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The equity core and the Lorenz-maximal

allocations in the equal division core ∗

Francesc Llerena1 and Cori Vilella1

1 Departament de Gestió d’Empreses, Universiat Rovira i Virgili-CREIP.

Av. Universitat, 1, 43204 Reus, Catalunya, Spain

May 28, 2013

Abstract

In this paper, we characterize the non-emptiness of the equity core (Selten, 1978)

and provide a method, easy to implement, for computing the Lorenz-maximal allocations

in the equal division core (Dutta-Ray, 1991). Both results are based on a geometrical

decomposition of the equity core as a finite union of polyhedrons.

Keywords: Cooperative game, equity core, equal division core, Lorenz domination.

JEL classification: C71

1 Introduction

The notion of the equity core of a transferable utility coalitional game (a game, for short) was

introduced by Selten (1978) as a weighted generalization of the equal division core (Selten,

1972). There are in the literature two main explanations for the equal division core. On

one hand, Selten (1972) used this solution concept to explain outcomes of experimental

cooperative games showing that the evidence suggests that equity considerations have a

strong influence on observed payoff divisions. On the other hand, a much more theoretical

approach is given by Dutta and Ray (1991) when they propose a solution which combines

commitment for egalitarianism and selfish behavior. In that paper, the authors introduce

the strong constrained egalitarian solution and show that this solution concept selects the

Lorenz-maximal allocations in the equal division core. They also prove non-emptiness for

N-superadditive games, a weaker condition than superadditivity. However, as far as we

know, there is not a characterization for the existence of this solution. Moreover, in general,

∗E-mail: francesc.llerena@urv.cat, cori.vilella@urv.cat.
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it is not immediate to find the Lorenz-maximal allocations in the equal division core of a

game. Thus, the aim of the paper is twofold: characterize the existence of the equity core,

which, in the particular case where all players have the same weight, gives a characterization

of the existence of the equal division core, and provide a method, easy to implement, for

computing the Lorenz-maximal allocations in the equal division core. Both results are based

on a geometrical decomposition of the equity core as a finite collection of polyhedrons.

The paper is organized as follows. In Section 2, we introduce preliminaries and notation.

Section 3 contains the decomposition theorem and the non-emptiness characterization result

for the equity core. Section 4 provides a systematic method for computing the Lorenz-

maximal allocations in the equal division core.

2 Preliminaries

The set of natural numbers N denotes the universe of potential players. By N ⊆ N we denote

a finite set of players, in general N = {1, . . . , n}. A transferable utility coalitional game (a

game) is a pair (N, v) where v : 2N −→ R is the characteristic function with v(∅) = 0 and

2N denotes the set of all subsets (coalitions) of N . We use S ⊂ T to indicate strict inclusion,

that is S ⊆ T but S 6= T . By |S| we denote the cardinality of the coalition S ⊆ N . The set

of all games is denoted by Γ. Given a coalition S ⊂ N,S 6= ∅ and (N, v) ∈ Γ, we define the

subgame (S, vS) by vS(Q) := v(Q), for all Q ⊆ S.

Let RN stand for the space of real-valued vectors indexed by N , x = (xi)i∈N , and for all

S ⊆ N , x(S) =
∑

i∈S xi, with the convention x(∅) = 0. For each x ∈ R
N and T ⊆ N , xT

denotes the restriction of x to T : xT = (xi)i∈T ∈ R
T . Given two vectors x, y ∈ R

N , x ≥ y

denotes that xi ≥ yi, for all i ∈ N , and x > y denotes that xi > yi for all i ∈ N . In addition,

we define R
N
+ := {x ∈ R

N | x ≥ 0} and R
N
++ := {x ∈ R

N | x > 0}. By z = max{x, y}, we

denote the vector z ∈ R
N such that zi = max{xi, yi}, for all i ∈ N .

The pre-imputation set of a game (N, v) is defined byX(N, v) := {x ∈ R
N |x(N) = v(N)}.

