To access the full text documents, please follow this link:

Dimension of families of determinantal schemes
Kleppe, J.O.; Miró-Roig, Rosa M. (Rosa Maria)
Universitat de Barcelona
A scheme $X\subset \mathbb{P} ^{n+c}$ of codimension $c$ is called standard determinantal if its homogeneous saturated ideal can be generated by the maximal minors of a homogeneous $t \times (t+c-1)$ matrix and $X$ is said to be good determinantal if it is standard determinantal and a generic complete intersection. Given integers $a_0,a_1,...,a_{t+c-2}$ and $b_1,...,b_t$ we denote by $W(\underline{b};\underline{a})\subset \operatorname{Hilb} ^p(\mathbb{P} ^{n+c})$(resp. $W_s(\underline{b};\underline{a})$) the locus of good (resp. standard) determinantal schemes $X\subset \mathbb{P} ^{n+c}$ of codimension $c$ defined by the maximal minors of a $t\times (t+c-1)$ matrix $(f_{ij})^{i=1,...,t}_{j=0,...,t+c-2}$ where $f_{ij}\in k[x_0,x_1,...,x_{n+c}]$ is a homogeneous polynomial of degree $a_j-b_i$. In this paper we address the following three fundamental problems: To determine (1) the dimension of $W(\underline{b};\underline{a})$ (resp. $W_s(\underline{b};\underline{a})$) in terms of $a_j$ and $b_i$, (2) whether the closure of $W(\underline{b};\underline{a})$ is an irreducible component of $\operatorname{Hilb} ^p(\mathbb{P} ^{n+c})$, and (3) when $\operatorname{Hilb} ^p(\mathbb{P} ^{n+c})$ is generically smooth along $W(\underline{b};\underline{a})$. Concerning question (1) we give an upper bound for the dimension of $W(\underline{b};\underline{a})$ (resp. $W_s(\underline{b};\underline{a})$) which works for all integers $a_0,a_1,...,a_{t+c-2}$ and $b_1,...,b_t$, and we conjecture that this bound is sharp. The conjecture is proved for $2\le c\le 5$, and for $c\ge 6$ under some restriction on $a_0,a_1,...,a_{t+c-2}$and $b_1,...,b_t$. For questions (2) and (3) we have an affirmative answer for $2\le c \le 4$ and $n\ge 2$, and for $c\ge 5$ under certain numerical assumptions.
Geometria algebraica
Esquemes (Geometria algebraica)
Algebraic geometry
Schemes (Algebraic geometry)
(c) American Mathematical Society (AMS), 2005
American Mathematical Society (AMS)

Show full item record

Related documents

Other documents of the same author

Kleppe, J.O.; Miró-Roig, Rosa M. (Rosa Maria)
Hoa, Le Tuan; Miró-Roig, Rosa M. (Rosa Maria)
Miró-Roig, Rosa M. (Rosa Maria)