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 2 

Abstract  30 

Understanding ecosystem functioning in a farmland context by considering the variety of ecological 31 

strategies employed by arthropods is a core challenge in ecology and conservation science. We adopted a 32 

functional approach in an assessment of the relationship between the three functional plant groups (grasses, 33 

broad-leaved and legumes) and the arthropod community in winter wheat fields in a Mediterranean dryland 34 

context. We sampled the arthropod community as thoroughly as possible with a combination of suction catching 35 

and flight-interception trapping. All specimens were identified to the appropriate taxonomic level (family, genus 36 

or species) and classified according to their form of feeding: chewing-herbivores, sucking-herbivores, flower-37 

consumers, omnivores, saprovores, parasitoids or predators. 38 

A richer plant community favours a greater diversity of herbivores and, in turn, a richness of herbivores and 39 

saprovores enhances the communities of their natural enemies, which supports the classical trophic structure 40 

hypothesis. The positive effect of grass cover on sucking-herbivores, saprovores and their natural enemies is due 41 

to grasses’ ability to provide – either directly or indirectly alternative resources or simply by offering better 42 

conditions of environmental parameters. By the inclusion of legumes in agroecosystems we can improve the 43 

conservation of beneficial arthropods like predators or parasitoids, and enhance the provision of ecosystem 44 

services like the natural pest control. 45 

 46 

 47 

Keywords: functional approach, plant-arthropod interaction, biological control, legumes, ecosystem services, 48 

insect functional traits. 49 
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 3 

Introduction  52 

Although traditionally considered as mere competitors of crop plants (Albajes et al. 2011), weeds do in fact 53 

play a key role in the aboveground food chain in agro-ecosystems (Clough et al. 2007) by providing resources 54 

for pollinators and herbivorous insects, and by supporting prey species for natural enemies (Norris and Kogan 55 

2000; Hyvönen and Huusela-Veistola 2008). Nonetheless, how herbivores and natural enemies respond to the 56 

within-field plant community is still a matter of debate and the information in the literature is rather 57 

contradictory. Birkhofer et al. (2008) and Harwood et al. (2001) reported more predators in weedy fields – 58 

probably as a response to increased prey availability – but other authors have found that the abundance of 59 

predatory invertebrates seldom responds significantly to the weed community (Fuller et al. 2005). Some authors 60 

state that weedy plots do not necessarily have higher predator densities as other authors have claimed (Altieri 61 

and Nicholls 1999; Amaral et al. 2013) 62 

These discrepancies arise because most predictions are limited to particular species groups that are unable 63 

to provide accurate generalizations of observed patterns that are applicable to the entire arthropod community 64 

(Perner and Voigt 2007). Indeed, arthropods account for over 80% of all known living animal species and play a 65 

wide range of functional roles in ecosystems (Maleque et al. 2006). On the other hand, complete community-66 

level assessments are rarely conducted given the huge amount of time, money and human resources (i.e. 67 

taxonomists) that are required (Cardoso et al. 2004). Nevertheless, several authors have adopted a community 68 

approach using higher taxonomic levels such as families as surrogates for inventories at species level (Balmford 69 

et al. 1996a; Balmford et al. 1996b; Wickramasinghe et al. 2004; Biaggini et al. 2007), which is a way of 70 

circumventing the enormous amount of resources required for close-to-complete inventories (Cardoso et al. 71 

2004). The use of families as a taxonomic level not only allows parataxonomists to complete the required 72 

classification tasks – which permits groups that had not previously been considered to be bioindicators (due to 73 

taxonomic difficulties) to be included – but can also save time and money (Balmford et al. 1996a; Balmford et 74 

al. 1996b).  75 

Here we adopt a community approach and work at family level. We use a functional approach based on 76 

species’ way-of-feeding strategies and, rather than relying on traditional taxonomic analyses, we amalgamate 77 

different groups according to their trophic behaviour. This combination of a community approach at family level 78 

and a functional approach is novel, and provides a link between taxonomic diversity and ecosystem functioning 79 

(Grimm 1995; McCann 2000; Hawes et al. 2009). 80 

Assessing how within-field plant communities affect whole arthropod assemblages is therefore essential for 81 

understanding local processes related to agro-ecosystem functioning, and to accomplish this task it is crucial to 82 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



