Use this identifier to quote or link this document:

Exponentially small splitting of separatrices in the perturbed McMillan map
Martín, Pau; Sauzin, David; Seara, Tere M.
Centre de Recerca Matemàtica
The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [MSS08].
517 - Anàlisi
Pertorbació (Matemàtica)
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;917

Full text files in this document

Files Size Format
Pr917.pdf 820.5 KB PDF

Show full item record

Related documents

Other documents of the same author

Martín, Pau; Sauzin, D.; Martínez-Seara Alonso, M. Teresa
Martín, Pau; Sauzin, D.; Martínez-Seara Alonso, M. Teresa
Fontich, Ernest, 1955-; Llave, Rafael de la; Martín, Pau
Guàrdia Munarriz, Marcel; Martín, Pau; Sabbagh, Lara; Martínez-Seara Alonso, M. Teresa