To access the full text documents, please follow this link: http://hdl.handle.net/10230/693

Rate of convergence of a particle method to the solution of the Mc Kean-Vlasov's equation
Antonelli, Fabio; Kohatsu, Arturo
Universitat Pompeu Fabra. Departament d'Economia i Empresa
This paper studies the rate of convergence of an appropriatediscretization scheme of the solution of the Mc Kean-Vlasovequation introduced by Bossy and Talay. More specifically,we consider approximations of the distribution and of thedensity of the solution of the stochastic differentialequation associated to the Mc Kean - Vlasov equation. Thescheme adopted here is a mixed one: Euler/weakly interactingparticle system. If $n$ is the number of weakly interactingparticles and $h$ is the uniform step in the timediscretization, we prove that the rate of convergence of thedistribution functions of the approximating sequence in the $L^1(\Omega\times \Bbb R)$ norm and in the sup norm is of theorder of $\frac 1{\sqrt n} + h $, while for the densities is ofthe order $ h +\frac 1 {\sqrt {nh}}$. This result is obtainedby carefully employing techniques of Malliavin Calculus.
2005-09-15
Statistics, Econometrics and Quantitative Methods
mc kean-vlasov equation
malliavin calculus
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Working Paper
         

Show full item record

 

Coordination

 

Supporters