Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/102593

From pixels to sentiment: fine-tuning CNNs for visual sentiment prediction
Campos Camunez, Victor; Jou, Brendan; Giró Nieto, Xavier
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
Visual multimedia have become an inseparable part of our digital social lives, and they often capture moments tied with deep affections. Automated visual sentiment analysis tools can provide a means of extracting the rich feelings and latent dispositions embedded in these media. In this work, we explore how Convolutional Neural Networks (CNNs), a now de facto computational machine learning tool particularly in the area of Computer Vision, can be specifically applied to the task of visual sentiment prediction. We accomplish this through fine-tuning experiments using a state-of-the-art CNN and via rigorous architecture analysis, we present several modifications that lead to accuracy improvements over prior art on a dataset of images from a popular social media platform. We additionally present visualizations of local patterns that the network learned to associate with image sentiment for insight into how visual positivity (or negativity) is perceived by the model.
This work has been developed in the framework of the BigGraph TEC2013-43935-R project, funded by the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (ERDF). It has been supported by the Severo Ochoa Program’s SEV2015-0493 grant awarded by the Spanish Government, the TIN2015-65316 project by the Spanish Ministerio de Economía y Competitividad and contracts 2014-SGR-1051 by Generalitat de Catalunya. The Image Processing Group at the UPC is a SGR14 Consolidated Research Group recognized and sponsored by the Catalan Government (Generalitat de Catalunya) through its AGAUR office. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GeForce GTX Titan Z and X used in this work and the support of BSC/UPC NVIDIA GPU Center of Excellence.
Peer Reviewed
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo
Social media
Multimedia systems
Neural networks (Computer science)
Image processing--Digital techniques
Social networks
sentiment
convolutional neural networks
social multimedia
fine-tuning strategies
Sistemes multimèdia
Xarxes neuronals (Informàtica)
Imatges -- Processament -- Tècniques digitals
Xarxes socials
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/submittedVersion
Artículo
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Fernàndez, Dèlia; Woodward, Alejandro; Campos Camunez, Victor; Giró Nieto, Xavier; Jou, Brendan; Chang, Shih-Fu
Fernàndez, Dèlia; Campos Camúñez, Victor; Jou, Brendan; Giró Nieto, Xavier; Chang, Shih-Fu
Campos Camunez, Victor; Sastre, Francesc; Yagües, Maurici; Bellver, Míriam; Giró Nieto, Xavier; Torres Viñals, Jordi
Ventura Royo, Carles; Giró Nieto, Xavier; Vilaplana Besler, Verónica; Giribet, Daniel; Carasusan, Eusebio
Montes, Alberto; Salvador Aguilera, Amaia; Pascual, Santiago; Giró Nieto, Xavier