Per accedir als documents amb el text complet, si us plau, seguiu el següent enllaç:

Go with the Winners Strategy in Path Tracing
Szirmay-Kalos, László
This paper proposes a new random walk strategy that minimizes the variance of the estimate using statistical estimations of local and global features of the scene. Based on the local and global properties, the algorithm decides at each point whether a Russian-roulette like random termination is worth performing, or on the contrary, we should split the path into several child paths. In this sense the algorithm is similar to the go-with-the-winners strategy invented in general Monte Carlo context. However, instead of establishing thresholds to make decisions, we compute the number of child paths on a continuous level and show that Russian roulette can be interpreted as a kind of splitting using fractional number of children. The new method is built into a path tracing algorithm, and a minimum cost heuristic is proposed for choosing the number of re°ected rays. Comparing it with the classical path tracing approach we concluded that the new method reduced the variance signi¯cantly
Montecarlo, Mètode de
Monte Carlo method
Estimació, Teoria de l'
Estimation theory
Rutes aleatòries (Matemàtica)
Random walks
Tots els drets reservats
University of West Bohemia, Czech Republic

Mostra el registre complet del document

Documents relacionats

Altres documents del mateix autor/a

Szirmay-Kalos, László; Umenhoffer, Tamás; Patow, Gustavo; Szécsi, László; Sbert, Mateu
Méndez Feliu, Àlex; Sbert, Mateu; Szirmay-Kalos, László
Ruiz Altisent, Marc; Szirmay-Kalos, László; Umenhoffer, Tamás; Boada, Imma; Feixas Feixas, Miquel; Sbert, Mateu
Méndez Feliu, Àlex; Sbert, Mateu; Szirmay-Kalos, László