To access the full text documents, please follow this link:

Biased representation of homothetic preferences on homogeneous sets;
Ratio-scale measurement with intransitivity or incompleteness: the homogeneous case
Le Menestrel, Marc; Lemaire, Bertrand
Universitat Pompeu Fabra. Departament d'Economia i Empresa
In the homogeneous case of one-dimensional objects, we show that any preference relation that is positive and homothetic can be represented by a quantitative utility function and unique bias. This bias may favor or disfavor the preference for an object. In the first case, preferences are complete but not transitive and an object may be preferred even when its utility is lower. In the second case, preferences are asymmetric and transitive but not negatively transitive and it may not be sufficient for an object to have a greater utility for be preferred. In this manner, the bias reflects the extent to which preferences depart from the maximization of a utility function.
intransitive preferences
incomplete preferences
irrational behavior
procedural concerns
process of choice
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons
Working Paper

Show full item record