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Abstract

Continuum solvation models have become a widespread approach for the study of environ-

mental effects in Density Functional Theory (DFT) methods. Adding solvation contributions

mainly relies on the solution of the Generalized Poisson Equation (GPE) governing the be-

havior of the electrostatic potential of a system. Although multigrid methods are especially

appropriate for the solution of partial differential equations, up to now, their use is not much

extended in DFT-based codes because of their high memory requirements. In this Article, we

report the implementation of an accelerated multigrid solver-based approach for the treatment

of solvation effects in the Vienna ab initio Simulation Package (VASP). The stated implicit

solvation model, named VASP-MGCM (VASP-Multigrid Continuum Model), uses an efficient

and transferable algorithm for the product of sparse matrices that highly outperforms serial

multigrid solvers. The calculated solvation free energies for a set of molecules, including

neutral and ionic species, as well as adsorbed molecules on metallic surfaces, agree with ex-

perimental data and with simulation results obtained with other continuum models.
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1 Introduction

Most processes in the field of physics, chemistry and biology occur in the presence of a liquid

phase. Solvent effects play a major role in phenomena related to electrochemistry, photochemistry,

heterogeneous catalysis, energy conversion/storage, and many chemical reactions take place at the

solid/liquid interface.1,2 Liquid molecules (i) stabilize or destabilize adsorbed states on metal sur-

faces thus affecting their reactivity and selectivity,3 (ii) influence surface structure of electrodes

in batteries4 or (iii) affect the self-assembly of nanoparticles which, in turn, modifies the size and

shape of the resulting superstructures.5 Having a detailed molecular description of the mecha-

nisms governing these phenomena is essential for a tailored design of new materials with different

functionalities for a wide variety of applications.

Computer simulations, and particularly density functional theory (DFT) based methods, allow

the understanding of the thermodynamics and kinetics of adsorbed molecules on surfaces.6 Such

methods, when properly used, can retrieve even quantitative parameters for gas-solid reactions.

However, these models present a weak point as modeling the liquid phase and introducing solvent

contributions is far from trivial. An accurate treatment of solvation effects in computational studies

of systems in contact with liquid phases is of paramount importance to obtain meaningful results

to be compared with experimental data.7 In this context, the inclusion of the solvent can be done

either explicitly or implicitly. The first approach involves the computation of solute-solvent and

solvent-solvent interactions with a subsequent increase in the computational cost of the calcula-

tions as compared to the gas phase situation. In the case of periodic systems, simulation boxes

need to be large enough to avoid undesired interactions between periodic images. The remaining

vacuum has to be filled, then, with a huge number of solvent molecules. Moreover, either long-

time scale molecular dynamics (MD) or Monte Carlo (MC) simulations need to be performed to

average microscopic quantities for the calculation of thermodynamic properties of interest.8 How-

ever, in the case of quantum systems, the use of first principles-molecular dymamics simulations is

restricted to rather small systems (up to 103 atoms, and short time scales, 20 ps) for which only one

or very few trajectories are sampled. The accessible dynamic properties and correlation lengths are
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then very small.9 This makes this method almost impractical for the modeling of complex reaction

networks taking place for solvated species. The second strategy encompasses the so-called con-

tinuum models, where the solute is treated quantum mechanically, while the solvent is represented

as a structureless continuum medium in which the solvent properties are implicitly averaged. In

order to retain the solvent configuration around the solute, which is especially important when

solvent molecules form hydrogen bonds with it, the first solvation shells are, in general, explicitly

accounted for (see Figure 1).

Vacuum Continuum

=⇒
↓

↗

Explicit first solvent shell

Solute
Cavity

Figure 1: Schematic view of implicit solvation. The solute, originally in the vacuum, is placed in a
cavity (gray area) up to the first solvation layer (orange area) within the solvent, which is modeled
as a continuous medium. The solvent molecules in the orange area (not shown for simplicity) are
treated explicitly to retain the particular solute-solvent interactions.

The most used continuum solvent approach is the polarizable continuum model (PCM).10–12

In this method, the solute is placed inside a cavity built, in general, as a set of interlocking spheres

centered on solute atoms.13–15 The cavity surface is divided into small tesserae, and the polariza-

tion of the solvent is represented by surface charges placed on their center. Although PCM provides

an accurate way of calculating physical properties of solvated systems, it has a major drawback:

the choice of the solute cavity, which can be defined in different ways.16,17 Furthermore, discon-

tinuities in the calculated atomic forces can appear due to the fact that charges are not distributed

continuously over the surface cavity. Such discontinuities in the potential energy surface of the

solute have been overcome by introducing switching functions for the surface grid points18,19 or

using a continuous surface charge (CSC) formalism.20 However, even if the use of PCM is ap-

propriate when dealing with isolated systems, it is not the most convenient method when trying to

simulate periodic systems, where the main quantities (like the electrostatic potential generated by
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the surface charges) should be represented as a sum of plane waves (PWs).

