
JOURNAL OF ALGEHKA 146, 318-334 (1992) 

On a Theorem of Ore 

J&s MONTES 

Depurlamenl il’.ilgehra I Geomeiriu. 

Fuculrar de Marem2tiques. li’nirer.ritur de Burcclunu. 

Gran Via de Ies Corr.x C’urulunes. 585. ON007 Barcelonu, Curolunp. Spain 

AND 

ENKIC NART* 

Ikparrument de Muremd/iyues. 
C~ninicersitaf Auri,nomu de Burcelona. 

08193 Bellurerru, Barcelonu. Curulun~u, Spain 

Communicard hi, A. Friihlich 

Received June 7. 1989 

0. Ore (Math. Ann. 99. 1928, 84-I 17) developed a method for obtaining the 

absolute discriminant and the prime-ideal decomposition of the rational primes in 

a number field K. The method, based on Newton’s polygon techniques, worked 
only when certain polynomials /i(Y), attached to any side S of the polygon, had 

no multiple factors. These results are generalized in this paper finding a much 

weaker condition, effectively computable, under which it is still possible to give a 

complete answer to the above questions. The multiplicities of the irreducible factors 

of the polynomials /;( Y) play thtn an essential role. 1 1992 Ac;ldemx Prcu. Inc 

Let K be a number field, A, the ring of integers of K, and disc(K) its 
absolute discriminant. The determination of the prime-ideal decomposition 
in A, of the rational primes, the computation of disc(K), and the construc- 
tion of a basis of A, as a Z-module are three intimately related classical 
problems in algebraic number theory. After the work of Hensel, the three 
questions can be reduced to the local case, but even then, an effective solu- 
tion in terms of a defining equation for K can be given only in an algo- 
rithmic way (cf. [I]). Among direct procedures to solve these problems, let 

l Work on this paper has been partially supported by a Grant from C.A.I.C.Y.T. 
PB85-0075. 
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us mention a very partial answer given by a celebrated theorem of 
Dedekind, which is a refinement of a previous result of Kummer. 

Let f(X) E Z[X] be a manic irreducible polynomial, 0 a root of f(X), 
and K= Q(B). Let us denote by disc(f) the discriminant of f(X) and by 
ind(f) = (A,: Z[fl]) the index of f(X), so that 

disc(f) = ind(f)* .disc(K). 

Let PEZ be a prime number and let f(X) be the polynomial of F,[X] 
obtained by reducing the coefficients of f(X) modulo p. Let 

f(X) = cpl(X)” . . . fpr(x)pr (1) 

be its factorization into a product of powers of distinct irreducible 
polynomials of F, [ X]. 

THEOREM OF KUMMER. Suppose that p 1 disc(f), zhar is, e, = . . . = e, = I. 
Then, 

pA,c= PI . ..P., 

where, for all i, pi = pA, + cp, (9) A, is a prime ideal of A, lying over p with 
residual degree f( pi/p) = deg cpi (X). 

THEOREM OF DEDEKIND. Suppose that p t ind( f ). Then, 

pA,=p;‘...pF, 

where, for all i, pi = pA, + (pi(O) A, is a prime ideal of A, lying over p with 
ramification index e( p,/p) = ei and residual degree f( pi/p) = deg (pi (A’). 

In order to apply this last theorem in an effective way one needs a 
criterion to decide when the condition p j ind(f) is satisfied. This was also 
supplied by Dedekind: 

CRITERION OF DEDEKIND. With the above notation, let g,(X), . . . . g,(X) be 
arbitrary manic polynomials of Z[X] such that g,(X) = q,(X) and let 

Then, p 1 ind( f) if and only iffar a/I i we have either e, = 1 or q,(X) j g(X) 
in F,[X]. 

Not as well known is a theorem of Ore which constitutes a far reaching 
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generalization of these results. By Hensel’s lemma, we obtain from (1) a 
factorization in Z,[X] : 

f(W = fi(W ‘. ..fr(J-)> .fAJf) = cpi(W’. 