 4 

gain a broader picture of the different players on the scene.   83 

Floristic richness as well as vegetation structure has been widely recognised as key factors influencing 84 

insect assemblage (Schaffers et al. 2008). As plant species richness and vegetation complexity tend to cascade up 85 

to higher trophic levels leading to high invertebrate diversity (Landis et al. 2000). Therefore we would expect 86 

that with a richer assemblage in the within-plant community is likely to improve the conservation of multiple 87 

arthropod groups. In this study we were interested in assessing the effect of richer within-field plant communities 88 

as a component of habitat restoration strategies to improve and sustain biological control in an arable cropping 89 

system. The research reported here aimed to examine how contrasting within-field plant communities in wheat 90 

fields affect the whole community of insects associated to this crop. We hypothesised that plant-feeders and 91 

saprovores would respond to the within-field plant assemblage according to the classical diversity-trophic 92 

structure hypothesis, and that the abundance and richness of potential prey items would enhance the parasitoid 93 

and predator assemblages. 94 

 95 

Material and Methods 96 

Study area 97 

The study was carried out about 150 km south of Barcelona (41º29’0.9’’N, 1º7’16.4’’E; 627 m a.s.l.). The 98 

arable fields – mainly cereal crops – represented only 40% of the agricultural landscape and formed a mosaic 99 

with patches of natural vegetation. Field boundaries consisted of perennial grasslands dominated by 100 

Brachypodium phoenicoides (L.) Roemer & Schultes, as well as a mix of Prunus spinosa L., and Rubus 101 

ulmifolius L. thickets, and Rosmarinus officinalis L. scrub. 102 

Four organically and four conventionally managed winter wheat fields (Triticum aestivum L.) were selected 103 

in an area of 2×2 km. First, the organic fields were randomly selected from the 12 such fields in the area and, 104 

then, the conventional fields were selected, none of which were further than 1 km from or adjoining the organic 105 

fields. All selected fields were flat in order to avoid any differences due to slope or aspect. The selected organic 106 

fields had been managed for over a decade along Catalan organic guidelines (Consell Català de la Producció 107 

Agrària Ecològica 2013) and were certified by the Catalan Council for Organic Farming following the European 108 

guidelines (EEC 2007). The management of organic fields relies on mechanical weed control and organic 109 

fertilisation using green manure and occasionally chicken manure. Conventional fields were regularly sprayed 110 

with herbicides – but not insecticides or fungicides – and fertilised with a combination of pig slurry and mineral 111 

fertilisers. Although we tried to select fields of similar size and shape, we considered the homogeneity of the 112 

boundary vegetation to be more important than the homogeneity of the fields’ dimensions, above all because the 113 
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 5 

fields were all relatively small. Even so, conventional fields were significantly larger (mean ± SE; 4.08 ± 0.8 ha) 114 

than organic fields (2.19 ± 0.3 ha, = 5.78, P value = 0.016). By contrast, the perimeter-to-area ratio was 115 

significantly greater in organic (mean ± SE; 0.09 ± 0.01) than in conventional fields (0.06 ± 0.01, = 4.85, P 116 

value = 0.028). All selected fields were sown with winter wheat between the 27 October and 7 November 2003 117 

(for further agronomic details, see Caballero-López et al. 2010). 118 

The contrast in a common area between organic and conventional cereal fields whose boundaries share the 119 

same vegetation but differ in terms of the non-crop plants they host appears to be a suitable model for exploring 120 

the relationship between plant and arthropod communities. In addition, the comparison of fields under organic 121 

and under conventional insecticide-free management in a Mediterranean context also avoids the confounding 122 

indirect effects of insecticide application on the plant-arthropod interactions (Hole et al., 2005).  123 

In each field we established an 80m transect diagonally across the centre of the field, starting at 55m from 124 

the edge. Within each transect, five 1m×1m plots at 20m intervals were surveyed. Arthropod suction-sampling 125 

and plant surveys were carried out successively in each plot. In addition, three flight-interception traps (FIT) 126 

were positioned along each transect at 40m intervals. 127 

 128 

 129 

Sampling  130 

Arthropod communities were sampled using (i) flight interception traps (hereafter FIT) to assess aerial 131 

communities and (ii) a petrol-driven Blow&Vac (McCullogh BVM250, Italy; sampling cylinder 60cm high and 132 

12 cm in diameter) converted to suction sampler following Stewart and Wright (1995) to survey terrestrial 133 

communities. 134 

Each FIT consisted of an outer white plastic cup (150 mm in height, 200 mm internal diameter) mounted on 135 

a 1-m-high wooden pole and an inner plastic cup (140×180 mm) with two 30×30 cm Plexiglas pieces fixed along 136 

their midline in a cross-shape. The inner plastic cup contained approximately 1 litre of a NaCl-solution as a 137 

preservative, with a drop of detergent added to decrease the surface tension. FIT are useful for catching many of 138 

the small flying insects that tend to fly downwards when they hit a wall (Koricheva et al. 2000).  139 