In the present study, we have implemented from scratch a fast multigrid solver for the elec-

trostatic problem into the Vienna ab initio Simulation Package (VASP) for solvent PCM in PW.21

VASP is a plane-wave based DFT program, aimed at performing ab initio total-energy and MD

calculations for a large number of different systems, that is mainly used in the field of heteroge-

neous catalysis. The aim of this study is the incorporation of solvation effects into VASP using

the Fattebert and Gygi implicit solvation model including nonelectrostatic contributions to the free

energy of solvation.22,23 Although multigrid solvers usually rely on parallel algorithms, we pro-

pose a serial multigrid scheme, called VASP-MGCM (VASP-Multigrid Continuum Model), that

solves the electrostatic problem in real space at a comparable cost. This approach is justified by

the fact that the largest number of grid points in the simulated systems is about 107, a number that

a serial solver can afford. The efficient programming of the algorithm, that involves the derivation

of a fast computation method for the product of large sparse matrices, results in a low increase in

the computational cost for the calculations as compared to the same simulations in vacuum. Our

results for some of the systems are compared to those obtained both from a recent implementation

of solvation into VASP made by Mathew et al.,24 and to available experimental data.

2 Revision of the state-of-the-art of including PCM in PW

Since the past decade, a set of continuum models aiming at including solvation effects into DFT

periodic plane-wave (PW) based codes has been developed (see scheme in Figure 2). The first

relevant model was proposed by Fattebert and Gygi. It defined the dielectric medium as a smooth

function of the solute electronic charge density.22,23 In this way, both the dielectric permittivity of

the medium and the solute charge density depend self-consistently one on the other. Extensions

of this model have been done, mainly, to add nonelectrostatic contributions to the solvation free

energy and to solve convergence issues in the electronic self-consistent cycle.25–27

Despite the fact that continuum solvation models involve a drastic reduction in the computa-
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Figure 2: Implicit solvation in periodic systems. As opposed to PCM, identical copies of the
simulation box are distributed throughout each of the three space directions. For simplicity, we
just show the periodic images of the solute atoms in one direction (pale-colored atoms), the solute
cavity is shown in gray.

tional cost of DFT calculations as compared to the explicit approach, the solution of the electro-

static equations with enough accuracy can also become very demanding. The partial differential

equations (PDEs) to be handled have, in general, a large number of unknowns and, in practice,

two methodologies are adopted to solve them numerically: Fast Fourier Transform (FFT) based

algorithms and multigrid methods. The former is the most popular approach to solve PDEs on 3D

grids due to the scalability of its parallel formulation.28 FFT highly optimized parallel libraries

like FFTW29 and MKL30 are available and the corresponding subroutines can be called at any

stage in a DFT code. Multigrid methods, on the other hand, are an effective group of algorithms

for solving PDEs using a set of grids with different sizes.31 While basic iterative methods rapidly

reduce the high frequency components of the solution error rapidly, they are not good at smoothing

out the long wavelength part of the error. The basic idea behind multigrid is to approximate the

low frequency components of the error by projecting them to coarse versions of the original fine

grid where the numerical problem is to be solved. Therefore, the multigrid scheme, combined with

iterative methods, accelerates the convergence of direct and iterative methods, especially for large
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systems.

When solvation effects need to be included in electronic-structure PW-based calculations, the

main step is the solution of the Generalized Poisson Equation (GPE) (see eq 3 in Section 3) on a

3D grid. Due to the scalability of FFT schemes, some strategies to solve the GPE are based on

the use of FFTs. In particular, solvation models have been implemented into well-known DFT

codes by using, for instance, FFT-based versions of the preconditioned conjugate gradient algo-

rithm,24 or iterative procedures that make extensive use of the FFT.26,27 Although the arithmetic

cost of multigrid is of O(N), while FFT-based methods require O(N logN) operations (N is the

system size), the use of such methods in the context of implicit solvation models is less extended,

and usually restricted to small systems.25,32 Indeed, the multigrid algorithm depends on a large

number of parameters (e.g., the order of accuracy of the transfer operators between grids, the dis-

cretization order of the fine-grid differential equation, the total number of grids, or the number of

smoothing cycles). Therefore, an inefficient implementation of the algorithm with respect to all

these parameters can result in a high computational cost. Nonetheless, multigrid methods present

many advantages in the solution of PDEs as they can be adapted to manage any kind of geometries,

including irregularly-shaped domains and any type of boundary conditions, and can be applied to

nonlinear problems. The use of multigrid techniques is, thus, especially suited for solving the

electrostatic problem in quantum systems provided that the algorithm is efficient enough.