If p 1 ind(f) these factors need not be irreducible in Z,[X] and the 
problem is to determine its further decomposition into a product of 
irreducible factors. And even then, one has still to find, for each irreducible 
factor, the ramification index, residual degree, discriminant, and basis of 
integers of the corresponding local extension. Ore considers in [2] a 
Newton polygon for each i, whose sides provide a factorization of f.(X) in 
Z,[X] and partial information about ramification indices, etc. Moreover, 
he attaches to each side S a polynomial (A.)S( Y) E Fql [ Y], qi = pdeg mt(x), 
whose factorization in F,! [ Y] provides a further factorization of the factor 
of f;(X) corresponding to this side. Finally, Ore shows that when all these 
polynomials (f,)J Y) have no multiple factors, then all these factors of 
f,(X) are irreducible, and the shape of the polygon and the degrees of the 
irreducible factors of the (fi)S( Y) provide the necessary data to achieve a 
complete knowledge of all ramification indices and residual degrees (cf. 
Section 1). 

The aim of this paper is to prove a generalization of these results of Ore 
in the same spirit as the Theorem of Dedekind generalizes that of Kummer. 
We find a condition, playing the same role as “p j ind(f),” under which it 
is still possible to obtain the complete decomposition of pA, even when the 
polynomials (fi)S( Y) h ave multiple factors. The multiplicities of these 
factors contribute then to the ramification indices of the prime ideals 
above p, as was to be expected. Finally, we find also an effective criterion, 
analogous to that of Dedekind, to decide when this condition is satisfied. 

The method of Ore provides also an explicit formula for ind(f) (thus, an 
effective computation of disc(K)) and allows one to construct a basis of the 
integers in a straightforward way. The same results are still valid in the 
more general situation that we consider. 

We think that our result can be a key step to develop a very fast algo- 
rithm for obtaining prime ideal decomposition and integral basis. The 
major virtue of the algorithm will be that only polynomial-factoring 
routines over finite fields are needed. 

1. THE WORK OF ORE ON NEWTON POLYGONS 

In this section we give a short review of the paper of Ore [2] and we 
introduce some concepts and notation to be used in the rest of the paper 
without further mention. 
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We fix a prime number p E Z and algebraic closures Q,, F, of Q, and 
F,. For any finite extension L of Q, we shall denote by A, the ring of 
integers, pL the prime ideal of L, uL the standard valuation of Q, suitably 
normalized to satisfy o,(L*) = Z, and by F, the residue field, which we 
shall assume embedded in F, in such a way that all reduction maps 
A, + FL, denoted u H 5, become naturally compatible. For any manic 
irreducible polynomial $(X) E F, [X] we fix once and for all a manic poly- 
nomial in AJX] reducing to $(X) modulo pt, and we denote it by the 
same symbol $(X). 

We take a finite extension K of Q, as a ground field and denote A = A,, 
p=pK, u=uK, and F=F,. We fix throughout a prime element II E A, a 
manic irreducible polynomial q(X) E F[X] of degree m 2 1 and a root 
i E F, of q(X). Let T be the non-ramified extension of K of degree m. We 
have F,= F(c). 

Let f(X) E A[X] be a polynomial of degree n > 1. It can be written in 
only one way as 

f(J4 = 1 4(X). d-v, (2) 
i=O 

with a,(X) E A[X] and deg a,(X) < m or a,(X) = 0. Let si be the greatest 
exponent such that rP divides all the coefficients of a,(X). The q(X)- 
polygon of f(X) is the lower convex envelope of the set of points (i, si) in 
the Euclidean plane. The classical Newton polygon corresponds to the case 
q(X) = A’. The typical shape of this polygon in the case of a manic polyno- 
mial is shown in Fig. 1. The set of sides with negative slope constitutes the 
“principal part” of the polygon. Its projection onto the X-axis has length 
equal to the greatest exponent 1 such that q(X)’ divides f(X) in F[X]. 

We come now to one of the main inventions of Ore, which we give in 
a slightly more general setting, as we shall need it in the next sections. Let 
S be any segment in the Euclidean plane such that (Y, s) and (Y + E, s - H), 

FIGURE 1 
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r, s, E, H non-negative integers, are the first and last points with integer 
coordinates belonging to S. Let us define 

d = HCF( E, H), e = E/d, h = H/d, (3) 

with the convention that e = h = 0 when E = H = 0. Suppose that in the ver- 
tical lines passing through the points of integer coordinates belonging to S 
there are no points of the &X)-polygon of f(X) lying below S. Then we 
can associate to each of these points an element of F, and take these 
elements as the coefficients of a polynomial fs( Y) E FT[ Y] which will be 
called simply the polynomial associated to f(X) and S. In fact, the 
polynomials 

b,(X) = 71-.s+jhal+je(X), Odj64 

have integer coefficients and we can define 

fs(Y)= i bj(().Y’EF’T[Y], 
j=O 

The non-zero coefficients of fs( Y) correspond to points of the q(X)- 
polygon of f(X) belonging to S. In particular, in the case considered by 
Ore, that S is precisely one of the sides of the cp(X)-polygon of f(X), this 
polynomial fs( Y) will have degree exactly d and non-zero constant term. 
For simplicity we shall always assume in this case that fJ Y) denotes the 
manic polynomial of FT[ Y] obtained by dividing by the principal term. 

