Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2445/65484

Knowledge Retrieval from PubMed Abstracts and Electronic Medical Records with the Multiple Sclerosis Ontology
Malhotra, Ashutosh; Gündel, Michaela; Rajput, Abdul Mateen; Mevissen, Heinz-Theodor; Saiz Hinajeros, Albert; Pastor Durán, Xavier; Lozano Rubí, Raimundo; Martinez Lapsicina, Elena H.; Zubizarreta, Irati; Mueller, Bernd; Kotelnikova, Ekaterina; Toldo, Luca; Hofmann Apitius, Martin; Villoslada, Pablo
Universitat de Barcelona
Background In order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS). Methods The MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology. Results Validation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports. Conclusion The MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.
MEDLINE
Recursos electrònics en xarxa
Esclerosi múltiple
Informació científica i tècnica
MEDLINE
Computer network resources
Multiple sclerosis
Science and technical information
cc-by (c) Malhotra, A. et al., 2015
http://creativecommons.org/licenses/by/3.0/es
Artículo
info:eu-repo/semantics/publishedVersion
Public Library of Science (PLoS)
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Cortada-Pujol M.; López, M.; Marimon, M.; Gros Salvat, Begoña; Creus, A.; Estruch Manjón, Alejandro; Gonzalez, F.; Lozano Rubí, Raimundo; Nonell, Rosa; Pastor Durán, Xavier
Mannara, F.; Valente, Tony; Saura Martí, Josep; Graus Ribas, Francesc; Saiz Hinajeros, Albert; Moreno, B.
Errea Lorenzo, Oihana; Moreno, B.; González Franquesa, Alba; García-Roves, Pablo M. (Pablo Miguel); Villoslada, Pablo
Martinez Pasamar, Sara; Abad Adán, Elena; Moreno, Beatriz; Velez de Mendizabal, Nieves; Martinez Forero, Ivan; García Ojalvo, Jordi; Villoslada, Pablo