3 Theoretical Basis

3.1 Electrostatics

When a solute is immersed in a dielectric medium, the Gauss law, in CGS units, reads as

∇ ·E = 4π(ρ(r)+ρpol(r)) (1)
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with E being the total electric field vector, ρ the solute charge density, and ρpol the polarization

charge density. This last term arises from the fact that the dielectric medium is polarized due to

the electric field generated by the solute. Since ρpol(r) =−∇ ·P where P is the polarization vector,

and P = χE with χ being the susceptibility of the medium, eq 1 can be rewritten as

∇ · [(1+4πχ(r))E] = 4πρ(r) (2)

Here, the term 1+4πχ(r) is also known as dielectric permittivity, that we denote by ε(r), and gives

a measure of how the interaction between two charges is screened with respect to the vacuum when

being placed in a dielectric medium. At the same time, the total electric field can be described as

the gradient of the total electrostatic potential φ ; E =−∇φ(r). Eq 2 then becomes

∇ · [ε(r)∇φ(r)] =−4πρ(r) (3)

which is known as the Poisson equation for an inhomogeneous medium or Generalized Poisson

Equation (GPE). If ε(r) = 1 everywhere, the Poisson equation ∇2φ(r) = −4πρ(r) is recovered.

Once the value for φ(r) is known, and introducing the electric displacement vector D = E+4πP,

the electrostatic energy of the system, Eel, is calculated straighforwardly

Eel =
1

8π

∫
E ·D dr =

1
8π

∫
E ·E dr+

1
2

∫
E ·
(

ε(r)−1
4π

)
E dr =

1
8π

∫
ε(r)|∇φ(r)|2dr (4)

3.2 Density Functional Theory

In the context of DFT calculations, the term in eq 4 is added to the Kohn-Sham (KS) energy

functional EKS
33

EKS = K +Exc +Eel +Enel +Eext (5)

where K and Exc account for the electronic kinetic and exchange-correlation energies, Enel for the

nonelectrostatic term, and Eext is the energy associated to an external potential. The functional
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derivative of EKS with respect to the electronic charge density ρel results in a kinetic term plus the

so called Kohn-Sham effective potential, Veff

VKS =
δEKS

δρel
=VK +Vxc +Vel +Vnel +Vext︸ ︷︷ ︸

Veff

(6)

The term Vel = δEel/δρ can be further written as

δEel

δρel
= φ(r)− 1

8π
|∇φ(r)|2 δε(r)

δρel(r)
(7)

Due to the presence of the dielectric medium, the force Fi acting on an atom i of the solute located at

Ri is also different to that acting on the solute in the vacuum. According to the Hellman-Feynman

theorem, and using the result in eq 4, the Fi forces are given by

Fi =−
∂Eel

∂Ri
=−

∫
φ(r)

∂ρ

∂Ri
dr (8)

For a complete demonstration of eq 8 see ref [26].

The nonelectrostatic contribution, Enel, to EKS is calculated as a unique term accounting for cavi-

tation, dispersion, and repulsion effects. We have adopted the formulation of Cococcioni et al.34

(extended in refs. [25, 26]) that states that Enel is equal to the quantum surface of the solute up to

an efective surface tension. Although Enel is shown to be nonlinear with the solvent-accessible area

for protein-protein complexes,35 such definition is extended in continuum-solvent models yielding

good results for solvation energies for large sets of molecules.24–27 The expressions for Enel and

Vnel are provided in the SI.

The last point that should be covered to include the effect of the solvent on a DFT code is

the functional form of the dielectric function ε(r). This function must fulfill some conditions

like: being flat inside the solute and the solvent, being smooth enough and reaching a value of 1

inside the solute and ε0, the permittivity of the bulk, in the solvent. Instead of defining the solute-

solvent interface as a cavity made from interlocking spheres centered on solute atoms, as done
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in the polarizable continuum model (PCM), we have adopted the dielectric function proposed by

Fattebert and Gygi22,23 which is an explicit function of ρel ,

ε(r) = 1+
ε0−1

1+(ρel(r)/ρ0)2β
(9)

and depends on three parameters ε0, β , and ρ0. The parameter ρ0 corresponds to the critical

density in the middle of the solute-solvent interface, while β controls the width of the interface

(see Figure 3). To avoid solvent penetration into the region occupied by the solute atoms, an

additional charge density can be added to ρel in eq 9.

Figure 3: Variation of the dielectric permittivity ε(ρ) with respect to the parameter β (the values
of ε0 and ρ0 are fixed to 78.5 and 7.8 ·10−4 a.u., respectively). The intersection between the three
curves falls in the middle of the solute-solvent interface. The width of the interface for β = 1 and
β = 2 is delimited by dashed lines.
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3.3 Corrections

At this point, one has all the ingredients to incorporate solvent effects into a plane-wave DFT based

code. This is done just by adding the corrections given in eqs 3, 4, 7 and 8, and the nonelectrostatic

terms into the corresponding equations in the vacuum. In summary, if we use the subscript 0 for

quantities computed in the vacuum, we should make the following main changes into the code:

• The KS local potential should be corrected by the term Vcorr

Vcorr(r) = φ(r)− 1
8π
|∇φ(r)|2 δε(r)

δρel(r)
−φ0(r)+Vnel (10)

• A correction Ecorr is made on the KS energy functional

Ecorr =
1

8π

∫ [
ε(r)|∇φ(r)|2−|∇φ0(r)|2

]
dr+Enel (11)

• Hellman-Feynman forces are corrected by the term Fcorr

Fcorr =−
∫
(φ(r)−φ0(r))

∂ρ(r)
∂R

dr (12)

As mentioned above, the terms that account for nonelectrostatic effects are just shown in the Sup-

porting Information for simplicity.