We can group the main results of [2] in four theorems. The first two are 
typical of Newton polygons techniques: 

THEOREM OF THE PRODUCT. Let fi (X), . . . . f,(X) E A [X] be manic polyno- 
mials and take f(X) =fi(X) . . .fJX). The principal part of the q(X)-pol’ygon 
of f(X) is made by joining all sides of the principal parts of the q(X)- 
polygons of all f,(X) in descreasing order of slopes. Moreover, for each side 
S with negative slope of the q(X)-polygon of f(X) we have 

fd Y) = (h,)s*( Y) . . . u-i,)s,( n 
where (il, . . . . i,} z (1, 2, . . . . r} and S1, . . . . S, are all the sides with the same 
sZope as S belonging to any of the q(X)-polygons of fi(X), . . . . f,(X). 

THEOREM OF THE POLYGON. Let f(X) E A [X] be a manic polynomial and 
suppose that the q(X)-polygon off(X) has r different sides S, , . . . . S, with 
slopes -h,/e,< ... < -h,fe,. Then f(X) admits a factorization, f(X)= 
fi(X).-.f,(X), where each fi(X) is a manic polynomial in A[X] whose 
q(X)-polygon consists of only one side with the same shape as Si and such 
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that the polynomial of FT[ Y] associated to this side is equal to fs,( Y). 
Moreover, for all i, if0 is a root of fi(X) we have v(q(0)) = hi/e,. 

Remark. The concept of cp(X)-polygon and these two results add 
nothing new to the classical theory. In fact, assume (just for simplicity) that 
all sides of the cp(X)-polygon of f(X) have negative slope, that is, that 
f(X) = cp(X)‘. We can find a polynomial g(X) E T[X] such that 

f(X) = n g”(X) 
d E Gal( TI’K) 

and g(x) = (X-i)‘. 

Since T/K is unramified, it is easy to see that each of the questions we are 
interested in about f(X) can be reduced torthe same question about g(X), 
taking T as the ground field. To see this, denote also by [ the root of q(X) 
in Q, reducing to i modulo p7, make the linear change of variables 
gl(X) = g(X+ [), and consider the classical Newton polygon of g,(X). The 
reader will check easily that this polygon has exactly the same shape as the 
&X)-polygon of f(X) and that for each side, the associated polynomial is 
the same in both polygons after the change of variables y H cp’([) . Y. 

Nevertheless, we shall maintain throughout the rest of the paper the 
language of cp(X)-polygons in the statements of the theorems, since it has 
the advantage of displaying the results in a completely effective way in 
terms of the original polynomial we are interested in. However, it is clear 
from what we have just remarked that we can restrict ourselves in the 
proofs to the case of classical polygons. 

The really interesting contribution of Ore lies in the next theorem, where 
he shows that a factorization of fs,( Y) into coprime factors in FT[ Y] 
ensures a further factorization of the polynomial h.(X). 

THEOREM OF ORE. Let f(X) E A[X] be a manic polynomial with 
one-sided cp(X)-polygon S and let e, h be defined as in (3). Let 

be the factorization offs(Y) into a product of powers of distinct irreducible 
polynomials of F, [ Y]. Then f(X) admits a factorization, f(X) = 
fi(X) . ..f.(X), where each fi(X) is a manic polynomial of A[X] with one- 
sided cp(X)-polygon Si of the same slope as S and associated polynomial 
(fJs,( Y) = I(/i( YY’. 

Moreover, if e, = . . . = e, = 1, then f,(X), . . . . f,(X) are already irreducible 
and, for all i, if 8 is a root of fi( X) and L = K(0) we have pL = 
(cp(Q)hl+)&, where b, c are positive integers such that bh - ce = 1, and 

e( L/K) = e, f(L/K)=m.degtii(Y). 
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This theorem is completely satisfactory from the point of view of effec- 
tiveness. If we deal with an arbitrary polynomial f(X), the theorem is 
meant to be applied to some factor of f(X) corresponding to one side of 
some polygon of f(X), but the only data we need to know about this factor 
is the shape and the polynomial associated to this side, and both invariants 
can be read directly from the polygon of the original polynomial. 