A solution on a set Γ of games is a mapping σ which associates with any game (N, v) a

subset σ(N, v) of the set X(N, v). Notice that the solution set σ(N, v) is allowed to be

empty. For a game (N, v), the set of imputations is given by I(N, v) := {x ∈ X(N, v) |x(i) ≥

v(i), for all i ∈ N}. The core of a game (N, v) is the set of those imputations where each coali-

tion gets at least its worth, that is C(N, v) := {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N}.

The equal division core (Selten, 1972) is an extension of the core containing those imputa-

tions which can not be improved upon by the equal division allocation of any subcoalition.

Formally, EDC(N, v) :=
{

x ∈ I(N, v) | for all ∅ 6= S ⊆ N, there is i ∈ S with xi ≥
v(S)
|S|

}

.

For any x ∈ R
N , denote by x̂ = (x̂1, . . . , x̂n) the vector obtained by rearranging from
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x its coordinates in a non-decreasing order, that is, x̂1 ≤ x̂2 ≤ . . . ≤ x̂n. For any two

vectors y, x ∈ R
N , we say that y Lorenz-dominates x, (y ≻L x), if

∑k
j=1 ŷj ≥

∑k
j=1 x̂j , for

every k = 1, . . . , n, with at least one strict inequality. Given a coalition ∅ 6= S ⊆ N and

a set A ⊆ R
S , E(A) denotes the set of allocations that are Lorenz undominated within A.

Given a game (N, v), the Lorenz-maximal allocations in the equal division core is the set

E(EDC(N, v)) := {x ∈ EDC(N, v) | there is no y ∈ EDC(N, v) such that y ≻L x}, which

coincides with the set of strong constrained egalitarian allocations introduced by Dutta and

Ray (1991).

A game with a non-empty core is called balanced. A game (N, v) is convex (Shapley, 1971)

if, for every S, T ⊆ N , v(S)+v(T ) ≤ v(S∪T )+v(S∩T ). A game is superadditive if, for every

S, T ⊆ N, S∩T = ∅, v(S)+v(T ) ≤ v(S ∪T ). A family of nonempty coalitions {S1, . . . , Sm},

Si ⊆ N for all i = 1, . . . ,m, is a partition of N if (a) Si ∩ Sj = ∅ for all i, j ∈ {1, . . . ,m},

i 6= j, and (b)
⋃m

i=1 Si = N . A game is N -superadditive if for all partition {S1, . . . , Sm} of

N , it holds v(S1) + . . .+ v(Sm) ≤ v(N).

Dutta and Ray (1989) define the weak constrained egalitarian solution, denoted by DR(·),

and show that on the domain of convex games this solution picks the payoff vector that is

obtained by the following algorithm: Let (N, v) be a convex game and DR(N, v) = {z}.

Step 1: Define v1 = v. Then find the unique coalition S1 ⊆ N such that for all S ⊆ N ,

(i) v1(S1)
|S1|

≥ v1(S)
|S| , and (ii) if v1(S1)

|S1|
= v1(S)

|S| and S 6= S1, then |S1| > |S|. Uniqueness of such

a coalition is guaranteed by convexity of (N, v). Then, for all i ∈ S1, zi =
v1(S1)
|S1|

. Step k:

Suppose that S1, . . . , Sk−1 have been defined. Let Nk = N \ (S1 ∪ . . .∪Sk−1) and (Nk, vk) be

the game defined as follows: vk(S) := v(S1∪ . . .∪Sk−1∪S)−v(S1∪ . . .∪Sk−1), for all S ⊆ Nk.

It can be shown that (Nk, vk) is convex. Then find the unique coalition Sk ⊆ Nk such that

for all S ⊆ Nk, (i)
vk(Sk)
|Sk|

≥ vk(S)
|S| , and (ii) if vk(Sk)

|Sk|
= vk(S)

|S| and S 6= Sk, then |Sk| > |S|. The

uniqueness of such a coalition is guaranteed by the convexity of (Nk, vk). Then, for all i ∈ Sk,

zi =
vk(Sk)
|Sk|

=
v(S1∪...∪Sk)−v(S1∪...∪Sk−1)

|Sk|
.