4 Solver Implementation and Computational Details

Once the implicit solvation model is stated, eq 3 has to be solved numerically to include the effect

of solvation into the VASP code. For that purpose, we have programmed a set of Fortran 90

subroutines that have been coupled to VASP. Most of the calculations have been done in real space

and in serial mode. However, we benefit from the Fast Fourier Transform (FFT) parallel libraries

to transfer quantities between reciprocal and real space.
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To solve eq 3, we first rewrite it by making the scalar product ( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
) · (ε ∂φ

∂x1
,ε ∂φ

∂x2
,ε ∂φ

∂x3
),

where x1 = x, x2 = y, x3 = z, and using the product rule for the derivatives (εφ ′)′

3

∑
i=1

[
∂ε

∂xi

∂φ

∂xi
+ ε

∂ 2φ

∂x2
i

]
=−4πρ (13)

The solute charge density, ρ in the right hand side is the sum of an electronic and an ionic charge

density. For the latter, denoted as ρion, we have modeled it by gaussian distributions centered on

the position of solute atoms. For an ion i with effective charge Zi, ρion(r) reads as

ρion(r) =−
Zi

(2πσ2)3/2 exp
(
−(r−Ri)

2

2σ2

)
(14)

with σ being the width of the gaussian. We have chosen a value of σ around 5 times the grid

spacing.

Eq 13 is discretized by finite differences on a cell-centered grid of grid spacing h1, h2, h3 along

x1, x2, and x3 directions. Periodic boundary conditions are applied in each space direction. The

derivatives of ε and φ are approximated to sixth order using the weights derived in ref [36].

dm f
dxm

i

∣∣∣∣
xi=xi0

=
1

hm
i

3

∑
n=−3

wm,n f (xi0 +nhi) (15)

Here, m is the order of the derivative, and wm,n are the corresponding weights (see SI for the values).

Equation 13 is rewritten using the approximations for the derivatives in eq 15, and a system of N

equations with N unknows is obtained

Ahφh = fh (16)

where Ah accounts for the left hand side matrix acting on the electrostatic potential φ , while

f = −4πρ . The subscript h stands for the grid spacing vector h = (h1,h2,h3). Details for the

expression of Ah are available in the SI. To solve eq 16 we employ a serial multigrid solver pro-

grammed from scratch. Multigrid methods accelerate the numerical convergence rate for the solu-

tion of a system of equations with respect to direct or iterative methods. For that purpose, we use
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a hierarchy of grids Ω1,Ω2, . . . ,ΩNg where Ω1 corresponds to the finest grid, 2hΩl+1 = hΩl and Ng

is the total number of grids. As VASP uses an even number of grid points, we have adopted a cell-

centered approach. Regarding transfer operators between grids, we employ trilinear interpolation

to map function values from a coarse to a fine grid. Restriction operator R is constructed as a scaled

adjoint of interpolation operator I as indicated in ref [31]. The corresponding stencils are provided

in the SI. Left hand side matrices A in the coarse grid equation are obtained through the Galerkin

coarse grid approximation; Ai = RAi−1I, with i = 2, . . . ,Ng. Because of the large size of matrices

R, A and I in the finest grids, their product is the most time-consuming operation in a multigrid

algorithm. Nevertheless, as all three matrices are sparse, we have implemented an algorithm that

speeds up sparse matrix-matrix products considerably. Here, the value and column for the nonzero

elements in a row are stored in two matrices. With the aid of a third auxiliary matrix, that controls

which elements of both matrices need to be multiplied, the matrix-matrix product is performed

in an efficient and fast way (see Appendix A for details). Multigrid V-cycles with Gauss-Seidel

smoothing31 are performed until a convergence criterium for φ is reached. For that purpose, at the

end of each multigrid cycle we calculate the percentage error, eφ , of the electrostatic potential. If

this quantity is lower than a chosen tolerance, the iterative process stops. Gauss-Jordan elimina-

tion37 is used to solve the system in the coarsest grid. A general scheme of the process followed

to compute the electrostatic potential into VASP is shown in Figure 4.

Once the electrostatic potential is calculated, the additional term defined in eq 10 is added to

the Kohn-Sham Hamiltonian in VASP, and the total free energy and force are corrected. To test

the convergence of the multigrid solver we have considered a maximum of Ng = 6 grids and 8

V-cycles, the number of pre- and post-smoothing Gauss-Seidel iterations being equal to 10. As we

choose water as the solvent, the corresponding parameters in eq 9 are those determined in ref [22];

that is ε0 = 78.5,β = 1.3, and ρ0 = 4 ·10−4 a.u.

Solvation energies have been calculated through DFT calculations using the VASP code,21

version 5.3.5, with the Perdew-Burke-Ernzerhof (PBE) GGA exchange-correlation functional.38

The valence electrons are described by plane waves with a cutoff energy of 450 eV while the core
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VASP ρ(G)
FFT

ρ(r) Ahφh(r) =−4πρ(r)

Multigrid Solver (V-cycle)
if eφ ≤ tol.