The petrol-driven suction sampler was operated on full power to produce an estimated constant airflow of 140 

0.142 m3/s (according to manufacturer’s operating instructions). The pipe was held vertically and slowly passed 141 

over the wheat plants in the 1-m2 quadrat and suction was performed for 60 seconds. After each plot sampling, 142 

the bag was removed from the machine, placed in a labelled plastic bag and stored in a portable refrigerator to 143 

prevent predatory activity in the bag. The sampling campaign lasted for two days and the eight fields were 144 
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 6 

sampled in a random order to avoid any systematic bias due to daytime sampling. All samples were taken by the 145 

same two people to reduce sampling variability. This method has been shown to provide a good representation of 146 

all trophic levels interacting with vegetation (Letourneau and Goldstein 2001), and is used extensively to study 147 

arthropods in crops (Stewart and Wright 1995; Elliott et al. 2006).  148 

Fit trapping took place on 20 May 2004 and 26 June 2004 to coincide with the wheat’s anthesis stage and 149 

the mid-milk-ripe cereal development stage (Zadoks et al. 1974), respectively. In total, 24 traps were active 150 

during two periods of eight days. Suction sampling was also performed twice to coincide with the two chosen 151 

growth stages, the first campaign taking place on 25–27 May and the second on 24–26 June 2004, both at 10:00–152 

19:00 and under sunny weather conditions (temperature > 20ºC). Thus, in all, 40 m2 of plots were assessed twice 153 

during the study period. 154 

Vegetation was surveyed twice and concomitant with the suction-sampling. The cover of crop species and 155 

each weed species was recorded in each plot by means of a ground cover scale. Weed species were identified 156 

according to Bolòs et al. (2005). Plant species were classified into three functional groups (grasses, forbs and 157 

legumes) following Koricheva et al. (2000). Legumes have been separated from the other forbs due to the 158 

generally higher nitrogen content of their tissues, which would make them a higher-quality resource for 159 

herbivores, whereas grasses have tough tissues with low nitrogen content and structural characteristics that deter 160 

plant-feeders (Koricheva et al. 2000). 161 

 162 

Arthropod processing 163 

Arthropods captured by suction sampling were frozen for subsequent sorting and identification, whilst FIT 164 

trap catches were preserved in 70% alcohol. All samples were hand-sorted using a dissecting microscope to 165 

separate animals from debris. Catches were quantified as the total numbers of individuals (adults and immature 166 

stages) and with a few exceptions most arthropods were identified to family level; due to taxonomic difficulties, 167 

some taxa were only identified to superfamily level (e.g. Apoidea, Curculionoidea and Staphylinoidea) or to 168 

order level (e.g. Acari and Thysanoptera). Lepidoptera were only identified to order level because specimens 169 

were too badly damaged by the sampling process to be properly identified.  170 

The use of higher taxonomic levels is particularly useful when a functional-group perspective is required as 171 

the majority of family members belong to the same feeding group (see the considerations below). Nevertheless, 172 

the process of amalgamating taxa into functional groups requires the acceptance of assumptions regarding the 173 

importance of certain common features (Hawes et al. 2009).  174 
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 7 

When taxa of the same family had different feeding preferences (e.g. Drosophilidae, Opomyzidae), 175 

specimens were determined to genus or species level, and the predominant feeding habit of the most abundant 176 

genus or species was used to classify the entire family and its feeding group. We initially considered splitting 177 

families possessing several species into similar proportions and different feeding strategies; although in the end 178 

no family fulfilled this condition. 179 

All identified taxa were classified into one of the seven feeding groups: chewing-herbivores, flower-180 

consumers, omnivores, parasitoids, predators, saprovores and sucking-herbivores. The definition of each feeding 181 

group was based on field observations, a literature review and specialist advice (see Acknowledgements), and 182 

contained different ways-of-feeding strategies. Granivores, plant-chewers and miners were included in the 183 

chewing-herbivore category, while plant sapsuckers were added to the suction-herbivore category. Flower 184 

consumers consisted of flower predators, pollen consumers and nectarivores. Saprovores included 185 

mycetophages, plant saprovores, animal saprovores and scavengers. 186 

Arthropods with different feeding preferences in larval and adult stages were counted in both feeding 187 

groups in order to consider the impact of their whole life cycles. A small number of difficult-to-classify larvae 188 

were taken into account only for total abundance but were excluded from the feeding group analyses. Other 189 

groups were also excluded from the analyses due to their scarcity (families with less than three individuals were 190 

excluded from the data) or a lack of available information about their biology. In addition, other groups such as 191 

most parasitoids, which do not feed in the adult stage or whose effect is so small as to be insignificant, were 192 

categorised as not having any trophic interaction (for further details, see Supplementary material). All the 193 

specimens are now deposited in the Arthropod collection of the Natural Sciences Museum of Barcelona. 194 