An ordering θ = (i1, . . . , in) of N , where |N | = n, is a bijection from {1, . . . , n} to

N . We denote by SN the set of all orderings of N . Given a game (N, v) and an ordering

θ = (i1, . . . , in) ∈ SN , we define the marginal worth vector associated to θ as the vector

mθ(v) ∈ R
N which assigns to each player her marginal contribution in the order θ. Formally,

mθ
i1
(v) = v({i1}) and mθ

ik
(v) = v({i1, . . . , ik})− v({i1, . . . , ik−1}), for k = 2, . . . , n.

3 Decomposition theorem and existence

In this section, we show that the equity core can be decomposed as the union of a finite

collection of polyhedrons. Making use of this decomposition result, we characterize the non-
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emptiness of the equity core. The equity core is an asymmetric extension of the equal division

core in which players may have different weights. Formally, given a vector of weights w ∈ R
N
++,

the equity core w.r.t. w is defined as follows:

ECw(N, v) :=

{

x ∈ I(N, v) | for all ∅ 6= S ⊆ N there is i ∈ S with xi ≥
v(S)

w(S)
wi

}

.

Since the equity core is a compact extension of the core, balancedness gives a first condition

to guarantee non-emptiness (Bondareva, 1963 and Shapley, 1967). However, the equity core

can be non-empty even if the core is empty. Indeed, consider the following three-player game:

v({i}) = 0, for all i ∈ {1, 2, 3}, and v(S) = 1, otherwise. It is not difficult to see that for

w = (1, 1, 1), ECw(N, v) = EDC(N, v) = {(0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)} and the core

is empty.

As we have commented before, for N -superadditive games both the strong constrained

egalitarian solution and the equal division core are non-empty. Next we show that N -

superadditivity is sufficient to guarantee non-emptiness of the equity core.

Theorem 3.1. Let (N, v) be a N -superadditive game. Then, ECw(N, v) 6= ∅ for any vector

of weights w ∈ R
N
++.

Proof: Let (N, v) be a N -superadditive game, w ∈ R
N
++ and {B1, . . . , Bm} a partition

of N such that
v(Bk)

w(Bk)
= max

∅6=C∈Qk

{

v(C)

w(C)

}

,

where Q1 = 2N and Qk = 2N\{B1∪...∪Bk−1}, for k = 2, . . . ,m. Define the vector x ∈ R
N as

follows:

xi :=
v(Bj)

w(Bj)
wi, for all i ∈ Bj and all j = 1, . . . ,m.

Take ∅ 6= S ⊆ N and k = min{j ∈ {1, . . . ,m} | S ∩ Bj 6= ∅}. Notice that S ∈ Qk. Take

i ∈ S ∩Bk, then

(1) xi =
v(Bk)

w(Bk)
wi = max

∅6=C∈Qk

{

v(C)

w(C)

}

wi ≥
v(S)

w(S)
wi.

Next we prove that the vector x̃ = (x̃1, . . . , x̃n) ∈ R
N , defined by x̃i := xi+

(

v(N)−(v(B1)+...+v(Bm))
w(N)

)

wi for all i ∈ N, belongs to ECw(N, v). Efficiency follows from the definition of the vector

x taking into account that x(Bj) = v(Bj), for all j = 1, . . . ,m. By N -superadditivity,

v(B1) + . . .+ v(Bm) ≤ v(N), therefore x̃i ≥ xi, for any player i ∈ N . Then, from expression

(1), for all ∅ 6= S ⊆ N , there is i ∈ S such that x̃i ≥ xi ≥
v(S)
w(S) wi. Thus, we conclude that

x̃ ∈ ECw(N, v). �

The next example shows that the N -superadditivity is not necessary to guarantee non-

emptiness of the equity core.
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Example 1. Let (N, v) be a three-player game, where N = {1, 2, 3}, v({i}) = 0, for all

i = 1, 2, 3, v({1, 2}) = 2, v({1, 3}) = v({2, 3}) = 0 and v(N) = 1.