Also important and very much necessary for our purposes is a formula 
of Ore for the index of f(X). We need some more notation: let 
f(X) E A[X] be a manic irreducible polynomial, 8 a root of f(X), and 
L = K(9). We have 

and we define 

G-J = in = 4i~“)lCK: Q,l = d.ftpI~). 

This value is always an integer and we still have the relation 

u(disc(f)) = u(disc(L/K)) + 2i(f). 

If f(X) is any manic polynomial of A[X] and f(X) =nifi(X) is its 
decomposition as a product of manic irreducible polynomials of A [Xl, we 
define 

U) := c uifi) + 1 dfi, f,h (4) 
i f</ 

where r(L.,L.) denotes the p-valuation of the resultant of fi(X) and h(X). 
Note that this relation (4) holds for any decomposition of f(X), even when 
the factors are not necessarily irreducible. 

Assume now that f(X) is a manic irreducible polynomial of Z[X]. The 
p-exponent of the usual index of f(X) deserves also this notation: 
i(f) = v,(ind(f)). We get in this way two meanings for i(f) when we think 
of f(X) belonging to Z[X] or to ZJX]. The definition (4) has been 
introduced in order to make them coincide. 

For each irreducible polynomial q(X) E F[X] and manic polynomial 
f(X) E A[X] we shall denote by i,(f) deg q(X) times the number of points 
of integer coordinates below or belonging to the q(X)-polygon of f(X), 
excluding those lying on both axis; that is, 

i,(f)=deg q(X) (H,E,-Hi-Ei+di) 

where S, , . . . . S, are the sides of the principal part of the q(X)-polygon of 
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f(X) and, for each side, the parameters Ei, Hi, di are defined as in (3). 
Clearly q(X) if(X) in F[X] implies that i,(f) =O, but the converse is 
obviously not true. 

THEOREM OF THE INDEX. Let f(X) E A[X] be a manic polynomial. Then, 

i(f)> C i,(f), 
VP(X) 

as cp( X) runs over the manic irreducible polynomials of F [ X] dividing f(X). 
Moreover, tf all the polynomials associated to all sides of all cp(X)-polygons 
have no multiple factors then equality holds. 

2. THE MAIN THEOREM 

If f(X) E A [X] has one-sided cp(X)-polygon S, by the Theorem of the 
Index we have i(f) 2 i,(f ), and fs( Y) having no multiple factors is a suf- 
ficient condition that ensures the equality. Precisely this property, 
i(f) = i,(f) is the weaker condition to play the role analogous to i(f) = 0 
in the Theorem of Dedekind. 

THEOREM 1. Let f(X) E A[X] be a manic pol,ynomial with one-sided 
cp(X)-polygon S and let e, h be defined as in (3). Let 

fs( Y) = $ I ( YY . . $,( YY 

be the factorization offs(Y) into a product of powers of distinct irreducible 
polynomials of F, [ Y]. Then f(X) admits a factorization, f(X) = 
f,(X)...f,(X), where each f,(X) is a manic polynomial of A [X] with one- 
sided cp(X)-polygon Si of the same slope as S and associated polynomial 
(fi)s, ( Y) = tji( Y)“. Moreover, zf i(f) = iJ f ), then all f,(X) are irreducible 
and if 9 is a root of fi( X) and L = K(8) we have 

pL = (dQblnc)AL or IC~,GP(~)‘/~~)A,> 

according as e; = 1 or ei > 1, where 6, c are positive integers such that 
bh-ce= 1, and 

e(L/K)=e.ei, f(L/K)=m.deg$i(Y). 

As far as effectiveness is concerned, this theorem is useless without a 
criterion to decide when the condition i(f) = i,(f) is satisfied. At this 
point, motivated by the Criterion of Dedekind, we proceed as follows. For 
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each i let $i (X, Y) E A [ X, Y] be any preimage of $i ( Y) E F r [ Y] under the 
canonical homomorphism A [X, Y] + F [ X, Y]/cp( X) E F T [ Y], satisfying 

$,(X Y) = c a,(X) yj, degu,(X)<mor~~(X)=O. 