φ(r)FFT
φ(G)

if eφ > tol.

Figure 4: Calculation of the electrostatic potential, φ(G), into VASP. The vector G accounts for a
reciprocal space vector. A detailed scheme of the multigrid solver algorithm is provided in the SI.

electrons are represented by projector augmented wave (PAW) pseudopotentials.39 For the Pt(111)

surface the slab contains 48 atoms in four layers, while for the (0001) surface of Ru a slab with 36

atoms in four layers was employed. In any case, the vacuum between slabs is 13Å and the Brillouin

zone is sampled by a 3x3x1 Γ-centered k-points mesh constructed through the Monkhorst-Pack

scheme.40 The convergence criteria for electronic and ionic minimization is set to 10−6 eV and

0.015 eV/Å, respectively. A Gaussian smearing function with a width of 0.03 eV is used to broaden

the energy levels near the Fermi level. For the case of isolated molecules, we have carried out

geometry optimizations, both in the gas phase and using the SMD implicit solvent,41 with the

Gaussian 09 package at the PBE/6-31G(d) level.38,42,43 The SMD model separates the free energy

of solvation in two contributions: (i) a bulk electrostatic energy that involves the solution of the

GPE in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM), (ii) a

second contribution, proportional to the solvent-accesible are arising from short-range interactions

between the solute and the solvent molecules (cavity-dispersion solvent structure term). This last

point makes the model especially suited for an accurate calculation of the free energy of solvation

for charged and uncharged molecular species.

5 Results

To validate the implementation of our solver we have performed some tests for a set of systems em-

ploying water as solvent. Simulated systems range from molecular systems to adsorbed molecules
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Figure 5: Side and top views for the bare Pt(111) surface (a), H2O/Pt(111) (b) CH3OH/Pt(111) (c),
H2O/Ru(0001) (d) and CH3OH/Ru(0001) (e) systems. Green spheres stand for Pt atoms, golden
for Ru, red for O, white for H and grey for C.

on metal surfaces. For the first set of molecules, we show the results for water, methanol, and

hydronium, hydroxide, Cl and Na+ ions, while for the second set the results are shown for water

and methanol adsorbed on the Pt(111) and Ru(0001) surfaces (see Figure 5).

5.1 Multigrid Solver Convergence

The first point to be tested is the convergence of the multigrid algorithm. In Figure 6, the percentage

error, eφ , of the calculated electrostatic potential φ is shown as a function of the V-cycle for some

systems. Here, eφ = 100 ·
〈
∑

N
i=1

∣∣( fi−∑ j Ai jφ j)/ fi
∣∣/N

〉
, where the brackets stand for an average
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Figure 6: Percentage error eφ as a function of the multigrid V-cycle for the case of an isolated
water (black circles) and a methanol molecule adsorbed on a Pt-(111) surface (red squares).

over electronic cycles. Although real-space meshes involve a large number of gridpoints, in all

cases we observe a high convergence rate, with eφ ≈ 10−6 after 5 V-cycles. The convergence rate

is almost constant up to 7 cycles, where the percentage error reaches a plateau around a value

of 10−8. Only the first electronic cycle, not included in the average, requires more multigrid

cycles for the electrostatic potential to converge. As the computational effort needed to compute

a single cycle is minimal, we have chosen eφ = 10−8 as the stopping criterium for the multigrid

algorithm. The CPU time needed for an electronic cycle to converge (without starting from the

vacuum wavefunctions) is approximately 1.5 times that for the unsolvated systems for all the tested

machine architectures (nodes consisting on Intel Xeon X3360, E5530 and E5645 processors), and

about one third of the time spent by the multigrid subroutine is consumed in the setup of the A

matrices (see eq 16) for each of the grids. This last step is the most consuming part of the whole

implementation as it requires the allocation of big matrices. Nevertheless, if we consider that we
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are using a serial 3D multigrid solver, the cost of a VASP calculation for a solvated system is

not significantly larger than the one in gas-phase. Indeed, the solvation model was written trying

to maximize computational efficiency, particularly for the fine grid calculations, for which serial

solvers have a poor performance. A more detailed study of the robustness of our solver is presented

in the Supporting Information.

5.2 Solvation Energies

Free energies of solvation have been calculated for the systems described above. The results are

compared to experimental data,44–46 and to simulation results using Gaussian 09 SMD and the

implicit solvation model of Mathew et al.24, named VASPsol. For this model we have considered

the solvent default parameters. For the case of the metallic surfaces, the results are just compared

to the solvation model. The free energies, ∆Gs, are calculated as the difference between the total

energies for the solvated system, Es, and those for the same system in the gas-phase, E0, that is,

∆Gs = Es−E0 (17)

Experimental energies correspond to the Gibbs free energy of solvation, ∆G∗, as defined by Ben-

Naim47 (ideal gas at gas-phase concentration of 1 mol·L−1 → ideal solution at a liquid phase

concentration of 1 mol·L−1). All these energies are calculated considering the value of Tissandier

et al. (-264.0 kcal/mol, -11.45 eV) for the solvation energy of the proton (H+).48 The results for

∆Gs and ∆G∗ are presented in Table 1 and Table 2. Corrections to forces have been monitored

during the calculations in order to check the correctness of the results. No anomalous drift is

observed in the forces along any of the space directions.