This game is not N -superadditive since v({1, 2})+v({3}) > v({1, 2, 3}). The equity core w.r.t

any w = (w1, w1, w3) ∈ R
N
++ is

ECw(N, v) =

{

x ∈ I(N, v) | x1 ≥
2

w1 + w2
w1 or x2 ≥

2

w1 + w2
w2

}

.

Notice that at least one of the values must be lower or equal than 1, since otherwise we get

a contradiction. Therefore, we have two possibilities: (a) 2
w1+w2

w1 ≤ 1 and (b) 2
w1+w2

w2 ≤

1. If case (a) holds, then
(

2
w1+w2

w1, 1−
2

w1+w2
w1, 0

)

∈ ECw(N, v). In case (b) we have
(

1− 2
w1+w2

w2,
2

w1+w2
w2, 0

)

∈ ECw(N, v). Thus, for any vector of weights w ∈ R
N
++, the

equity core is non-empty.

Our objective is now to characterize non-emptiness. To this end, first we show that the

equity core can be decomposed as the union of simple polyhedrons. In order to find these

polyhedrons we define the proportional share worth vectors.

Definition. Let (N, v) be a game, w ∈ R
N
++ a vector of weights and θ = (i1, . . . , in) ∈ SN .

We define the proportional share worth vector w.r.t. w and θ, denoted by x̄θw(v) ∈ R
N , as

follows:

x̄θw,ik
(v) := max

S∈Pik

{

v(S)

w(S)

}

wik , for k = 1, . . . , n,

where Pi1 := {S ⊆ N | i1 ∈ S} and Pik := {S ⊆ N | i1, . . . , ik−1 6∈ S, ik ∈ S}, for

k = 2, . . . , n.

Remark 3.2. Notice that for all θ = (i1, . . . , in) ∈ SN , the set {Pi1 , . . . , Pin} forms a partition

of the set 2N \∅. In addition, for all i ∈ N , x̄θw,i(v) ≥ v({i}), and for any non-empty coalition

S ⊆ N , there is a player i ∈ S such that x̄θw,i(v) ≥ v(S)
w(S) wi. However, in general x̄θw(v) is

not an efficient vector and hence it does not belong to the equity core. Let us denote by

δx̄θ
w
= v(N)− x̄θw(v)(N) the increment or decrement for the vector x̄θw(v) to reach efficiency.

Definition. Let (N, v) be a game, w ∈ R
N
++ a vector of weights and θ = (i1, . . . , in) ∈ SN .

We define the polyhedron generated by the proportional share worth vector x̄θw(v), denoted

by ∆x̄θ
w(v), as the convex hull of all x̄θw(v) + δx̄θ

w
ei, where ei is the i-th canonical vector of

R
N , for any i ∈ N . That is, ∆x̄θ

w(v) := convex {x̄θw(v) + δx̄θ
w
ei, for all i ∈ N}.

To characterize non-emptiness we only need to work with an special kind of polyhedrons,

those generated by the proportional share worth vectors associated to θ ∈ SN with δx̄θ
w
≥ 0,

and minimal with respect to the usual order in R
N . Given a game (N, v), w ∈ R

N
++ and

θ ∈ SN such that δx̄θ
w
≥ 0, it is easy to see that

(2) ∆x̄θ
w(v) = {x ∈ X(N, v) | x ≥ x̄θw(v)}.
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Lemma 3.3. Let (N, v) be a game, w ∈ R
N
++ and x̄θw(v), x̄

θ′

w (v) the proportional share worth

vectors w.r.t. θ, θ′ ∈ SN respectively, such that δx̄θ
w

≥ 0, δx̄θ′
w

≥ 0. Then, the following

statements are equivalent:

1. x̄θw(v) ≤ x̄θ
′

w (v).

