sedimentary 

phosphates. The alteration of framboidal pyrite disseminated in shales would have released 

sulphate, some critical metals [55,56] and lowered the pH of meteoric water. Ba would have been 

released after the alteration of phyllosilicates from Llandoverian shales, whereas REE and Sc would 

have been released from syn-sedimentary phosphate nodules [65]. 

The mobilisation of these CE within the fluid would be directly associated with the proportion 

of dissolved sulphate and phosphate contents. As, Co and Sb can be mobilised by sulphate in water 

[66–69]. This is also the case of REE and Sc, which are mobilised by sulphate-rich acid solutions, 

identified as a relevant ligand for REE in weathering environments [61–64,69]. 

Phosphate in solution also enhances the mobilisation of certain elements such as In and Ga, 

which are significantly soluble in phosphate-rich fluids. Phases such as GaPO4 (s) and InPO4 (s) are 

generally more soluble and mobile than the corresponding oxyhydroxides [70]. Phosphate content in 

fluids can also play a significant role in the transport of REE and Sc along with sulphate ligands 

[62,63]. In addition, it should be also considered that REEs are significantly released during 

weathering, especially under tropical climate conditions [71]. 

The precipitation of the aforementioned elements is directly associated with the formation of 

supergene mineralisation. An increase in pH conditions at depth would generate the precipitation of 

supergene phases and the corresponding extraction of ligands from the fluid (e.g., sulphate and 

phosphate), also enabling the incorporation of these critical elements to the crystal lattice of the 

supergene phases [50]. The integrated model proposed for this process in the Gavà area is 

graphically summarised in Figure 10. 
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Figure 9. Plots of bulk rock chemical analyses of different Critical Elements (CE) associated to the 

studied profile: (a) Minor elements that include As, Ga, Sc, ΣREE, V and Ba; (b) Trace elements 

including In, Co and Sb. 

7.3. Weathered Phosphates as Non-Conventional Source of Critical Elements 

Most of the mining programs related to CE exploration are still focused on conventional 

deposits including classical types such as carbonatites, peralkaline intrusives or pegmatites [72]. 

Recently, other geological environments have been explored and considered as potential 

non-conventional deposits of CE. This is the case of sedimentary phosphates [73], which are mainly 

comprised of minerals of the apatite group, and may contain REE and other potentially interesting 

elements, such as V, U, F, Cr, Se or Sr [16,65]. 

In addition, the extraction of certain CE from phosphates is relatively easy from a technical 

point of view. In the case of REE, for example, processes used in the treatment of phosphates to 

obtain phosphorus can also be applied to obtain REE as by-product [73]. Therefore, significant CE 

contents and their easy extraction means that sedimentary phosphate deposits worldwide should be 

considered as potential CE sources. 

 

Figure 10. Schematic model of the formation of supergene mineralisation in the APGNM: (a) 

Previous stage before weathering. Shales are still not altered and preserve their original black colour; 
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(b) Initial stage of alteration. Weathering of organic matter generates bleaching of Llandoverian 

shales and the corresponding alteration of primary framboidal pyrite. Primary syn-sedimentary 

phosphates are also weathered and trigger the formation of supergene phosphate mineralisation; (c) 

Final stage of weathering. Llandoverian shales are mostly bleached and altered along with 

syn-sedimentary phosphates. Some chemical elements are lixiviated and may be accumulated in 

supergene mineralization. This is the case of REE, which come from Llandoverian shales that are 

lixiviated by the sulphates in solution due to the alteration of primary framboidal pyrite. 

On the other hand, weathering has been proven an efficient process for concentrating certain 

CE. The present study illustrates this point, and economic concentrations of CE have been found in 

other weathering profiles, soils and laterites worldwide [8,10,11,74–77]. In fact, it is well known that 

the mineral structures of aluminophosphates of the alunite supergroup, such as florencite or 

goyazite, can concentrate REE at economic grades in lateritised carbonatites and karstic bauxites 

[74,78,79]. Similar enrichments at subeconomic grades are also described in other carbonatites [80] 

and kimberlites [81]. Gallium can also enter the structure of various aluminophosphates, typically by 

Al substitution, being dominant in some minerals such as galloplumbite [82]. Sc may also substitute 

Al and, in fact, kolbeckite [ScPO4·2H2O] is isostructural with metavariscite [83]. V can also substitute 

Al in phosphates of the plumbogummite group, thus allowing the incorporation of Ba, Sr, REE and 

Bi, among other elements [84]. 

The present study provides evidence of the supergene enrichment of critical elements in 

supergene phosphates produced by weathering. However, in the case of Gavà, their extremely 

limited tonnage and sensitive location (as a protected historical heritage site) forbids any mining 

endeavours in this area. Even so, this work contributes to the understanding of the mobilisation and 

concentration of CE by weathering processes in sedimentary phosphates. 

The geological processes that control the distribution of CE in phosphates are still under debate 

[73], although weathering processes associated with phosphates after deposition play a significant 

role in the distribution of certain elements [85,86]. Sedimentary phosphates in certain climate areas 

undergo weathering processes that efficiently concentrate CE, hence, such lithologies have potential 

as non-conventional CE deposits. This is the case of several worldwide localities of sedimentary 

phosphates and associated supergene mineralisations such as Altay-Sayan (Russia), Taïba and 

Lam-Lam (Senegal), Ruseifa (Jordan), Khourigba (Morocco), Florida (USA) or Arat (Israel), among 

others [87–96]. 

The concentrations of certain CE in this type of deposits are still not well reported. However, 

recent works report very significant contents of REE in sedimentary phosphate deposits, suggesting 

this type of deposit as a currently non-conventional resource of REE [64]. Therefore, we consider that 

concentration of certain CE in sedimentary phosphates and associated weathering mineralisation 

should be evaluated, taking into account that the present work in the Gavà deposits can be used as 

an example to determine exploration guidelines of CE in primary phosphates affected by weathering 

worldwide. 

8. Conclusions 

1.  In the Gavà area, significant weathering processes involving acid and oxidising meteoric fluids 

occurred during the early Pleistocene affecting a series of Llandoverian black shales and 

associated syn-sedimentary phosphates. 

2.  Acid fluids would promote the alteration of phyllosilicates and disseminated framboidal pyrite 

in Llandoverian shales as well as associated beds of syn-sedimentary phosphates, producing a 

general enrichment of fluids in sulphate, Fe, Al and phosphate, respectively. 

3.  The deposits of the Gavà area include supergene mineralisation distributed among veins that 

are hosted in weathered and bleached Llandoverian shales. They are mainly comprised of 

supergene phosphates (e.g., variscite, perhamite, crandallite, phosphosiderite), sulphates (e.g., 

jarosite, alunite) and associated clay minerals (e.g., halloysite and smectite). 
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4.  The supergene mineralisation is significantly enriched in certain CE. Such anomalous contents 

are related to the action of these acid and oxidised fluids associated with weathering. 

5.  Precipitation of supergene vein-like mineralisation is related to an increase of pH conditions in 

deeper parts of the profile. CE are hosted in the crystal lattice of supergene minerals. 

6.  Weathering processes and corresponding enrichment of CE in supergene mineralisation at the 

Gavà deposit can be used as an example to explore CE in primary phosphates affected by 

weathering worldwide. 
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