Use this identifier to quote or link this document:

Neural nets for indirect inference
Creel, Michael
This paper shows how neural networks may be used to approximate the limited information posterior mean of a simulable model. Because the model is simulable, training and testing samples may be generated with sizes large enough to train well a net that is large enough, in terms of number of hidden layers and neurons, to learn the limited information posterior mean with good accuracy. The output of the net can be used as an estimator of the parameter, or, following Jiang et al. (2015), as an input to subsequent classical or Bayesian indirect inference estimation. Targeting the limited information posterior mean using neural nets is simpler, faster, and more successful than is targeting the full information posterior mean. Code to replicate the examples and to use the methods for other models is available at This code uses the Mocha.jl package for the Julia language, which allows for easy access to GPU computing, which greatly accelerates training the net.
Machine learning
Indirect inference
Neural networks
Approximate bayesian computing
30 - Teories i metodologia en les ciències socials. Sociografia. Estudis de gènere
Ciències socials -- Mètodes estadístics
Decisió, Teoria de
Decisió estadística bayesiana, Teoria de la
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:
15 p.
Working Paper
Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica
Working papers;960.16

Full text files in this document

Files Size Format
DHEUFA_96016.pdf 522.1 KB PDF

Show full item record

Related documents