2. ∆x̄θ′
w (v) ⊆ ∆x̄θ

w(v).

Proof: The implication 1 → 2 follows straightforward from expression (2). Next we

prove 2 → 1. Assuming ∆x̄θ′
w (v) ⊆ ∆x̄θ

w(v), we deduce that x̄θ
′

w (v) + δx̄θ′
w
ek ∈ ∆x̄θ

w(v), for all

k ∈ N . Hence, again from expression (2), x̄θ
′

w (v) + δx̄θ′
w
ek ≥ x̄θw(v). Finally, take j ∈ N and

k 6= j, then x̄θ
′

w,j(v) ≥ x̄θw,j(v), getting the result. �

Definition. Let (N, v) be a game and w ∈ R
N
++. We define the set of minimal proportional

share worth vectors as follows:

Mw(v) := {x̄θw(v) | θ ∈ SN , δx̄θ
w
≥ 0 and there is no θ′ such that x̄θ

′

w (v) ≤ x̄θw(v)}.

Now we have all the tools to state a decomposition theorem for the equity core in terms

of the above polyhedrons.

Theorem 3.4. Let (N, v) be a game and w ∈ R
N
++ a vector of weights. Then,

ECw(N, v) =
⋃

x̄θ
w(v)∈Mw(v)

∆x̄θ
w(v).

Proof: We first prove that ECw(N, v) ⊆
⋃

x̄θ
w(v)∈Mw(v)∆

x̄θ
w(v). Take x ∈ ECw(N, v).

We construct a specific order θ ∈ SN such that x ≥ x̄θw(v). This order θ is generated

by the following algorithm. We choose a coalition S1 ∈ 2N , S1 6= ∅, such that v(S1)
w(S1)

=

max∅6=C∈2N

{

v(C)
w(C)

}

. Having chosen S1, since x ∈ ECw(N, v), there exists a player i1 such

that xi1 ≥ v(S1)
w(S1)

wi1 = max∅6=C∈ 2N

{

v(C)
w(C)

}

wi1 . Second, choose S2 ∈ 2N\{i1}, S2 6= ∅, such

that v(S2)
w(S2)

= max∅6=C∈ 2N\{i1}

{

v(C)
w(C)

}

. As before, since x ∈ ECw(N, v), there exists a player

i2 ∈ S2 such that xi2 ≥ v(S2)
w(S2)

wi2 = max∅6=C∈ 2N\{i1}

{

v(C)
w(C)

}

wi2 . Following this process we

obtain an ordering θ = (i1, i2, . . . , in) ∈ SN such that

(3) x ≥ x̄θw(v).

Since x ∈ X(N, v), from (3) it follows that δx̄θ
w

≥ 0. Hence, from expression (2) we have

x ∈ ∆x̄θ
w(v). If x̄θw(v) ∈ Mw(v), we are finished. If not, we can find an order θ′ such

that x̄θ
′

w (v) < x̄θw(v) with x̄θ
′

w (v) ∈ Mw(v). But from Lemma 3.3, ∆x̄θ
w(v) ⊆ ∆x̄θ′

w (v), thus

x ∈ ∆x̄θ′
w (v).

6



To show the reverse inclusion, take x ∈ ∆x̄θ
w(v), where ∆x̄θ

w(v) is generated by x̄θw(v) ∈

Mw(v). Then, from expression (2), x ∈ X(N, v) and x ≥ x̄θw(v). Recall that for all θ =

(i1, . . . , in) ∈ SN , the set {Pi1 , . . . , Pin} as described in Definition 2 forms a partition of the

set 2N \{∅} (see Remark 3.2). Now take S ∈ 2N \{∅} and ir ∈ S be the first player in S w.r.t.

the ordering θ. Then, S ∈ Pir and so xir ≥ x̄θw,ir
(v) = maxC∈Pir

{

v(C)
w(C)

}

wir ≥ v(S)
w(S) wir .

