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ABSTRACT: An integrated catalytic decarboxylation/carbox-
ylation for accessing isotopically labeled carboxylic acids with
13CO2 or

14CO2 is described. The method shows a wide scope
under mild conditions, even in the context of late-stage
functionalization, and does not require stoichiometric organo-
metallics, thus complementing existing carbon-labeling techni-
ques en route to carboxylic acids.
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The evaluation of the metabolic profile of lead compounds
through preclinical testing is of utmost importance in

drug discovery.1 Although these studies require isotopically
labeled active pharmaceutical ingredients (APIs), their syn-
thesis is oftentimes more problematic than that of the parent
compound, reinforcing the need for strategies that rapidly and
reliably incorporate isotopes into molecules.2 Among different
scenarios, carbon labeling is often preferred due to its high
sensitivity and lower risk of label metabolic cleavage, rendering
the interpretation of preclinical data easy.3 While 11C is utilized
for positron emitting tomography (PET) imaging,4 its short
half-life precludes long-term studies. However, 13C- and 14C-
labeling are appropriate for evaluating drug profiles, including
absorption, distribution, metabolism, and excretion (ADME),
and pharmacokinetic studies (Scheme 1).5,6 Although radio-
active 14C has oftentimes displaced 13C as metabolic tracers,
recent advances in mass spectrometry and nuclear magnetic

resonance have allowed the latter to be used for similar
purposes,7 thus improving the practicality of these studies by
employing stable 13C probes.
Prompted by the prevalence of carboxylic acids in

biologically active molecules (Scheme 1, bottom),8 carbox-
ylation reactions with isotopically labeled CO2 have attracted
considerable attention.9,10 At present, high levels of 13C- and
14C-incorporation can be achieved with stoichiometric and
polarized organometallics;11 however, their high reactivity and
low chemoselectivity severely limit the synthetic application of
these processes (Scheme 2, top left). Although decarboxylation
allows carbon isotopes of carboxylic acids in drug molecules to
be rapidly interchanged without modifying the established
route to the drug molecule (Scheme 2, top middle/right),12

such techniques require stoichiometric nickel species13a or
harsh conditions.13b In addition, modest C-labeling exchange is
observed due to competitive hydrolysis of the starting
precursor or in situ carboxylation with initially extruded
12CO2.

13 Taken together, these features contribute to the
perception that designing a mild, robust, and modular catalytic
decarboxylation/carboxylation that enables the access to C-
labeled aliphatic and aromatic carboxylic acids in high specific
activities is deemed necessary. As part of our interest in
catalytic carboxylation reactions,14 we report the successful
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realization of a catalytic carbon isotope exchange by merging
decarboxylative events with carboxylation protocols with
13CO2 or 14CO2 via the intermediacy of halogenated species
or activated esters (Scheme 2, bottom). Our protocols are
distinguished by their mild conditions, versatility, excellent
chemoselectivity profile, and high isotopic incorporations (up
to >99% C-labeling), thus expediting the design of radio-
labeling techniqueseven in the context of late-stage
functionalizationen route to labeled carboxylic acids while
obviating the need for stoichiometric organometallic species.
Our investigations began by evaluating the feasibility of the

approach highlighted in Scheme 2 (bottom) with easy-to-
handle 13CO2 in lieu of radioactive 14CO2 and the N-
hydroxyphthalimido ester 1a, readily available in a single step
from octanoic acid.15 A judicious optimization of all reaction
parameters revealed that a combination of NiCl2·dme (10 mol
%) and 6,6′-dimethyl-4,4′-diphenyl-2,2′-bipyridine L1 (25 mol
%) in DMF:MeOH (3:1) at 0 °C with Mn as reducing agent
under an atmospheric pressure of 13CO2 provided the best
results, affording [13C]2a in 55% yield and 56% 12C/13C-
exchange.15 In line with our expectations, bipyridine and
phenanthroline ligands possessing substituents adjacent to the
nitrogen atom were critical for success.16 Indeed, the absence
of the latter resulted in negligible conversions, if any, to
[13C]2a, thus showing the structural intricacies on the ligand
backbone. Likewise, solvents and reducing agents other than
DMF:MeOH or Mn had a deleterious effect on reactivity and
specificity, whereas control experiments revealed that all
reaction parameters were essential for the catalytic carbox-
ylation to occur.15

With a set of conditions in hand, we turned our attention to
study the generality of our Ni-catalyzed decarboxylative/
carboxylation of N-hydroxyphthalimido esters. As shown in
Table 1, an array of linear (2a−2f, 2i−2m) or α-branched (2g,
2h) labeled carboxylic acids could easily be within reach from
their parent analogues. The chemoselectivity of our 12C/13C-
carbon-labeling exchange posed no problems, as nitriles (2i),
alkenes (2j), carbamates (2m), or nitrogen-containing hetero-
cycles (2d) could all be well-accommodated. Interestingly, not
even traces of competitive Ni-catalyzed carboxylation at the
C−Cl terminus was observed in 2b and 2k,17 thus leaving
ample room for further functionalization via conventional

cross-coupling reactions.18 Particularly noteworthy was the
ability to enable the targeted 12C/13C-exchange at late-stages
with advanced carboxylic acid intermediates such as citronellic
acid (2j), MCPB (2k), lithocholic acid (2l), or pregabalin
(2m), thus showing the potential that our catalytic protocol
might have in preclinical studies for drug discovery.19 Putting
these results into perspective, the examples shown in Table 1
represent a powerful alternative to existing methodologies
based on the utilization of stoichiometric amounts of
organometallics11 or Ni complexes.13a