Let H be the length of the projection of S onto the Y-axis and define 
polynomials 

f”(X) = 7cH. n l)&Y, cp(X)‘/7c”)‘~E A[X], 

and f’(X)=f(X)-f”(X). All points of the q(X)-polygon of f’(X) lie 
strictly above S and the points at a minimal distance from S contain the 
information we are interested in. These points belong to the side 3 parallel 
to S obtained by shifting S upwards until it touches a point with integer 
coordinates (see Fig. 3). The object playing a role analogous to that of the 
polynomial g(X) in Dedekind’s Criterion is the polynomial f&(Y) 
associated to f’(X), q(X), and 3: 

CRITERION 1. With the above notation, i(f) = i,(f) if and only if for 
each i we have either ei= 1 or tji( Y) jfi( Y) in FT[ Y]. 

Remark. In the most common case that the slope of S is not an integer 
(that is, when e > l), this polynomial f i( Y) is particularly easy to obtain. 
The points of the q(X)-polygon of f’(X) belonging to 3 are exactly those 
of the polygon of f(X) previously lying there. In fact, the points of the 
q(X)-polygon of f(X) belonging to S, resp. to 3, have abscissa divisible by 
e, resp. congruent to j modulo e, where 0 < j < e is the solution to jh = 1 
(mod e); hence, they all belong to different vertical lines. When we take the 
difference with f”(X), the ordinates of the former points are increased by 
at least one whereas the latter remain unchanged. Thus, we can read Jb( Y) 
directly from the polyfon of f(X) without computing f”(X) and f’(X). In 
other words, in this case we have f$( Y) = fs( Y). 

For the proof of Theorem 1 and Criterion 1 we need a couple of lemmas 
and one (crucial) proposition: 

LEMMA 1 (Ore). Let f(X) E A [X] be a manic irreducible polynomial 
such that f(X) = q(X)“. Let S be the side of the q(X)-polygon of f(X) and 
let e, h be the geometrical data of S given by (3). Let B be a root of f(X) 
such that t? = [ and let $( Y) be the minimal polynomial of m over F,. 
Then, fs( Y) is a power of Ic/( Y). 

Proof: As we remarked in the preceding section we can reduce to the 
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case q(X) = X. Let us denote the element f3’/nh by y and let g(Y) be the 
minimal polynomial of y over K. Let 

g,(X) = 7FdeggCY). g(Xe/7rh). 

We have v(y) = 0, so that g(Y) and g,(X) have integer coefficients and the 
constant term of g(Y) has valuation zero. Thus, the polygons of g(Y) and 
gl(X) are one-sided, of slope zero and -h/e, respectively. The polynomial 
associated to gl(X) and this side of slope -h/e is precisely g(Y), which is 
a power of $(Y). On the other hand, gi(0) = 0 implies that f(X) divides 
g,(X) and by the Theorem of the Product, fs( Y) is also a power of 
$(Y). I 

LEMMA 2. Let ,f (X), g(X) E A [X] be manic polynomials of degree n, n’, 
respectively. Suppose that their cp(X)-polygons consist of only one side S, S 
with projection onto the Y-axis of length H, H’, respectively. Then, the 
p-valuation of the resultant of f(X) and g(X), r(f, g) = v(Res(J; g)), satisfies 

r(J g) 3 min{nH’, n’H}, 

and equality holds if and only if either the slopes of S and S’ are different 
or fs( Y) and g,.(Y) have no common factor. 

Proof. Let E, H, d, e, h; E’, H’, e’, h’ be the respective geometrical data 
of S and s’ given by (3) and suppose that HI/E’ b H/E. If the cp(X)-expan- 
sion of f(X) is given by (2) we define 

fo(X) = i ai, . V(X)‘e. 
,=O 

For any root w of g(X) we have v(cp(o)) = H//E’> H/E, so that 
v(f(o))> H, and v(f(o))> H if and only if v(fJw)) > H; this last 
condition is equivalent to 

v(cp(w)) = WE and f ;((p(u)e/nh) = 0, 

where (TE Gal(T/K) is the unique automorphism such that o(i) = 0. But 
HI/E’ = H/E implies that e = e’ and h = h’, so that by Lemma 1 we have 
that cp(o)‘/nh is a root of g”,,(Y), precisely for the same automorphism 6. 
Therefore, the condition v(f(o)) > H is equivalent to 

HI/E’= H/E and fs( Y), g,,(Y) have a common root. 