Hence, we conclude that x ∈ ECw(N, v). �

A direct consequence of Theorem 3.4 is a characterization of the non-emptiness of the

equity core.

Theorem 3.5. Let (N, v) be a game and w ∈ R
N
++ a vector of weights. Then, the following

statements are equivalent:

1. ECw(N, v) 6= ∅.

2. There exists θ ∈ SN such that x̄θw(v)(N) ≤ v(N).

As we have already mentioned, the equity core coincides with the equal division core when

all the players have the same weight. Moreover, since the equal division core is a compact

set, the non-emptiness is equivalent to the non-emptiness of the set E(EDC(N, v)). Hence,

as a consequence of the above theorem a characterization of the non-emptiness of both the

equal division core and the E(EDC(N, v)) is getting.

Corollary 3.6. Let (N, v) be a game and w = (1, . . . , 1) ∈ R
N the vector of weights. Then,

the following statements are equivalent:

1. EDC(N, v) 6= ∅ and E(EDC(N, v)) 6= ∅.

2. There exists θ ∈ SN such that x̄θw(v)(N) ≤ v(N).

Next, we give a four-player glove market game to illustrate the above decomposition result

and to check the non-emptiness of the equal division core.

Example 2. Let (N, v) be a game with N = {1, 2, 3, 4} and v({1}) = v({2}) = v({3}) =

v({4}) = 0, v({1, 2}) = v({3, 4}) = 0, v({1, 3}) = v({1, 4}) = v({2, 3}) = v({2, 4}) = 1,

v({1, 2, 3}) = v({1, 2, 4}) = v({1, 3, 4}) = v({2, 3, 4}) = 1, and v({1, 2, 3, 4}) = 2.

As the reader may check, the set of minimal share worth vectors is M(v) = {x =

(0.5, 0.5, 0, 0), y = (0, 0, 0.5, 0.5)}, and the equal division core is the union of the corre-

sponding two polyhedrons, EDC(N, v) = ∆x(v) ∪∆y(v).

In Figure 1 we represent the core and the equal division core of this game in the efficiency

hyperplane (of dimension 3). The equal division core corresponds to the two shadowed
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pyramides and the core is the discontinuous black segment. The set of Lorenz-maximal

allocations in the equal division core is the intersection point between the two pyramides,

E(EDC(N, v)) = {(0.5, 0.5, 0.5, 0.5)}.

∆y(v)

∆x(v)

C(N, v)

(2, 0, 0, 0)

(0, 0, 0, 2)

(0, 0, 2, 0)

(0, 2, 0, 0)

(1, 1, 0, 0)

(0, 0, 1, 1)

E(EDC(N, v)) = (0.5, 0.5, 0.5, 0.5)

Figure 1: Decomposition of the equal division core corresponding to Example 2.

4 Finding the Lorenz-maximal allocations in the equal divi-

sion core

In this section, we provide a systematic procedure for computing the Lorenz-maximal allo-

cations in the equal division core based on its geometrical decomposition as a finite union of

polyhedrons. For this purpose we use the definitions and results stated in Section 3 when all

players have the same weight.

To locate the Lorenz-maximal allocations in the equal division core it is enough to see

that in each polyhedron ∆x(v) there is a unique Lorenz-maximal element. As we prove in

Lemma 4.1, this element is quite similar to the one reported by the constrained equal awards

rule for bankruptcy problems (see Moulin, 2002 or Thomson, 2003).

Definition. Let (N, v) be a game and x ∈ X∗(N, v). The vector yx ∈ R
N is defined as

yx,i := max{xi, λ}, for all i ∈ N , where λ is chosen so as to satisfy
∑

j∈N max{xj , λ} = v(N).

The next result states that yx Lorenz dominates every other element in the polyhedron

∆x(v).

Lemma 4.1. Let (N, v) be a game and x ∈ X∗(N, v). Then, yx Lorenz dominates every

other element in ∆x(v).