  195 

Data analysis 196 

In order to simplify the statistical analyses and results section, the results are grouped into two categories: 197 

primary and secondary consumers. Chewing-herbivores, sucking-herbivores and flower-consumers were 198 

considered primary consumers and so are mainly herbivores, while parasitoids and predators were categorised as 199 

secondary consumers given that they are entomophagous. Saprovores chew dead organic matter, bacteria and 200 

fungi, and occasionally soil arthropods, and thus theoretically occupy an intermediate position between primary 201 

and secondary consumers. However, they were included arbitrarily as primary consumers owing to the lack of 202 

reliable information about their consumption rate of potential prey items. 203 

The models for primary consumers and secondary consumers were analysed according to sampling method 204 

(FIT vs. suction) and sampling period (first vs. second), with a common set of covariates (cover of broad-leaved 205 
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 8 

herbs, legumes and grasses, and total plant-species richness) as explanatory variables. Additionally, due to their 206 

different ecological requirements, the models of secondary consumers also included certain additional variables 207 

depending on the focus. For instance, when we modelled the family richness of secondary consumers we 208 

included the family richness of the main primary consumer groups, which could act as potential prey items or 209 

hosts, and when the focus was on the abundance of secondary consumers, we included the abundance of the 210 

different primary consumer groups. 211 

The analyses were performed using linear mixed models with normal error distribution. ‘Field’ was 212 

included as a random effect factor to account for the fact that the samples from a field were not independent 213 

(Pinheiro and Bates 2000). All the models reported are full models; no model simplification was used to avoid 214 

the inherent bias of stepwise regression in a measuring experiment. Prior to the analysis, the collinearity of the 215 

independent variables included in the models was evaluated with the variance inflation factor (VIF = (1–R2)-1) to 216 

check the robustness of the model (Kutner et al. 2004). In the models for primary consumers, no variable present 217 

a high VIF (between 1.17 and 3.7) and had to be excluded from the analyses. For parasitoids and predators, the 218 

abundance/richness of flower consumers showed correlation with other predictors but it was not significant and 219 

the conclusions were the same when dropping the variable from the model. Assumptions of the linearity, 220 

normality and homogeneity of the variances were evaluated by examining the residuals; data were log-221 

transformed when necessary. Analyses were performed using R (R Development Core Team 2013); package 222 

lme4 (Bates et al. 2008) was used for the model fitting and package languageR (Baayen 2008) was used to 223 

determine the significance of the predictors using Markov Chain Monte Carlo methods. 224 

 225 

Results 226 

Arthropods 227 

During the sampling period, 25,518 arthropods were caught and identified. They were found to belong to three 228 

classes (Insecta, Entognatha, Arachnida), 14 orders and 133 families, although only 113 families were abundant 229 

enough to be included in the feeding group analyses. 230 

The number of families and abundance of individuals were greater using the FIT than the suction-sampler 231 

and, overall, the FIT catches were more abundant and diverse (16,587 specimens and 110 families) than the 232 

suction catches (8,931 individuals and 82 families). Although the majority of the families were captured by both 233 

sampling methods, a considerable proportion (32%) including many dipteran, hemipteran and hymenopteran 234 

families was only recorded in the FIT. The most abundant feeding groups from the FIT samples were flower-235 

consumers and suction-herbivores, which were more abundant than saprovores and omnivores. In the suction 236 
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 9 

catches, the suction-herbivores group was dominant, followed at a distance by saprovores and predators, and 237 

other groups such as parasitoids or chewing-herbivores were far less abundant (see Appendix for further details). 238 

Most of the feeding groups also displayed significant differences between sampling periods. The catches of 239 

chewing-herbivores, flower-consumers, saprovores (Fig. 1) and parasitoids and predators (Fig. 2) were greater in 240 

the first sampling period during wheat anthesis; by contrast, only suction-herbivores showed the opposite 241 

pattern, with larger captures in the second period coinciding with the milk-ripening stage. Conversely, the 242 

pattern for richness was slightly more diverse due to the fact that the chewing-herbivore, flower-consumer and 243 

saprovore families were better represented in the first than in the second sampling period (Fig. 3); the opposite 244 

trend was observed for sucking-herbivores, parasitoids and predators (Fig. 4). 245 