Since r(f, g) is the sum of the v(f(w)) for all roots w of g(X), the lemma 
is proven. 1 
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In the next proposition we prove the theorem under the assumption that 
f(X) is irreducible. In this case, by the Theorem of the Polygon and 
Lemma 1, the cp(X)-polygon has only one side S and fs( Y) is a power of 
an irreducible polynomial. 

PROPOSITION. Let f(X) E A [X] be a manic irreducible polynomial of 
degree n> 1. Then i(f)>i,(f). M oreover, let S be the only side of the 
cp(X)-polygon of f(X), let E, H, d, e, h be the geometrical data given by (3) 
and let II/(Y) E FT[ Y] be the manic irreducible polynomial such that 
fs(Y)=$(Y)“, a31. Let t3 be a root off(X), L=K(B), and 

yi = ~@)‘/Tc~‘~‘~’ E A,, iEZ, i>O. 

Then, the following conditions are equivalent: 

6) i(f) = t,(f ). 
(ii) yo, . . . . yEp 1 are a basis of A, as A.-module. 

(iii) e(L/K) = e. a, f (L/K) = m. deg $( Y), and either a= 1 or 
PL = IClbe)A,. 

(iv) Either a = 1 or $(Y) 1 f b( Y). 
(v) Either a= 1 or A,= A.[y,]. 

Proof Clearly Kc T E L and f(X) = n,, E Ga,C T,Kj g”(X), where 
g(X) E A, [ X] is the minimal polynomial of 8 over T. Since T/K is 
unramified we have iK(f) = m . ir( g) and it is easy to check, by the 
Remark of Section 2, that we can reduce to the case q(X) = X. We have 
then E=n= [L : K]. 

Let A, be the sub-A-module (in fact an order) of A, generated by 
yo, . . . . yn-, . It is clear that 

n-1 
v((A,: ALU))= CK: Q,l . 1 CiWnl, 

i=O 

and for each i, [iH/n] is the number of points with integer coordinates 
below or belonging to S, with abscissa n - i. This proves the first assertion 
of the Proposition and proves also that the conditions (i) and (ii) are 
equivalent. 

The following general properties of the yi are clear: 

V(YJ = 0 if and only if e 1 i. 

Yje = Y: for all O<j<d. 

{U(Y I), ...> f~(y,-~)) = {l/e, 2/e, . . . . (e- lb). 

Y, = Yr ‘Yi,, if i=je+r,O<r<e. 

(5) 
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We shall end the proof of the Proposition by showing that (ii)* 
(iii)- (iv) and (iii)+(v)* (ii). For convenience we shall denote y = ye 
and t = d/a = deg $( Y). 

Assume that yO, . . . . yn- I constitute an A-basis of A,. Their images under 
the reduction map must contain an F-basis of F,, but the only elements 
with non-zero reduction are yj, 0 < j < d, and among their reductions, 
{I?, 0Gj-c t> i s a maximal subset of F-independent elements, since they 
are the powers of a root of the irreducible polynomial G(Y) E F[ Y]. There- 
fore f (L/K) = t and, in consequence, e(L/K) = ae. We have still to show 
that either a= 1 or uL($(y)) = 1. Let 0~ i, < e be the subindex such that 
u(y,,)=(e- 1)/e. The element w=y,.$(y)“-‘EAT is equal to yiO.yCUp’)” 
plus a sum of terms of the type U. yi,. y”, u E A, b < (a - 1)t. Since 
i, + e(a - 1)t is less than n, this is already the expression of o as the 
A-linear combination of the basis yO, . . . . y,- ,. Thus, ~~(0) < e(L/K) since 
not all the coefficients of this expression are divisible by rc. Now, 

leads to a > (a- l)uL(II/(y)), and this implies that either a= 1 or 
uL($(y)) = 1. We have thus shown that (ii) 3 (iii). 

Since e(L/K) is always a multiple of e (by the Theorem of the Polygon) 
and f(L/K) is always a multiple of t, when a = 1 we have already 
e(L/K) = e and f( L/K) = t. Assume now that a > 1. From 0 = f (0) = 
f’(0)+ f’(0) we get u(f’(O))=u(f ‘(0)); hence, we have the following 
chain of equivalences: 

(iii)ou($(y))= l/eaou(f’(O))=H+(l/e) 

The last but one equivalence can be obtained by arguing as in the proof of 
Lemma 2 and the last equivalence is a consequence of Lemma 1. 

