Per accedir als documents amb el text complet, si us plau, seguiu el següent enllaç:

Event detection in location-based social networks
Capdevila Pujol, Joan; Cerquides, Jesús; Torres Viñals, Jordi
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors; Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
With the advent of social networks and the rise of mobile technologies, users have become ubiquitous sensors capable of monitoring various real-world events in a crowd-sourced manner. Location-based social networks have proven to be faster than traditional media channels in reporting and geo-locating breaking news, i.e. Osama Bin Laden’s death was first confirmed on Twitter even before the announcement from the communication department at the White House. However, the deluge of user-generated data on these networks requires intelligent systems capable of identifying and characterizing such events in a comprehensive manner. The data mining community coined the term, event detection , to refer to the task of uncovering emerging patterns in data streams . Nonetheless, most data mining techniques do not reproduce the underlying data generation process, hampering to self-adapt in fast-changing scenarios. Because of this, we propose a probabilistic machine learning approach to event detection which explicitly models the data generation process and enables reasoning about the discovered events. With the aim to set forth the differences between both approaches, we present two techniques for the problem of event detection in Twitter : a data mining technique called Tweet-SCAN and a machine learning technique called Warble. We assess and compare both techniques in a dataset of tweets geo-located in the city of Barcelona during its annual festivities. Last but not least, we present the algorithmic changes and data processing frameworks to scale up the proposed techniques to big data workloads.
This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware (TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence.We would also like to thank the reviewers for their constructive feedback.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
Machine learning
Data mining
Online social networks
Event detection
Social networks
Anomaly detection
Topic models
Probabilistic modeling
Variational inference
Apache spark
Aprenentatge automàtic
Mineria de dades
Xarxes socials en línia

Mostra el registre complet del document

Documents relacionats

Altres documents del mateix autor/a

Capdevila Pujol, Joan; Cerquides, Jesús; Torres Viñals, Jordi
Capdevila Pujol, Joan; Pericacho, Gonzalo; Torres Viñals, Jordi; Cerquides, Jesús
Capdevila Pujol, Joan; Arias Vicente, Marta; Arratia Quesada, Argimiro Alejandro