Plants 246 

The total plant cover was significantly higher in conventional than in organic fields due to a higher 247 

percentage of crops: wheat cover represented 97.2% of grass cover in conventional fields and 91.4% in organic 248 

fields. The mean total plant species richness was more than twice as high in organic than in conventional fields; 249 

legumes thrived exclusively in organic fields, either as weeds or volunteer crops (see Caballero-López et al. 250 

2010 for further details). 251 

 252 

Arthropod-plant links 253 

The abundances of flower-consumers, saprovores, parasitoids and predators captured reveal a significant 254 

and positive correlation with grass cover. Greater cover of legumes also enhanced the abundance of parasitoids 255 

and predators but only marginally benefited the populations of flower-consumers (Tables 1 and 2). By contrast, 256 

there were no differences between the abundances of chewing-herbivores and sucking-herbivores according to 257 

plant community (Table 1). Greater abundances of parasitoids and predators occurred in plots with greater 258 

abundances of sucking-herbivores (Table 2).  259 

The number of families of flower-consumers, sucking-herbivores, saprovores, parasitoids and predators 260 

were significantly and positively correlated to greater grass cover (Tables 3 and 4). Additionally, the family 261 

richness of sucking-herbivores was favoured in plots with greater plant species richness (Table 3). The family 262 

richness of parasitoids was closely and positively associated to the cover of grasses and legumes but in the case 263 

of predators was only significantly associated with grass cover (Table 4). Furthermore, sucking-herbivore and 264 

saprovore richness showed a significant and positive effect on the family richness of both parasitoids and 265 

predators, suggesting that a relationship exists between these groups. The family richness of predators was also 266 

enhanced by the chewing-herbivores richness (Table 4). 267 
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 10 

 268 

Discussion 269 

The arthropod community found in wheat fields was dependent above all on the sampling method used, the 270 

sampling period considered and the interaction between these variables, although clear patterns relating to local 271 

factors such as intra-field plant community variables and the primary-secondary consumer interactions were also 272 

present. The functional approach presented here shows that there are consistent responses in plant and arthropod 273 

trophic groups to differences in habitat conditions. 274 

 275 

Primary consumers  276 

The numbers of sucking-herbivores across fields were similar regardless of vegetation parameters, although 277 

the family richness of sucking-herbivores was positively associated to the plant species richness. These findings 278 

were in accordance with previous studies showing that the diversity of plant-feeders was related to the diversity 279 

of their resources (Murdoch et al. 1972; Siemann 1998; Knops et al. 1999). In addition, the sucking-herbivore 280 

community – with aphids (Homoptera) as the most abundant representatives – was also richer where the grass 281 

cover was greater, which usually occurred in the conventional fields, where wheat crop represents the 97% of the 282 

grass cover. This can be explained by the fact that conventional farmers apply more fertilisers, and to the higher 283 

mean yields in conventional (4,000- 4,100  kg ha-1), than in organic (2,000–2,200 kg ha-1) fields (farmers pers. 284 

com.). Given that many components of the Homoptera groups benefit when the nitrogen fertiliser supply 285 

increases (Hasken and Poehling 1995; Duffield et al. 1997; Ghorbani et al. 2010; Rostami et al. 2012), the 286 

enrichment of grass aphids community in conventional fields is not surprising. However, our study did not 287 

enable us to identify whether grass cover or nitrogen supply was the most relevant factor for explaining the 288 

sucking-herbivores pattern.  289 

The saprovore community was found to be richer and more abundant where the grass cover was greater, as 290 

in the studied conventional fields. This reinforces the findings of previous authors (Moreby et al. 1994; Mäder et 291 

al. 2002), who suggest that taxa involved in decomposition are likely to benefit from organic fertilisation, which 292 

in the studied systems only occurred on organic fields. However, pig slurry is an abundant and cheap organic 293 

fertiliser in Catalonia and is commonly used in conventionally managed fields. Our results also support the 294 

findings of Clough et al. (2007), who showed that a higher activity-density and diversity of saprovores in 295 

conventional fields indicates good soil health and high potential productivity, as shown above by the mean yield 296 

values.  297 
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 11 

Flower-consumer abundance is expected to be positively related to legume cover since this group benefits 298 

from floral food resources such as nectar and pollen (Bianchi and Wäckers 2008). Nonetheless, our data provides 299 

only limited support for this relationship. However, both the abundance and richness of the flower-consumer 300 

community are enhanced with increasing grass cover. Given that flower-consumers do not feed on grasses, this 301 

effect is most probably due to the greater plant cover offered by wheat, which generates a more complex plant 302 

community with more and better places to shelter. This phenomenon may reflect that plant architecture is likely 303 

to be an important component of the predation risk, and that plant-feeders have a better chance of escaping from 304 

predators in complex plant architectures (Moreby et al. 1994; Norris and Kogan 2000; Casas and Djemai 2002). 305 

