To access the full text documents, please follow this link: http://hdl.handle.net/2117/79985

The conjugacy problem for free-by-cyclic groups
Martino, Armando; Ventura Capell, Enric
Universitat Politècnica de Catalunya. Departament de Matemàtiques; Universitat Politècnica de Catalunya. MD - Matemàtica Discreta
We show that the conjugacy problem is solvable in [finitely generated free]-by-cyclic groups, by using a result of O. Maslakova that one can algorithmically find generating sets for the fixed sub- groups of free group automorphisms, and one of P. Brinkmann that one can determine whether two cyclic words in a free group are mapped to each other by some power of a given automorphism. The algorithm effectively computes a conjugating element, if it exists. We also solve the power conjugacy problem and give an algorithm to rec- ognize if two given elements of a finitely generated free group are Reidemeister equivalent with respect to a given automorphism.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra
Free groups
Group theory
Grups, Teoria de
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Article - Draft
Report
         

Show full item record

Related documents

Other documents of the same author

Bassino, Frederique; Martino, Armando; Nicaud, Cyril; Ventura Capell, Enric; Weil, Pascal
Bassino, Frédérique; Martino, Armando; Nicaud, Cyril; Ventura Capell, Enric; Weil, Pascal
Martino, Armando; Ventura Capell, Enric
Martino, Armando; Ventura Capell, Enric
Antolin, Yago; Martino, Armando; Ventura Capell, Enric
 

Coordination

 

Supporters