If f(L/K) = t, then {VI, 0 <j< t} constitutes an F-basis of F,. If, 
moreover, uL(Ic/(y)) = 1 then {y’ . $(y)‘, 0 6 j < t, 0 ,< i < ae} is an A-basis of 
A,, so that A,G A[y]. Thus (iii)+(v). 

Let us show now that A, is a subring of A,. Since y, . yj is either yi+j or 
Ti+jY it is sufficient to show that yi belongs to A, for all i > 0. If i 3 n, it 
is clear that yi belongs to the A-module generated by y,- ,, . . . . yipn and by 
induction, to A,. We have to prove that (v) * (ii). If a = 1 we have 
A, = A, by (5), since e(L/K) = e and f (L/K) = d. Finally, since A0 is a 
subring of A, we have always A, 3 A, 2 A[y]. This ends the proof of the 
Proposition. 1 

Proof of Theorem 1. The first part of Theorem 1, which is common to 
the Theorem of Ore, is an immediate consequence of Lemma 1 and the 

481146.2-6 
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Theorem of the Product. Assume now that the condition i(f) = i,(f) is 
satisfied. 

By the Theorem of the Product, S is made up of pieces Si, each one 
being the side of the cp(X)-polygon of fi(,(x). Let Ej, Hi be the length of the 
respective projections of Sj onto the X-axis and Y-axis. By Lemma 2 we 
have r(fi, f,) = (deg fi). H, = m . Ej. Hi (recall that m = deg q(X)), and this 
value is equal to m times the number of points of integer coordinates in the 
rectangle determined by the projections of Si, S, onto the X-axis and 
Y-axis, respectively (see Fig. 2). The whole set of points below S can be 
distributed in triangles and rectangles as shown in Fig. 2. An analogous 
distribution, for each i, of the points in the triangle corresponding to Sj, 
shows, by the Proposition and Lemma 2, that i(fi) is greater than or equal 
to the number of points of integer coordinates in that triangle. Therefore, 
the condition i(f) = i,(f) is equivalent to i(fi) = i,(fi) for all i. Thus, the 
theorem will follow from the Proposition if we show that all the factors 
h(X) are irreducible. Let L.(X) = g(X) . h(X) be any factorization of f,(X) 
as a product of two manic polynomials of A [X] of degree 2 1. Let 
R= i,(fi)-i,(g)-i,(h). We have just seen that i(g)>i,(g) and 
i(h) > i,(h). But, by Lemma 2, we have r(f, g) > R since the polynomials of 
F, [ Y] associated to the respective sides of the cp(X)-polygons of g(X) and 
h(X) are both powers of tii( Y). Thus, i(h.) > i,(fi), in contradiction with 
our hypothesis. 1 

Proof of Criterion 1. As we saw in the proof of Theorem 1, the condi- 
tion i(f) = i,J f) is equivalent to i( fi) = iJ fi) for all i, and this is equivalent 
by the Proposition to either ei = 1 or r,Gi( Y) J (fi)i, for all i. Since 
f”(X) = ni f p(X), we have 

f ‘(W = 1 f $0. n f,“(X) + 07, (6) 
I i#i 

FIGURE 2 
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and the points of the cp(X)-polygon of h(X) lie strictly above 3. Since all 
the sides Si have the same slope it is easy to check that 

f.\( Y) = c cfJ.k,c Y) . n (f,)s,( v 
I /Pi 

Therefore, for all i, the condition $;(Y) 1 (f,)$,( Y) is equivalent to 
$I( Y) I fb( 0 I 

We finish this section with an example illustrating the practical 
application of Theorem 1 and Criterion 1. Let f(X) E Z[X] be any manic 
irreducible polynomial having classical Newton polygon with the shape 
indicated in Fig. 3, that is, 

f(X) =x6 + p&Y5 + a,X”) + p2(u,X3 + a,P) + p3(u,X+ a,), 

with U;E Z such that p J a,. Let B be a root of f(X) and K= Q(0). There 
are six points of integer coordinates below S, hence i(f) = u,(ind(f)) > 6. 
The associated polynomial is 

fs( y) = Y3 + ~7, Y2 + ii, Y + 2, E F,[ Y]. 

Assume that Ore’s condition is not satisfied: there exist a, b E Z such that 
either 

fs(y)=(y-43, or &(Y)=(Y-a)*(Y-6). 

Criterion 1 says that i(f) = 6 if and only if 5 is not a root of the polynomial 

f&(Y)=f3(Y)=a5Y2+a3Y+a,. 