In addition, it is also known that plant structure determines microclimatic conditions, which may also affect the 306 

movement patterns of both herbivores and predators (Willmer et al. 1996; Souza and Martins 2004) and also lead 307 

to considerable variation in microhabitat temperatures that can regulate the larval development (Wilson et al. 308 

2014).  309 

 310 

Secondary consumers 311 

Predators and parasitoids probably benefited from the abundance of their potential prey items (see Table 2). 312 

Consequently, a greater abundance of sucking-herbivores probably led to higher predator and parasitoid 313 

abundances, which may indicate an aggregation response to prey distribution (Müller and Godfray 1998; Evans 314 

2008; Vucic-Pestic et al. 2010). This scenario agrees with the patterns of correlation among herbivores, predators 315 

and parasitoids found by previous studies (Koricheva et al. 2000; Haddad et al. 2001). 316 

Parasitoid richness appears to be closely associated with the sucking-herbivore and saprovore richness, 317 

whereas predators were only significantly correlated to the family richness of chewing-herbivores, sucking-318 

herbivores and saprovores. These findings reflect those of Haddad et al. (2001) and Wardle et al. (1999). Our 319 

findings support the results of Wardle et al. (1999), i.e. secondary consumers could switch between prey items 320 

found in decomposition soil food-webs and those in leaf-based food-webs. Nonetheless, the relationship 321 

between herbivores and natural enemies has created much more controversy and attention than the interaction 322 

between natural enemies and saprovore assemblages due to the implications for pest management (Wardle et al. 323 

1999). 324 

The presence of legumes in organic cereal fields seems to play a key role in enhancing both the abundance 325 

and richness of parasitoid communities, a fact that could be explained by the direct enrichment of alternative 326 

food supplies such as nectar, pollen and sap (Norris and Kogan 2000; Banks et al. 2008; Bianchi and Wäckers 327 

2008). We also observed a positive correlation between the number of predators and legume cover. This supports 328 
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 12 

existing evidence that consuming flowers and extrafloral nectaries improves the survival and nutrient reserves of 329 

predators during periods of prey scarcity, and that the availability of nectar during these periods improves the 330 

long-term reproductive capacity of predators (Hodek and Honek 1996; Norris and Kogan 2000; Isaacs et al. 331 

2009; Lundgren and Seagraves 2011; Amaral et al. 2013).  332 

The positive effect of grass cover on predator and parasitoid communities may be due to plants’ role as 333 

indirect providers of non-host resources to natural enemies (e.g. by supporting alternative hosts) or simply as 334 

structures for oviposition and/or protection (Moreby et al. 1994; Norris and Kogan 2000; Souza and Martins 335 

2004; Nicholls and Altieri 2012; Amaral et al. 2013).  On the other hand, the response to grass cover might also 336 

been justified with better conditions of environmental parameters because as Antvogel and Bonn (2001) 337 

suggested the composition of the ground beetle assemblage was strongly influenced by microclimatic parameters 338 

and vegetation structure. In addition to this, as not all relationships are trophic ones, maybe some of the patterns 339 

described in our study may also being associated with a resource-based habitat approach hypothesis (Shreeve et 340 

al. 2001). However, our approach did not allow us to distinguish among these different responses. 341 

 342 

Conclusions and implications 343 

The clear response by the different feeding groups to local factors such as grass and legume cover indicates 344 

that the weed-herbivore-natural enemy system must be taken into account if we are to improve our 345 

understanding of the interactions between organisms at different trophic levels. Our results show that the 346 

conservation of farmland insect biodiversity is possible through the maintenance of within-field plant diversity in 347 

agroecosystems. Our findings also provide evidence that inclusion of legumes in agroecosystems can improve 348 

the conservation of beneficial arthropods like predators or parasitoids, which are the key players in order to 349 

support the correct ecosystem functioning. This type of studies should encourage policies with a more weed 350 

tolerant perspective, because by the inclusion of additional flower traits within the crop fields, we are enhancing 351 

arthropod conservation and guaranteeing the provision of ecosystem services, like natural pest control. 352 

