Use this identifier to quote or link this document:

Chain conditions for Leavitt path algebras
Abrams, Gene; Aranda Pino, Gonzalo; Perera Domènech, Francesc; Siles Molina, Mercedes
Centre de Recerca Matemàtica
In this paper, results known about the artinian and noetherian conditions for the Leavitt path algebras of graphs with finitely many vertices are extended to all row-finite graphs. In our first main result, necessary and sufficient conditions on a row-finite graph E are given so that the corresponding (not necessarily unital) Leavitt path K-algebra L(E) is semisimple. These are precisely the algebras L(E)for which every corner is left (equivalently, right)artinian. They are also precisely the algebras L(E) for which every finitely generated left (equivalently, right) L(E)-module is artinian. In our second main result, we give necessary and sufficient conditions for every corner of L(E) to be left (equivalently, right) noetherian. They also turn out to be precisely those algebras L(E) for which every finitely generated left(equivalently, right) L(E)-module is noetherian. In both situations, isomorphisms between these algebras and appropriate direct sums of matrix rings over K or K[x, x−1] are provided. Likewise, in both situations, equivalent graph theoretic conditions on E are presented.
512 - Àlgebra
Àlgebres associatives
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;742

Full text files in this document

Files Size Format
Pr742.pdf 249.6 KB PDF

Show full item record

Related documents

Other documents of the same author

Perera Domènech, Francesc; Siles Molina, Mercedes
Antoine Riolobos, Ramon; Dadarlat, Màrius; Perera Domènech, Francesc; Santiago, Luís
Perera Domènech, Francesc; Toms, Andrew S.