Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/77020

Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications
Zlotnik, Sergio; Díez, Pedro; Modesto Galende, David; Huerta, Antonio
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III; Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
The solution of a steady thermal multiphase problem is assumed to be dependent on a set of parameters describing the geometry of the domain, the internal interfaces and the material properties. These parameters are considered as new independent variables. The problem is therefore stated in a multidimensional setup. The proper generalized decomposition (PGD) provides an approximation scheme especially well suited to preclude dramatically increasing the computational complexity with the number of dimensions. The PGD strategy is reviewed for the standard case dealing only with material parameters. Then, the ideas presented in [Ammar et al., Parametric solutions involving geometry: A step towards efficient shape optimization. Comput. Methods Appl. Mech. Eng., 2014; 268:178-193] to deal with parameters describing the domain geometry are adapted to a more general case including parametrization of the location of internal interfaces. Finally, the formulation is extended to combine the two types of parameters. The proposed strategy is used to solve a problem in applied geophysics studying the temperature field in a cross section of the Earth crust subsurface. The resulting problem is in a 10-dimensional space, but the PGD solution provides a fairly accurate approximation (error 1%) using less that 150 terms in the PGD expansion. Copyright (c) 2015John Wiley & Sons, Ltd.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics
Numerical methods and algorithms
reduced-order model
proper generalized decomposition (PGD)
geometry parametrization
interface
thermal cross section
geophysics
inverse problem
PARTIAL-DIFFERENTIAL-EQUATIONS
SEPARATED REPRESENTATIONS
TOPOLOGY OPTIMIZATION
SHAPE OPTIMIZATION
COMPLEX FLUIDS
SIMULATION
SOLVERS
DOMAINS
DEVICES
FAMILY
Anàlisi numèrica
Classificació AMS::65 Numerical analysis::65E05 Numerical methods in complex analysis (potential theory, etc.)
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/submittedVersion
Artículo
John Wiley & Sons
         

Mostrar el registro completo del ítem