The functional approach tested is a robust tool with two major advantages and one disadvantage. Firstly, it 353 

can be adopted relatively easily for use by parataxonomists, thereby saving time and money over multi-taxa 354 

approaches. Secondly, the adoption of a feeding-group approach gives a broader picture of the different players 355 

operating in functional agro-ecosystems. Nonetheless, working with the whole arthropod community means to 356 

sort out, identify, and count a considerable volume of groups, and it’s not feasible to work at landscape scale 357 

approach, in the general context of a resource limited project. Therefore, the next step could be the selection of a 358 

wide variety of groups that represents different feeding groups. Having a wider perspective could improve our 359 
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understanding of agro-ecosystem functioning, and thus enable the design of crop management strategies that 360 

ensure conservation of the different arthropods’ trophic groups and their functional role. 361 

 362 
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FIGURE CAPTIONS 500 

Figure 1. Total number of individuals of primary consumers caught by interception traps (FIT) and suction 501 

sampling (VAC) in May and June. CH = Chewing-herbivores, FC = Flower-consumers, SH = Sucking-502 

herbivores, S = Saprovores and O= Omnivores. Symbols indicate mean values and bars indicate the standard 503 

error. 504 

Figure 2. Total number of individuals of secondary consumers caught by interception traps (FIT) and 505 

suction sampling (VAC) in May and June. Pa = Parasitoids and Pr = Predators. Symbols indicate mean values 506 

and bars indicate the standard error. 507 

Figure 3. Total family richness of primary consumers caught by interception traps (FIT) and suction 508 

sampling (VAC) in May and June. CH = Chewing-herbivores, FC = Flower-consumers, SH = Sucking-509 

herbivores, S = Saprovores and O = Omnivores. Symbols indicate mean values and bars indicate the standard 510 

error. 511 

Figure 4. Total family richness of secondary consumers caught by interception traps (FIT) and suction 512 

sampling (VAC) in May and June. Pa = Parasitoids, and Pr = Predators. Symbols indicate mean values and bars 513 

indicate the standard error. 514 
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Table 1 Effects of sampling method (SM), sampling period (SP), their interaction (SM*SP) and plant 

descriptors such as plant species richness (SR), legume cover (LC), broad-leaved herb cover (BC) and grass 

cover (GC) on the abundance of primary consumers. The level of significance for the different predictors 

included in the models was obtained using Markov Chain Monte Carlo methods. 

 

 

 Chewing-herbivore Flower-consumer  Suction-herbivores  Saprovores 

 abundance abundance  abundance   abundance 

 X ± SE  P    X  ± SE  P    X  ± SE  P  X  ± SE  P 

 

Intercept  2.62 ± 0.52 0.000  4.09 ± 0.38 0.000 6.12 ± 1.78 0.001 2.43 ± 0.42 0.000  

SM -2.09 ± 0.18 0.000 -3.27 ± 0.15 0.000  -1.33 ± 0.65 0.044 -2.61 ± 0.19 0.000 

SP -0.66 ± 0.20 0.002 -0.12 ± 0.17 0.470   4.62 ± 0.73 0.000 -0.51 ± 0.22 0.020  

SM*SP  1.02 ± 0.25 0.000  0.64 ± 0.21 0.002  -2.46 ± 0.92 0.010 1.53 ± 0.27 0.000 

SR -0.02 ± 0.04 0.519 -0.02 ± 0.03 0.490  0.06 ± 0.15 0.827 0.06 ± 0.04 0.154  

LC  0.02 ± 0.02 0.320  0.03 ± 0.02 0.052  0.05 ± 0.07 0.483 0.02 ± 0.02 0.285 

BC  0.01 ± 0.01 0.491  0.00 ± 0.01 0.580  0.02 ± 0.03 0.530 0.01 ± 0.01 0.435 

GC  0.01 ± 0.01 0.058  0.01 ± 0.00 0.003  0.02 ± 0.02 0.468 0.02 ± 0.00 0.000 

 

 

Table 2 Effects of sampling method (SM), sampling period (SP), their interaction (SM*SP) and plant 

descriptors such as plant species richness (SR), legume cover (LC), broad-leaved herb cover (BC) and grass 

cover (GC) on the abundance of parasitoids and predators. The abundance of primary consumers was also 

included in this model. CH = Chewing-herbivores, FC = Flower-consumers, S = Saprovores, SH = Sucking-

herbivores (see text for further details). The level of significance for the different predictors included in the 

models was obtained using Markov Chain Monte Carlo methods. 