The calculated solvation free energies for the neutral isolated species (water and methanol)

agree closely both with the experimental and other simulation data, as seen in the values for the

percentage error, δ
MGCM

exp (less than 15% in both cases). Notice that for any of the methods discussed

here the errors are larger or equal the one reported by our implementation.
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Table 1: Solvation free energies in eV units for molecular systems. ∆Gs
MGCM, ∆Gs

VASPsol and
∆Gs

g09 stand for the calculated energies with our model, VASPsol and Gaussian 09 package using
the SMD model, respectively, while ∆G∗exp. corresponds to experimental data. The superscripts
a,b, and c correspond to refs. [44], [45], and [46]. An energy cutoff of Ec = 450 eV is set for
both VASP-MGCM and VASPsol calculations, while a 3×3×1 k-point mesh is set for the case of
adsorbed molecules on metal surfaces.

System H2O CH3OH H3O+ OH− Cl− Na+
∆GMGCM -0.305 -0.210 -3.710 -3.150 -2.233 -3.087
∆GVASPsol -0.314 -0.199 -3.549 -2.294 -1.955 -2.978

∆Gg09 -0.347 -0.177 -4.203 -4.574 -2.931 -3.132

∆G∗exp. -0.270a -0.220a -4.779b -4.553b
-3.235b -3.783c

-4.456c

δ
MGCM
exp (%) 12.96 4.54 22.37

30.81
31.00 18.39

29.31

Table 2: Solvation free energies in eV units for adsorbed molecules on metal surfaces. ∆Gs
MGCM

and ∆Gs
VASPsol stand for the calculated energies with our model and the VASPsol package, respec-

tively. An energy cutoff of Ec = 450 eV is set for both VASP-MGCM and VASPsol calculations,
while a 3×3×1 k-point mesh is set for the case of adsorbed molecules on metal surfaces.

System Pt(111) H2O/Pt(111) CH3OH/Pt(111) H2O/Ru(0001) CH3OH/Ru(0001)
∆GMGCM -0.030 -0.270 -0.148 -0.294 -0.128
∆GVASPsol 0.047 -0.237 -0.136 -0.261 -0.119

Solvation of charged species is more challenging as direct bonds between the solvates and the

solvent can occur. Indeed, ions in solution can be regarded as M(H2O)±n entities, where n stands

for the number of water molecules in the solvation layers and M for the ion. Within this shell, wa-

ter molecules are strongly oriented towards the solute and their behavior is largely different from

molecules located far away. A popular and efficient strategy to improve the performance of contin-

uum models in the calculation of solvation free energies is to add explicit water molecules to the

ionic solute (explicity solvent shell).51,52 However, for the sake of simplicity we are not consider-

ing this approach in any of the calculations presented here VASP-MGCM, VASPsol, Gaussian09-

SMD. As expected, the level of agreement between experiments and calculations is not observed

in charged species, where simulation results underestimate the experimental values for all ions

in our study (20% < δ
MGCM

exp < 30%). The difficulties in retrieving solvation energies for neutral

and charged species with the same degree of accuracy have been described in the literature.27,49,50
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Moreover, the amount of available experimental solvation data for ionic solutes is more limited

than for neutral species. This adds uncertainty in the comparison of simulated and experimental

data for ionic solutes in solution.51 Our methodology provides solvation energy data that is within

25-30% of the Gaussian09-SMD values. More importantly, methodologies with periodic boundary

conditions have some issues with charged systems, therefore it is much easier to work on models

where the total system is neutral. If we compare the total reaction 2H2Osolv← H3O++ OH− the

differential solvation contribution from Gaussian09-SMD and VASP-MGCM is below 6%. The

situation is not that favorable for VASPsol due, in part, to the intrinsic solvation of the hydroxyl

anion.

In a second step, we have applied the methodology to a true periodic-boundary model, i.e.

adsorption on a metal surface. In this case no experimental values exist and thus the comparison of

our VASP-MGCM to VASPsol. The system chosen to illustrate the performance of our continuum

model is the adsorption of molecular methanol and water on the Pt(111) and Ru(0001) surfaces.

The adsorption of water and methanol is exothermic by -0.27 and -0.15 eV, respectively, and the

energy differences between present and previous methodologies are in the range of 0.05 eV. In

particular, we have calculated the adsorption energy Es
ads of methanol (m) on the metal surface in

the presence of water as

Es
ads = Es

m+surf−Es
m−Es

surf (18)

where Es
m+surf, Es

m, and Es
surf stand for the total energy of the molecule on the metal, the molecule,

and the bare surface solvated systems, respectively. For the sake of consistency with the results

in ref [53], we have considered van der Waals (vdW) interactions through Grimme’s DFT-D2

method54 with our Pt and Ru C6 parameters,55 while the vdW parameters for the H, C, and O

elements are those tabulated by Grimme for the PBE functional.54

The calculated Es
ads with the VASP-MGCM is equal to -0.53 eV. This value is not far from the

adsorption energy (-0.67 eV) for the unsolvated methanol+water covered Pt(111) system calculated

in ref [53]. However, it should be remarked that in the water covered Pt(111) system there is no

solvent apart from a first explicit water layer. Then, neither the environment nor the orientation for
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the adsorbed methanol molecule are the same than in our calculations, and a small shift is expected

between both adsorption energies.