The data shown in Scheme 3 (top) illustrates the
prospective impact of our 12C/13C-exchange by converting
3a and 3b into their [13C]5a and [13C]5b congeners without
chromatographic purification.15 However, a number of
daunting challenges remain. Among these, a seemingly trivial
extension to 13C-labeled phenyl acetic acids or benzoic acids
events still constitutes terra incognita; substantial homodime-
rization is observed in the former whereas a difficult
decarboxylation of aryl NHP-esters prevents a 12C/13C-
exchange in the latter. More importantly, modest isotope
exchange was observed for all substrates shown in Table 1 due
to unavoidable hydrolysis of the parent NHP-ester and
competitive carboxylation with 12CO2. These observations
are particularly problematic due to the prevalence of carboxylic
acids in APIs as well as the need for maximizing the 12C/13C-
exchange for preclinical testing. To this end, we anticipated
that the merger of decarboxylative halogenation with the
robustness of catalytic carboxylation of organic halides might
offer a powerful platform for obtaining otherwise inaccessible
carboxylic acids with >99% 13C-content. As shown in Scheme

Scheme 2. 13C- and 14C-Labeling Carboxylations with CO2 Table 1. 12C/13C-Isotopic Exchange of Carboxylic Acidsa

aNHP-ester (0.1 mmol), NiCl2·dme (10 mol %), L1 (25 mol %), Mn
(2 equiv), 13CO2 (1 atm) in DMF:MeOH (3:1, 0.06 M) at 0 °C.
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3 (bottom), this turned out to be the case. Indeed, a Ag-
catalyzed decarboxylative halogenation20 followed by Ni/L2-
or Ni/L3-catalyzed carboxylation afforded [13C]5a and
[13C]5b in slightly lower overall yields to those shown for
NHP-esters but with >99% 13C-labeling. Encouraged by these
results, we examined the 13C-carboxylation of a host of benzyl,
aryl, or unactivated alkyl chlorides obtained via decarboxylative
halogenation of the parent carboxylic acids (Table 2). Notably,
nitriles (5c), esters (5d−5f), or nitrogen-containing hetero-
cycles (5e) do not interfere, obtaining in all cases >99% 13C-
labeling. Albeit in lower yields, secondary and tertiary alkyl
carboxylic acids such as 5b, 5g, or 5h were within reach, with
5g being obtained as a single diastereoisomer. Importantly,
13C-labeled aryl acetic acids (5i, 5j) and (hetero)aryl
carboxylic acids (5k−5m)compounds that were beyond
reach from NHP-esterscould also be coupled under Ni/
neocuproine or Ni/PPh3 regimes, thus representing an
opportunity to improve upon existing C-labeling techniques.
Aimed at extending the applicability of our carbon isotope

exchange, we next focused our attention on converting α-
branched carboxylic acids into their labeled linear analogues
via chain-walking scenarios,14a,21 a transformation that has
proven elusive in related labeling approaches.13a Although in
low yields, the preparation of [13C]2a,5a,6 with >99% 13C-
labeling not only demonstrates the successful realization of this
goal (Scheme 4) but also sets the basis for designing site-
selective radiolabeling techniques at remote sp3 C−H sites.22

Given the key role of 14C-radiolabeling in pharmacokinetic and
ADME studies,5 the ability to access 14C-labeled molecules was
then explored. Preliminary results successfully highlighted the
applicability of this method under otherwise similar con-
ditions.15 It is particularly noteworthy that [14C]5i and
[14C]5k are obtained in high molar activities (≥2.04 GBq
mmol−1)23 with negligible isotope dilution, thus opening a
gateway to study the metabolic activity of drugs containing
carboxylic acid motifs.
In conclusion, we have developed a simple, efficient, and

highly versatile catalytic decarboxylation/carboxylation for
carbon isotope exchange of carboxylic acids with 13CO2 or

14CO2. This route enables access to labeled aliphatic or
aromatic carboxylic acids, even at late-stages, without changing
the already established sequence en route to the parent
compound, thus offering a robust and economical gateway for
rapidly and reliably obtaining preclinical data for lead

Scheme 3. Direct 12C/13C-Exchange of Carboxylic Acidsa

aNi/L1, Table 1; Ni/L2, NiBr2·dme (10 mol %), L2 (24 mol %), Mn
(2 equiv), TBAB (1 equiv), 13CO2 (1 atm) in DMF (0.17 M), at 60
°C; Ni/L3, NiBr2·diglyme (10 mol %), L3 (24 mol %), Mn (3 equiv),
LiCl (1 equiv), 13CO2 (1 atm) in DMF (0.40 M), at 90 °C.

Table 2. Decarboxylative Halogenation/Carboxylation

aAs Scheme 4, Ni/L2. bNi/L3. cUsing 4g with a 1:1 diastereomeric
ratio. dAs Scheme 4, Ni/L3, TBAB (2 equiv), DMA (0.4 M) at 80 °C.
eNiCl2·dme (10 mol %), PCp3·HBF4 (20 mol %), MgCl2 (2 equiv),
Zn (5 equiv), DMF (0.5 M) at room temperature. fNiBr2·dme (10
mol %), neocuproine (20 mol %), Mn (2 equiv), DMA (0.2 M) at 50
°C. gNiCl2(PPh3)2 (5 mol %), PPh3 (10 mol %), TEAI (10 mol %),
Mn (3 equiv), DMA (0.25 M) at room temperature.

Scheme 4. Chain-Walking 13C-Exchange and 14C-Labeling

aNiI2 (2.5 mol %), L4 (4.4 mol %), Mn (2 equiv), DMF (1.0 M), 25
°C, 20 h. bReactions performed with 4i and 4k as substrates.
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generation in drug discovery. Further work on radiolabeling
techniques is ongoing.
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