Utilizad este identificador para citar o enlazar este documento: http://hdl.handle.net/2072/46798

Regularity and mass conservation for discrete coagulation-fragmentation equations with diffusion
Cañizo, José A.; Desvillettes, L.; Fellner, K.
Centre de Recerca Matemàtica
We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.
10-2009
517 - Anàlisi
Dualitat, Teoria de la (Matemàtica)
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
Edición preliminar
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;890
         

Documentos con el texto completo de este documento

Ficheros Tamaño Formato
Pr890.pdf 245.3 KB PDF

Mostrar el registro completo del ítem