In this case, Theorem 1 tells us that 

PA,= p6, 

s 

b 

s 

FIGURE 3 
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or 

PA,= P”(P’)‘, 
e2 

( > 

e3 
P= p-” A,+pA,,p’=pA,+pA,, 

respectively. Moreover, 

,,&!c !c 8” !T 
P ’ P ’ P2’ P2 

is an integral basis of the p-localization of A,. 

3. MANY-SIDED POLYGONS 

Let f(X) E A[X] be an arbitrary manic polynomial, let S,, . . . . S, be the 
sides of the q(X)-polygon of f(X), and let f,(X), . . ..~.(X)E A[X] be the 
corresponding factors of j(X) given by the Theorem of the Polygon. Let us 
denote one of these pairs fi(X), Si generically by g(X), S. If we want to 
obtain the arithmetical data about f(X) that we are interested in 
throughout this paper, we have to be able to apply Theorem 1 and 
Criterion 1 to g(X) is an effective way, but without having to compute 
g(X) explicitly. The data we need to know is the shape of S and the two 
polynomials g,(Y), gi( Y). The Theorem of the Polygon shows that the 
first two invariants can be obtained directly from the polygon of f(X), but, 
what about gi( Y)?. We have only to find an effective criterion to decide 
which irreducible factors of g,(Y) divide gi( Y). The most natural proce- 
dure is to consider the polynomial 

S’(X) =f(W - l-j fm 

and hope that the points of the q(X)-polygon of f’(X) will give us the 
desired information. It is as natural as this, except for some perverse 
subtlety. In fact, the polynomial ffr( Y) is not only different from gi( Y), 
but even fails to be divisible by the same irreducible factors of gs( Y). Thus, 
we cannot apply Criterion 1 with this polynomial. This mishap is easy to 
explain: we have the same relation (6) and again all points of the q(X)- 
polygon of h(X) lie strictly above 3, so that this polynomial adds no 
interesting information and we can ignore it. If S= Si, we can read off 
g&(Y) from the points furnished by the summand of (6) corresponding to 
the subindex i. The trouble comes from the fact that some terms of the 
other summands can also furnish points belonging to 3, which added to 
the others can disturb the information previously obtained. In order to 
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control this phenomenon we have to enlarge the side 3 until it cuts the two 
straight lines determined by the adjacent sides sip i, sj+, . If we denote by 
S this enlarged side we have: 

CRITERION 2. With the above notations, for any irreducible factor $(Y) 
of gs( Y) we have II/(Y) I gk( Y) if and only if II/(Y) I f .i( Y). 

Proof: It is tedious to explain it in detail but straightforward to check 
it. The point is that only the summands of (6) corresponding to the subin- 
dices i - 1 and/or i + 1 can furnish points of the q(X)-polygon belonging to 
3, and this can happen only if s meets S;.. , and/or Si+ 1 in a point with 
integer coordinates. Even in this case, the two/one disturbing summands of 
(6) contribute to f k( Y) with a multiple of fs( Y) = g,(Y). On the other 
hand, the enlargement of 3 can affect the contribution of the i-summand to 
fL( Y) only by multiplying it by some power of Y. Thus, in any case the 
polynomial f.\(Y) is of the type 

f;(Y)=c.Y”.gk(Y)+h(Y).g,(Y), 

where h(Y) E FT[ Y], c E F,, c # 0, and s > 0. Since the irreducible factors 
of g,(Y) are always different from Y, the criterion is proven. 1 

If the slope of S is -h/e and the slope of the side to the right (left) is 
-h’/e’, it is easy to see that it is necessary to enlarge 3 to the right (left) 
if and only if h’e - he’ divides (h - h’, e - e’) and e < e’. These sides s can 
be very much longer than 3 or even reduce to a point. In Fig. 4 we given 
an example showing both possibilities. 

The reader will now be able to combine Lemmas 1 and 2, the Proposi- 
tion, and the geometrical arguments of the proof of Theorem 1 to prove the 
following strengthening of the Theorem of the Index: 

FIGURE 4 
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THEOREM 2. Let f(X) E A [X] be a manic polynomial. Then, 

i(f) 2 C i,(f), 
v(X) 

as q(X) YWZS over the manic irreducible polynomials of F [X] dioiding f(X). 
Moreover, the equality holds if and only if for any side S of any q(X)- 
polygon and for any irreducible factor Ic/( Y) of fs( Y) we have either 
rC/(Y)*j.fAY) or $(Y)lfk(Y). 
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