To access the full text documents, please follow this link: http://hdl.handle.net/10256/3066

Shape complexity based on mutual information
Rigau Vilalta, Jaume; Feixas Feixas, Miquel; Sbert, Mateu
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others
2010-11-07
Complexitat computacional
Geometria integral
Geometria computacional
Percepció de les formes
Computational complexity
Computational geometry
Form perception
Integral geometry
Tots els drets reservats
Article
IEEE
         

Show full item record

Related documents

Other documents of the same author

Bardera i Reig, Antoni; Rigau Vilalta, Jaume; Boada, Imma; Feixas Feixas, Miquel; Sbert, Mateu
Rigau Vilalta, Jaume; Feixas Feixas, Miquel; Sbert, Mateu
Rigau Vilalta, Jaume; Feixas Feixas, Miquel; Bekaert, Philippe; Sbert, Mateu
 

Coordination

 

Supporters