Proof: From definition yx ∈ ∆x(v). To prove yx ≻L t, for all t ∈ ∆x(v), t 6= yx, we

define the game (N, vx) as vx(S) := x(S), if S ⊂ N , and vx(N) := v(N). Notice that (N, vx)
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is convex and C(N, vx) = ∆x(v). Thus, since for convex games the weak constrained egali-

tarian allocation Lorenz dominates every other point in the core (Dutta and Ray, 1989), we

must see that DR(N, vx) = {yx}. Assume, without loss of generality, x1 ≥ x2 ≥ . . . ≥ xn. If

x1 ≤ vx(N)
|N | , then DR(N, vx) =

{

yx =
(

vx(N)
|N | , . . . , vx(N)

|N |

)}

. Otherwise, take k ∈ {1, . . . , n −

1}, n ≥ 2, and define the vector yk :=
(

x1, . . . , xk,
v(N)−(x1+...+xk)

n−k
, . . . , v(N)−(x1+...+xk)

n−k

)

. Ob-

serve that yx = yk
∗
, where k∗ = min{k ∈ {1, . . . , n− 1} | yk ≥ x}. Let P = {S1, S2, . . . , Sm}

be the partition of N obtained by means of the Dutta and Ray(1989) algorithm to com-

pute the weak constrained egalitarian allocation of (N, vx) and take DR(N, vx) = {z}.

Since x1 > vx(N)
|N | , m ≥ 2. In this case, S1 = {i ∈ N | xi ≥ xk for all k ∈ N} and Sh =

{i ∈ N \ S1 ∪ . . . ∪ Sh−1 | xi ≥ xk for all k ∈ N \ S1 ∪ . . . ∪ Sh−1} for h = 2, . . . ,m−1. That

is, S1 is formed by those players with the maximum payoff at x. Then, removing players of

S1, coalition S2 is formed in a similar way, and so on until the last but one element of

the partition, Sm−1. Moreover, zi = xi, for all i ∈ Sh and all h = 1, . . . ,m − 1, and

zi =
v(N)−

∑
i∈N\Sm

xi

|Sm| , for all i ∈ Sm. Hence, z = yk, where k = |S1 ∪ . . . ∪ Sm−1|. Now

suppose that k is not minimal and denote by k∗ = min{r ∈ {1, . . . , n − 1} | yr ≥ x}. Then,

yk
∗
=

(

x1, . . . , xk∗ ,
v(N)−(x1+···+xk∗ )

n−k∗
, . . . , v(N)−(x1+···+xk∗ )

n−k∗

)

. By the minimality of k∗, we have

zi ≤ yk
∗

i for all i ∈ {1, . . . , k∗, . . . , k}. Moreover, for all i > k, since i ∈ Sm and k ∈ Sm−1,

we have zi < zk = xk ≤ yk
∗

k = yk
∗

i . Then, z(N) < yk
∗
(N) = v(N), a contradiction. Hence,

z = yx. �

Combining the above two lemmas, and taking into account the transitivity of the Lorenz

relation, the next result follows straightforward. Notice that the set of Lorenz-maximal

elements in a compact set is not generally finite (see, for instance, Example 4 in Dutta and

Ray, 1989).

Theorem 4.2. Let (N, v) be a game. The set of Lorenz-maximal allocations in the equal

division core is finite. Moreover, E(EDC(N, v)) = E{yx | x ∈ M(v)}.

Now from Theorem 4.2 one can compute the Lorenz-maximal allocations in the equal

division core as follows:

step 1. Find all elements of M(v);

step 2. Compute yx for each x ∈ M(v);

step 3. Find the Lorenz-maximal elements in {yx | x ∈ M(v)}.

Let us show two examples to illustrate how this procedure works.

Example 3. Let (N, v) be a game with N = {1, 2, 3} and v({1}) = v({2}) = v({3}) = 0,

v({1, 2}) = v({1, 3}) = 100, v({2, 3}) = 0, and v({1, 2, 3}) = 125.