The present methodology also highlights the difficulties when addressing reactivity on the

liquid-metal interface. Up to now, most of the solvent effects were introduced in an indirect way58

however our simulations show that solvation might influence crucial elements in the modeling. For

instance, the gas-phase adsorption of water and methanol on Pt(111) is exothermic by -0.34 and

-0.46 eV respectively,56,57 but if the reaction takes place using water as solvent, the adsorption

strength is reversed and water is preferred (-0.27 eV) over methanol (-0.15 eV).

As for Ru(0001), the solvent contribution is more favorable for molecularly adsorbed water (by

about -0.02 eV) and less for molecularly adsorbed methanol (0.02 eV) when compared to Pt(111).

On Ru(0001) water is known to dissociate easily. Therefore, we have investigated the contribution

of the solvent to the molecular-dissociated energy balance. For the system without solvent the

dissociated state is -0.389 eV more stable than the molecular one. When solvent is included the

dissociation is still favorable but by a smaller amount, -0.285 eV. This is in line with the fact that

a single molecule on Ru(0001) is always dissociated while for a full water bilayer only about 50%

of the molecules are dissociated on the surface.59

6 Comparison to previous models

As stated in the previous section, a similar implicit solvation approach to VASP-MGCM, named

VASPsol, has been recently published by Mathew et al.24 The main idea behind VASPsol is the

same than in VASP-MGCM; the GPE is solved by taking into account a relative permittivity that is

a functional of the electronic charge density ρel. Once the electrostatic potential φ for the solvated

system is calculated, energies and forces are corrected. Nonelectrostatic effects are also considered

through an energy term proportional to the solvent-accessible area.

Although the general structure of both models is almost the same, there exist some differences in

the calculation of the different physical quantities. The main difference comes from: (i) the com-
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putation of the relative permittivity, (ii) the way the GPE is solved, and (iii) the calculation of the

nonelectrostatic terms. Regarding the last point, it does not have a huge effect on the convergence

rate of the calculations and we will not discuss it further. With respect to the relative permittivity

ε , VASPsol uses a very similar functional form than that proposed by Fattebert and Gygi.60 In this

context, as done in VASP-MGCM, an additional density charge is added to ρel for the calculation

of ε . As a consequence, the solvent entrance in the core atom region is prevented for both models

and changing the definition of ε does not change the final results up to the precision showed (we

have tested various functional forms for ε(ρ(r)). The key difference between both VASP-MGCM

and VASPsol is the way the GPE is solved. In VASPsol the GPE is solved through a preconditioned

conjugate gradient algorithm. The solver mades use of the FFT subroutines, and the equation is

solved in reciprocal space. This method is quite efficient as the energies for solvated systems

converge in almost the same time than those for their unsolvated counterparts when starting from

vacuum wave functions.24 However, the CPU time needed when calculations start from scratch is

on the same order of magnitude than that for the VASP-MGCM.

In general, the problems related to the convergence of a solvent calculation arise from the sharp-

ness of the charge density surface. If the problem is not solved when adding the corresponding

countercharge in the total charge density (that becomes smoother) for a given set of parameters of

the GPE solver, then a slight change with respect to them can lead to a converged solution. In this

sense, the number of tunable physical parameters is almost the same for both the VASP-MGCM

and VASPsol models. VASP-MGCM also allows adjusting some of the parameters related to the

multigrid solver (i.e. the number of grids) which can help obtaining a converged solution for cases

with sharp charge density surfaces. This situation only occurs in few cases but is an example of

the certain adaptability of VASP-MGCM to each system when solving the GPE equation.
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7 Conclusions

We have implemented a continuum solvation model into the VASP plane-wave package VASP-

MGCM. The electrostatic problem, which describes the effect of the environment on the solute, is

solved by means of multigrid methods. The computational cost of such approach is minimized by

a fast and efficient method for the product of sparse matrices. Few multigrid cycles are required for

the solution of the generalized Poisson equation. Hence, only a slight increase (around 30%) in the

computation time is observed as compared to calculations in vacuum, making the solvation model

applicable even to large systems with dense grids. The calculated solvation energies for a set of

isolated and adsorbed molecules on metallic surfaces are consistent with experimental data and

simulation results using other implicit solvation models. The present approach can be improved by

adding the possibility of dealing with non homogeneous grids. This would involve the creation of

denser grids at the solute atoms positions, and coarser grids at the regions with associated smaller

charge density. Different functional forms for the dielectric constant and the non electrostatic con-

tributions to the free energy are also to be added to make the model more flexible to the users’

purposes. In summary, the implemented VASP-MGCM presents the following advantages: it is (i)

robust in equation solving, (ii) adaptable to large cells since the electrostatic problem is solved in

the direct space, (iii) transferable to other codes with similar characteristics, (iv) reasonably com-

putationally demanding, (v) adaptable to any kind of periodic boundary conditions, (vi) versatile to

incorporate coarse-grain strategies. All the above characteristics allow the use of the present code

to the study of liquid-solid heterogeneous reactions that are fundamental to industrial and energy

related problems. VASP-MGCM will be available soon on our website as a patch to the VASP

code.
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A. Appendix

A.1. Sparse Matrices

Operations involving sparse matrices are common in many fields such as graph theory, combi-

natorial optimization or multigrid methods, among others. In particular, the sparse matrix-vector

