Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2445/102442

Integrated Strategy toward Self-Powering and Selectivity Tuning of Semiconductor Gas Sensors
Gad, A.; Hoffmann, Martin W. G.; Casals Guillén, Olga; Mayrhofer, L.; Fábrega, Cristian; Caccamo, Lorenzo; Hernández Ramírez, Francisco; Mohajerani, M. S.; Moseler, M.; Shen, H.; Waag, A.; Prades García, Juan Daniel
Universitat de Barcelona
Inorganic conductometric gas sensors struggle to overcome limitations in high power consumption and poor selectivi-ty. Herein, recent advances in developing self-powered gas sensors with tunable selectivity are introduced. Alternative general approaches for powering gas sensors were realized via proper integration of complementary functionalities (namely; powering and sensing) in a singular heterostructure. These solar light driven gas sensors operating at room temperature without applying any additional external powering sources are comparatively discussed. The TYPE-1 gas sensor based on integration of pure inorganic interfaces (e.g. CdS/n-ZnO/p-Si) is capable of delivering a self-sustained sensing response, while it shows a non-selective interaction towards oxidizing and reducing gases. The structural and the optical merits of TYPE-1 sensor are investigated giving more insights into the role of light activation on the modu-lation of the self-powered sensing response. In the TYPE-2 sensor, the selectivity of inorganic materials is tailored through surface functionalization with self-assembled organic monolayers (SAMs). Such hybrid interfaces (e.g. SAMs/ZnO/p-Si) have specific surface interactions with target gases compared to the non-specific oxidation-reduction interactions governing the sensing mechanism of simple inorganic sensors. The theoretical modeling using density functional theory (DFT) has been used to simulate the sensing behavior of inorganic/organic/gas interfaces, revealing that the alignment of organic/gas frontier molecular orbitals with respect to the inorganic Fermi level is the key factor for tuning selectivity. These platforms open new avenues for developing advanced energy-neutral gas sensing devices and concepts.
Detectors de gasos
Nanoestructures
Semiconductors
Gas detectors
Nanostructures
Semiconductors
(c) American Chemical Society , 2016
info:eu-repo/semantics/embargoedAccess
Artículo
info:eu-repo/semantics/acceptedVersion
American Chemical Society
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Gad, A.; Hoffmann, Martin W. G.; Casals Guillén, Olga; Mayrhofer, L.; Fábrega, Cristian; Caccamo, Lorenzo; Hernández Ramírez, Francisco; Mohajerani, M. S.; Moseler, M.; Shen, H.; Waag, A.; Prades García, Juan Daniel
Hoffmann, Martin W. G.; Casals Guillén, Olga; Mayrhofer, L.; Fàbrega i Claveria, Ma. Carme; Caccamo, Lorenzo; Hernández Ramírez, Francisco; Lilienkamp, G.; Daum, W.; Moseler, M.; Shen, H.; Waag, A.; Prades García, Juan Daniel
Hoffmann, Martin W. G.; Mayrhofer, L.; Casals Guillén, Olga; Caccamo, Lorenzo; Hernández Ramírez, Francisco; Lilienkamp, G.; Daum, Winfried; Moseler, M.; Waag, A.; Shen, H.; Prades García, Juan Daniel
Hoffmann, Martin W. G.; Prades García, Juan Daniel; Mayrhofer, L.; Hernández Ramírez, Francisco; Järvi, T.T.; Moseler, M.; Waag, A.; Shen, H.
Caccamo, Lorenzo; Fábrega, Cristian; Marschewski, Marcel; Fündling, Sönke; Gad, A.; Casals Guillén, Olga; Lilienkamp, G.; Hofft, Oliver; Prades García, Juan Daniel; Daum, W.; Waag, Andreas