Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/10230/1223

Strong minimax lower bounds for learning
Antos, Andras; Lugosi, Gábor
Universitat Pompeu Fabra. Departament d'Economia i Empresa
Minimax lower bounds for concept learning state, for example, thatfor each sample size $n$ and learning rule $g_n$, there exists a distributionof the observation $X$ and a concept $C$ to be learnt such that the expectederror of $g_n$ is at least a constant times $V/n$, where $V$ is the VC dimensionof the concept class. However, these bounds do not tell anything about therate of decrease of the error for a {\sl fixed} distribution--concept pair.\\In this paper we investigate minimax lower bounds in such a--stronger--sense.We show that for several natural $k$--parameter concept classes, includingthe class of linear halfspaces, the class of balls, the class of polyhedrawith a certain number of faces, and a class of neural networks, for any{\sl sequence} of learning rules $\{g_n\}$, there exists a fixed distributionof $X$ and a fixed concept $C$ such that the expected error is larger thana constant times $k/n$ for {\sl infinitely many n}. We also obtain suchstrong minimax lower bounds for the tail distribution of the probabilityof error, which extend the corresponding minimax lower bounds.
15-09-2005
Statistics, Econometrics and Quantitative Methods
estimation
hypothesis testing
statistical decision theory: operations research
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Documento de trabajo
         

Mostrar el registro completo del ítem