 

 Parasitoids Predators 

 abundance    abundance 

 X ± SE  P   X  ± SE  P 

 

Intercept  1.51 ± 0.28 0.000   1.53 ± 0.38 0.000 

SM -1.13 ± 0.22 0.000  -1.07 ± 0.29 0.000 

SP -0.03 ± 0.18 0.869  -0.37 ± 0.24 0.107 

SM*SP  0.76 ± 0.22 0.001   1.33 ± 0.29 0.000 

SR  0.00 ± 0.02 0.818    0.04 ± 0.03 0.240 

LC  0.03 ± 0.01 0.027   0.03 ± 0.01 0.033 

BC -0.00 ± 0.00 0.886   0.00 ± 0.00 0.798 

GC  0.01 ± 0.00 0.001   0.01 ± 0.00 0.002 

Ab.CH  0.01 ± 0.01 0.138  -0.00 ± 0.01 0.971 

Ab.FC -0.00 ± 0.00 0.898   0.00 ± 0.00 0.561 

Ab.SH  0.00 ± 0.00 0.000   0.00 ± 0.00 0.005 

Ab.S  0.00 ± 0.00 0.204   0.00 ± 0.00 0.165 



 

Table 3 Effects of sampling method (SM), sampling period (SP), their interaction (SM*SP) and plant 

descriptors such as plant species richness (SR), legume cover (LC), broad-leaved herb cover (BC) and grass 

cover (GC) on the richness of primary consumers. The level of significance for the different predictors included 

in the models was obtained using Markov Chain Monte Carlo methods. 

  

 Chewing-herbivore Flower-consumer  Suction-herbivores  Saprovores 

 richness richness  richness   richness 

 X ± SE  P    X  ± SE  P   X  ± SE  P  X  ± SE  P 

 

Intercept  1.87 ± 0.24 0.000  2.68 ± 0.15 0.000 2.53 ± 0.70 0.001 2.03 ± 0.14 0.000  

SM -0.92 ± 0.08 0.000 -1.34 ± 0.07 0.000  -2.27 ± 0.32 0.000 -1.00 ± 0.07 0.000 

SP -0.19 ± 0.09 0.051 -0.04 ± 0.08 0.653   0.64 ± 0.36 0.078 -0.11 ± 0.07 0.124  

SM*SP  0.25 ± 0.12 0.047  0.23 ± 0.10 0.018  -2.25 ± 0.46 0.000 0.53 ± 0.09 0.000 

SR  0.01 ± 0.02 0.715 -0.01 ± 0.01 0.372  0.19 ± 0.07 0.005 0.00 ± 0.01 0.720  

LC  0.01 ± 0.01 0.158  0.01 ± 0.01 0.158  0.06 ± 0.03 0.074 0.01 ± 0.01 0.153 

BC  0.00 ± 0.00 0.968  0.00 ± 0.00 0.419  -0.01 ± 0.01 0.272 0.00 ± 0.00 0.411 

GC  0.00 ± 0.00 0.129  0.00 ± 0.00 0.011  0.02 ± 0.00 0.004 0.01 ± 0.00 0.000 

 

 

Table 4 Effects of sampling method (SM), sampling period (SP), their interaction (SM*SP) and plant descriptors 

such as plant species richness (SR), legume cover (LC), broad-leaved herb cover (BC) and grass cover (GC) on the 

richness of parasitoids and predators. The richness of primary consumers was also included in this model. CH = 

Chewing-herbivores, FC = Flower-consumers, S = Saprovores, SH = Sucking-herbivores (see text for further 

details). The level of significance for the different predictors included in the models was obtained using Markov 

Chain Monte Carlo methods 

 

 Parasitoids  Predators 

  richness    richness 

 X  ± SE  P   X  ± SE  P 

 

Intercept  1.51 ± 0.20 0.000   0.81 ± 0.21 0.000 

SM -0.46 ± 0.17 0.006  -0.14 ± 0.17 0.463 

SP  0.25 ± 0.07 0.000   0.12 ± 0.07 0.115 

SM*SP  0.03 ± 0.10 0.785   0.41 ± 0.11 0.000 

SR  0.00 ± 0.01 0.970    0.01 ± 0.01 0.519 

LC  0.01 ± 0.00 0.026   0.01 ± 0.01 0.093 

BC -0.00 ± 0.00 0.999   0.00 ± 0.00 0.384 

GC  0.00 ± 0.00 0.009   0.01 ± 0.00 0.001 

R.CH  0.02 ± 0.01 0.318   0.03 ± 0.02 0.039 

R.FC -0.00 ± 0.00 0.815  -0.00 ± 0.01 0.787 

R.SH  0.04 ± 0.01 0.012   0.05 ± 0.02 0.010 

R.S  0.03 ± 0.01 0.026   0.04 ± 0.02 0.012 
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