Since argmaxS 6=∅
v(S)
|S| = {{1, 2}, {1, 3}}, we must consider all orderings of N . Let denote

by θijk the ordering (i, j, k). Then, xθ123 = xθ132 = (50, 0, 0), xθ213 = (50, 50, 0), xθ231 =
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xθ321 = (0, 50, 50), and xθ312 = (50, 0, 50). Thus, M(v) = {xθ123 , xθ231}, and the candidates

to be Lorenz-maximal allocations in the equal division core are yxθ123 = (50, 37.5, 37.5) and

yxθ231 = (25, 50, 50). Since yxθ123 ≻L yxθ231 , we have E(EDC(N, v)) = {yxθ123}.

y
xθ123

y
xθ231

∆xθ123

∆xθ231

(125, 0, 0) (0, 125, 0)

(0, 0, 125)

Figure 2: The union of the two shadowed triangles corresponds to the equal division core and

E(EDC(N, v)) = {y
x
θ123} in Example 3.

Example 4. (Dutta and Ray, 1991) Let (N, v) be a game with N = {1, 2, 3, 4, 5} and v({1}) =

0.96, v({2}) = 0.70, v({3}) = 0.70, v({4}) = 0.00, v({1, 2}) = 1.66, v({1, 3}) = 1.66,

v({1, 4}) = 2.00, v({2, 3}) = 1.40, v({2, 4}) = 1.81, v({3, 4}) = 1.80, v({1, 2, 3}) = 2.36,

v({1, 2, 4}) = 2.70, v({1, 3, 4}) = 2.70, v({2, 3, 4}) = 2.85, and v({1, 2, 3, 4}) = 3.81. Player

5 is a dummy player, thus v(S ∪ {5}) = v(S), for all S ⊆ {1, 2, 3, 4}.

Since argmaxS 6=∅

{

v(S)
|S|

}

= {1, 4}, we must consider only those orderings in which either

player 1 or 4 comes first. Let θijklm be the ordering (i, j, k, l,m). A routine calculus shows

that M(v) =
{

xθ12345 , xθ12435 , xθ13245 , xθ13425 , xθ14235 , xθ41235
}

, where

xθ12345 = (1.000, 0.950, 0.900, 0.000, 0.000),

xθ12435 = (1.000, 0.950, 0.700, 0.900, 0.000),

xθ13245 = (1.000, 0.905, 0.950, 0.000, 0.000),

xθ13425 = (1.000, 0.700, 0.950, 0.905, 0.000),

xθ14235 = (1.000, 0.700, 0.700, 0.950, 0.000),

xθ41235 = (0.960, 0.700, 0.700, 1.000, 0.000),

and
yxθ12345 = (1.0000, 0.9500, 0.9000, 0.4800, 0.4800),

yxθ12435 = (1.0000, 0.9500, 0.7000, 0.9000, 0.2600),

yxθ13245 = (1.0000, 0.9050, 0.9500, 0.4775, 0.4775),

yxθ13425 = (1.0000, 0.7000, 0.9500, 0.9050, 0.2550),

yxθ14235 = (1.0000, 0.7000, 0.7000, 0.9500, 0.4600),

yxθ41235 = (0.9600, 0.7000, 0.7000, 1.0000, 0.4500).

Thus, E(EDC(N, v)) =
{

yxθ12345 , yxθ14235

}

. Notice that, the solution reported by Dutta and

Ray (1991) is E(EDC(N, v)) = {(1, 0.95, 0.9, 0.48, 0.48), (1, 0.9, 0.95, 0.48, 0.48), (1, 0.7, 0.7, 0.95, 0.46)}.
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However, it turns out that (1, 0.9, 0.95, 0.48, 0.48) is not an element of the equal division core

since v({2,4})
2 = 0.905 and both players in coalition {2, 4} receive less than 0.905. Hence,

(1, 0.9, 0.95, 0.48, 0.48) /∈ E(EDC(N, v)).
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