To access the full text documents, please follow this link: http://hdl.handle.net/2117/88453

Array covariance error measurement in adaptive source estimation
Pérez Neira, Ana Isabel; Lagunas Hernandez, Miguel A.
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. A&MP - Grup de Processament d'Arrays i Sistemes Multicanal
The small error approximation is used to derive a linear relationship between the source parameters (i.e. power levels and directions of arrival) and a measurement of the covariance error matrix, defined as the difference between a nonparametric consistent estimate of the spectral density matrix and a covariance model from the scenario parameters. The resulting framework allows the design of a Kalman-like algorithm which provides a simultaneous and adaptive estimation of the source parameter, no matter what the source waveform or modulation. Good performance is expected, mainly in the presence of sensors malfunctioning, low signal-to-noise ratio, etc.
Peer Reviewed
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació
Kalman filtering
Kalman filters
Adaptive filters
Array signal processing
Parameter estimation
Kalman, Filtratge de
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
         

Show full item record

Related documents

Other documents of the same author

Pérez Neira, Ana Isabel; Vázquez, Miguel Ángel; Lagunas Hernandez, Miguel A.
Caspers, Erick; Ho Yeung, Sai; Sarkar, Tapan K.; Garcia-Lamperez, Alejandro; Salazr, Magdalena; Lagunas Hernandez, Miguel A.; Pérez Neira, Ana Isabel
Henarejos, Pol; Pérez Neira, Ana Isabel; Tralli, Velio; Lagunas Hernandez, Miguel A.
Vázquez, Miguel Angel; Pérez Neira, Ana Isabel; Lagunas Hernandez, Miguel A.
Vázquez, Miguel Angel; Pérez Neira, Ana Isabel; Lagunas Hernandez, Miguel A.
 

Coordination

 

Supporters