To access the full text documents, please follow this link:

Proportionality: a valid alternative to correlation for relative data
Lovell, David; Pawlowsky-Glahn, Vera; Egozcue Rubí, Juan José; Marguerat, Samuel; Baehler, Juerg
Universitat Politècnica de Catalunya. COSDA-UPC - COmpositional and Spatial Data Analysis
In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic. which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica
Correlation (Statistics)
Molecular biology
Fission yeast
Correlació (Estadística)
Biologia molecular

Show full item record

Related documents

Other documents of the same author

Lovell, David; Pawlowsky-Glahn, Vera; Egozcue, Juan José; Marguerat, Samuel; Bähler, Jürg
Van den Boogaart, Karl Gerard; Egozcue Rubí, Juan José; Pawlowsky-Glahn, Vera
Pawlowsky-Glahn, Vera; Egozcue Rubí, Juan José
Canas Torres, José Antonio; Egozcue Rubí, Juan José; Miquel Canet, Juan; Barbat Barbat, Horia Alejandro