# Consultar departamento

Por fecha Por autores Por títulos Por temas (CDU)

Del documento Todo RECERCAT

# Mi RECERCAT

Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/103873

 Título: Configurations of non-crossing rays and related problems Garcia Olaverri, Alfredo Martin; Hurtado Díaz, Fernando Alfredo; Tejel Altarriba, Francisco Javier; Urrutia Galicia, Jorge Let S be a set of n points in the plane and let R be a set of n pairwise non-crossing rays, each with an apex at a different point of S. Two sets of non-crossing rays R1R1 and R2R2 are considered to be different if the cyclic permutations they induce at infinity are different. In this paper, we study the number r(S) of different configurations of non-crossing rays that can be obtained from a given point set S. We define the extremal values r¯¯(n)=max|S|=nr(S) and r–(n)=min|S|=nr(S), r¯(n)=max|S|=nr(S) and r_(n)=min|S|=nr(S), and we prove that r–(n)=O*(2n)r_(n)=O*(2n) , r–(n)=O*(3.516n)r_(n)=O*(3.516n) and that r¯¯(n)=T*(4n)r¯(n)=T*(4n) . We also consider the number of different ways, r¿(S)r¿(S) , in which a point set S can be connected to a simple curve ¿¿ using a set of non-crossing straight-line segments. We define and study r¯¯¿(n)=max|S|=nr¿(S)and r–¿(n)=min|S|=nr¿(S), r¯¿(n)=max|S|=nr¿(S)and r_¿(n)=min|S|=nr¿(S), and we find these values for the following cases: When ¿¿ is a line and the points of S are in one of the halfplanes defined by ¿¿ , then r–¿(n)=T*(2n)r_¿(n)=T*(2n) and r¯¯¿(n)=T*(4n)r¯¿(n)=T*(4n) . When ¿¿ is a convex curve enclosing S, then r¯¯¿(n)=O*(16n)r¯¿(n)=O*(16n) . If all the points of S belong to a convex closed curve ¿¿ , then r–¿(n)=r¯¯¿(n)=T*(5n)r_¿(n)=r¯¿(n)=T*(5n) . Peer Reviewed Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàticaComputational geometryNon-crossing rays configurationsCyclic permutationsEnumerative problemsGeometria computacional info:eu-repo/semantics/submittedVersionArtículo

## Otros documentos del mismo autor/a

Fabila Monroy, Ruy; Garcia Olaverri, Alfredo Martin; Hurtado Díaz, Fernando Alfredo; Jaume, Rafel; Pérez Lantero, Pablo; Saumell, Maria; Silveira, Rodrigo Ignacio; Tejel Altarriba, Francisco Javier; Urrutia Galicia, Jorge
Garcia Olaverri, Alfredo Martin; Huemer, Clemens; Hurtado Díaz, Fernando Alfredo; Tejel Altarriba, Francisco Javier
Hurtado Díaz, Fernando Alfredo; Garcia Olaverri, Alfredo Martin; Korman Cozzetti, Matías; Matos, Inés P.; Saumell, Maria; Silveira, Rodrigo Ignacio; Tejel Altarriba, Francisco Javier; Tóth, Csaba D.
Hurtado Díaz, Fernando Alfredo; Garcia Olaverri, Alfredo Martin; Korman Cozzetti, Matías; Matos, Inés P.; Saumell, Maria; Silveira, Rodrigo Ignacio; Tejel Altarriba, Francisco Javier; Tóth, Csaba D.
Garcia Olaverri, Alfredo Martin; Hurtado Díaz, Fernando Alfredo; Korman Cozzetti, Matías; Matos, Inés P.; Saumell, Maria; Silveira, Rodrigo Ignacio; Tejel Altarriba, Francisco Javier; Tóth, Csaba D.

Coordinación

Patrocinio