To access the full text documents, please follow this link: http://hdl.handle.net/2117/85174

A Hamiltonian study of the stability and bifurcations for the satellite problem
Muñoz Lecanda, Miguel Carlos; Rodríguez Olmos, Miguel Andrés; Teixido Roman, Miguel
Universitat Politècnica de Catalunya. Departament de Matemàtiques; Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
The final publication is available at Springer via http://dx.doi.org/10.1007/s00332-015-9257-6
We study the dynamics of a rigid body in a central gravitational field modeled as a Hamiltonian system with continuous rotational symmetries following the geometric framework of Wang et al. Novelties of our work are the use the reduced energy-momentum for the stability analysis and the treatment of axisymmetric bodies. We explicitly show the existence of new relative equilibria and study their stability and bifurcation patterns.
Àrees temàtiques de la UPC::Matemàtiques i estadística
Hamiltonian graph theory
Differential equations
stability of satellites
Hamiltonian bifurcations
systems with symmetries
Equacions diferencials
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/submittedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Rodríguez Olmos, Miguel Andrés
García Naranjo Ortiz de la Huerta, Luis Constantino; Marrero, Juan Carlos; Perez Chavela, Ernesto; Rodríguez Olmos, Miguel Andrés
Echeverría Enríquez, Arturo; López, Carlos; Marín Solano, Jesús; Muñoz Lecanda, Miguel Carlos; Román Roy, Narciso
Barbero Liñán, María; De León, Manuel; Martin de Diego, David; Marrero, Juan Carlos; Muñoz Lecanda, Miguel Carlos
Cariñena Marzo, José Fernando; Gràcia Sabaté, Francesc Xavier; Martínez Fernández, Eduardo; Marmo, Giuseppe; Muñoz Lecanda, Miguel Carlos; Román Roy, Narciso
 

Coordination

 

Supporters