(SpMV) product and the sparse matrix-matrix (SpMM) product are required operations when solv-

ing linear systems of equations regardless of the chosen strategy. Because of the large amount of

zero entries contained in such matrices, sparse storage schemes are adopted to reduce the memory

usage in numerical methods. The most common strategy is to exploit the particular sparsity struc-

ture of the involved matrices (their symmetry, if they are banded, . . . ) to make their product in the

most efficient way. Adopted storage formats for sparse matrices are (i) the compressed row storage

(CRS), (ii) the compressed column storage (CCS), (iii) the block compressed row storage (BCRS),

or (iv) the Jagged diagonal storage (JDS) format.61 Sequential algorithms for the SpMM prod-

uct like that described by Gustavson62 or those implemented in the Sparse Matrix Multiplication

Package (SMMP)63 make use of the CRS format. It is also the case for several packages aimed

at solving large sparse linear systems like ITPACK,64 SPARSEKIT65 or Sparse BLAS.66 Given

a sparse matrix B of order N with a total number of NNZ nonzero entries, three one-dimensional

matrices are used in the CRS scheme. A first array B∗ of length NNZ stores the nonzero values in

B. The column indices for such values are stored in an integer matrix JB of length NNZ. Finally,

a third array IB containing N +1 elements is used to list the starting locations of each row in B in

such a way that IB(i) denotes the beginning of row i and IB(i+1) its end.

In the present study, we adopt a multigrid scheme to solve the electrostatic problem. In this

context, the Galerkin approach involves the RAI sparse triple-matrix product which represents a

large percentage of the total cost for solving our system of linear equations. Available libraries

like BLAS66 or LAPACK,67 which can be called at any stage in VASP subroutines, contain high-

performance linear algebra routines that perform the SpMV product, but not the SpMM product.

To this end, we have implemented a sequential algorithm to perform the RAI triple sparse-matrix
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product in a fast way, even for dense grids.

A.2. Sparse Matrix-Matrix Product Algorithm

To access the data in the sparse R, A, and I matrices we have adopted a modified version of the

CRS format. Instead of employing one-dimensional matrices for the values and column indices

of their nonzero elements, we define R∗, A∗ and I∗ matrices of size (N/8,64), (N,M) and (N,8),

respectively (M = 19 in our case, see Supporting Information for more details). The corresponding

column indices are called IDR, ID and IDI for R, A, and I. Once the data structure for all three

matrices is created, the algorithm makes the RAI product in a per-row based method. For each

row i in R∗ we obtain the corresponding row i in the final RAI matrix (the column indices being

stored in IDRAI). These operations are done in a fast way through the use of a third small one-

dimensional array, called IEL, that is allocated during both the R∗A∗ and the (R∗A∗)I∗ products.

We can know, then, before making the sparse products, which columns in a row of the resulting

matrix will contain nonzero elements. An scheme of our algorithm is shown in Figure 7 (for a

detailed presentation of the algorithm see the Supporting Information).

• For each row i = 1,N/8 :

1. Identify columns in the R∗(i, :)A∗ product containing nonzero elements
and store the column indices in IEL.

2. Make the R∗(i, :)A∗ product just for the columns stored in IEL.

3. Deallocate IEL.

4. Identify columns in the R∗A∗(i, :)I∗ product containing nonzero elements
and store the column indices in reallocated IEL.

5. Make the R∗A∗(i, :)I∗ product and store the values in RAI matrix and their
column indices in IDRAI.

• end

Figure 7: Algorithm for the SpMM product. The symbol ’:’ in R∗(i, :) refers to all the columns in
row i for a matrix R∗.

Unlike the CRS format, our algorithm does not require a third matrix of row pointers of length
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N + 1 per each stored sparse matrix. Indeed, the dynamic array IEL that is created during the

triple SpMM product, contains a much lower number of elements (∼ 10−5N for the densest grid)

making this operation very efficient. Because of the discretization of A∗, and the chosen stencils

for R∗ and I∗ (see Supporting Information), once the nonzero elements in the first row of RAI are

known, this number remains constant for the rest of rows. Hence, there is no need of requesting an

extra storage as it occurs for other sequential algorithms performing the SpMM product.62 At the

same time, our algorithm has been programmed in such a way that there exists just an if statement,

located in the IEL calculation loop. The number of calls to if statements is then comparable or

lower than those for the general sequential SpMM product algorithms.62,63
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